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A classical topic in combinatorics is the study of problems of the following type: 

What are the maximum families F of subsets of a finite set with the property that 
the intersection of any two sets in the family satisfies some specified condition? 

Typical restrictions on the intersections F n F of any F and F’ in F are: 

(i) FnF’# 0, where all FEF have k elements (Erdos, Ko, and Rado 
(1961)). 

(ii) IFn F’I > j (Katona (1964)). 

In this paper, we consider the following general question: For a given family B of 

subsets of [n] = { 1, 2,..., n}, what is the largest family F of subsets of [n] satsifying 

F,F’EF-FnFzB for some BE B. 

Of particular interest are those B for which the maximum families consist of so- 

called “kernel systems,” i.e., the family of all supersets of some fixed set in B. For 
example, we show that the set of all (cyclic) translates of a block of consecutive 
integers in [n] is such a family. It turns out rather unexpectedly that many of the 

results we obtain here depend strongly on properties of the well-known entropy 
function (from information theory). 
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I. INTRODUCTION 

A classical topic in combinatorics is the study of questions of the follow- 
ing type: What are the maximum families F of subsets of a finite set with 
the property that the intersection of any two sets in the family satisfies 
some specified condition? 

Typical restrictions on the intersections based on F and F’ in F are: 

(i) Fn F’ # @, where F denotes the complement of F [ 163; 

(ii) Fn F’ # 0, where all FE F have k elements [3]; 

(iii) JFnF’( aj [S). 

Good surveys of our current state of knowledge in this area can be found 
in [6, 7, 9, 173, in addition to the results in [S, 12, 13, 14, 181. 

In this note we investigate the following question: For a given family B 
of subsets of [n] := { 1, 2,..., n}, what is the largest family F of subsets of 
[n] satisfying: 

F,F’eF+FnF’zB for some BE B. (1) 

In particular, let v(B) denote the cardinality of the largest family F satisfy- 
ing (1). 

An Easy Example 

As a prelude to the general results, we first consider a simple special case. 
For B = B, we take the set of all pairs {i, i + 1 >, 1 < i < n. For the family B2 
we prove 

r(B*) = 2”-2. 

Proof of (2): Define Si, i= 1,2, by 

S,:= {Jo [n]:j- i (mod 2)). 

Observe that for all i and all BE B 

Sin B#/21. 

Suppose F c 2r”’ satisfies (1). Define the induced families F(Si) by 

F(Sj):= {Fn Si: FE F}, i= 1,2. 

Note that if G, G’ E F(S,) then 

GnG’=(FnSi)n(FnSi) for some F, F’ E F 

=FnFnSi#O 

(2) 

(3) 

(4) 

(5) 

(6) 
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since F n F’ 2 B’ for some B’ E B and by construction Si n B # Qr for every 
BE B. Thus, for i = 1,2, F( Si) is a family of subsets of Si with the property 
that no two sets in F(S,) are disjoint. This implies that 

IF( < +. 2”” (7) 

since we cannot have a set X and its complement Si - X both in F(S,). 
Since any set FE F is determined by its intersections F n Si, i = 1, 2, then 
by (7) 

IFI<;. 2 IS11 . 1. p21 = a. p + Ial = 2-2. (8) 

hand for 
F'"=;X::z]: (tt2hyrcX), we’have 

the family F’ given by 

and 

FnF’c{l,2}~B for all F, F’ E F’ 

IF’1 = 2”-*. 

This proves (2). 1 

Note that the content of (2) is just that no family satisfying (1) for B, 
can have more sets than can be achieved in a trivial way, i.e., by taking all 
subsets of [n] containing a fixed B, E B. In general, we call such a family a 
kernel system with kernel B,. Of course, (2) does not imply that every 
maximum family F is a kernel system. 

In what follows, we will be especially interested in those families B for 
which u(B) is attained by kernel systems. This seems to be true, for exam- 
ple, for any family B formed by taking the (cyclic) translates of a fixed set 
in [n] (although we do not prove this). 

II. PARTITIONS OF [n] 

Although we study set intersections here, it is sometimes useful to con- 
sider the following variation of set intersection, namely, the complement of 
the symmetric difference of two sets, defined for X, YE [n] by 

XV Y:=(Xn Y)u(Xn P)=XA Y 

where X= [n] - X. For a given family B of subsets of [n], let C(B) denote 
the cardinality of the largest family F satisfying 

F, F’EF~FVFZB for some B E B. 

Obviously v(B) < C(B). 
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Slightly less obvious is the following. 

FACT 1. 

u(B) = C(B) for all B. (9) 

Sketch of prooj Assume F is a maximum V-family for B, i.e., 
IF/ = t?(B). Select, if possible, some element t E [n] so that for some FE F, 
Fu (t} & F. Replace a/Z such FE F (simultaneously) by Fu (t}, forming a 
new family F’. It is easy to check that F’ is also a V-family for B, and 
JF’J = IFI. Continue this process as long as possible, finally forming the 
family F*, which has the property that for any FEF’, if t $ F then 
Fu (t> E F*. Thus, F* is an upper ideal in the lattice of subsets 2[“‘, i.e., 
[n] 2 G 1 FE F* implies G E F *. It now follows easily that F* is in fact an 
n-family for B, i.e., F, F’ E F* implies Fn F’ 2 B for some BE B. Since 
JF*l = (FI =6(B) then we have u(B)2 (B) which implies (9). l 

THEOREM 1. Suppose [n] = S, u ... u S, is a partition of [n] into k 
non-empty subsets. For XC [n], define f(X) = (i: Sin X#@). Let B be a 
family of subsets of [n] and define B* = (AX): XE B} c 2ck1. Then we have 

u(B) < u(B*) 2”-k. (10) 

Proof By Fact 1, it is enough to prove 

v(B) 6 v(B*) 2”-k. (10’) 

Let F be a V-family for B, i.e., F, F’ E F implies F V F’ 2 B for some BE B. 
Also, let W denote the subspace of 2 rnl (considered as an n-dimensional 
vector space under the operation A) generated by the Sj. Partition Zc”’ into 
cosets Ci A W, 1 f id 2”- k. It will suffice to show that each coset CA W 
contains at most i$B*) elements of F. Since (X A C) V (Y A C) =X V Y, it 
suffices to prove that W contains at most C(B*) elements of F. Note that f 
is a one-to-one map of W to 2ck1 and it is easily checked that f(X V Y) = 
f(X) V f ( Y). Hence, for F, I;’ E Fn W, we have 

j-(F)Vf(F’)=f(FVF’)?f(B)EB* 

for some BE B. Therefore, W contains at most iT(B*) elements of F and 
Theorem 1 is proved. 1 

As an immediate consequence of Theorem 1, we have the following 
result, which has also been obtained independently by Faudree, Schelp, 
and Sbs [4]. 
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THEOREM 2. Suppose [n] = S, u ... u Sk is a partition of [n] into k 
non-empty sets, and B G 2[“’ is a family with the property that for some j, 
16 j f k, each 3 E B intersects at least j of the Si, 1 ,< i < k. Then 

u(B) < 2”-kg(k, j) (11) 

where 

if k+j=2u, 

if k+ j=2v- 1. 

Proof. By Fact 1 and Theorem 1 we have 

u(B) d u(B*) 2”- k, 

Since B* is a family of subsets of [k] each containing at least j elements, 
then a result of Kleitman [lo] (also see Ahlswede and Katona [l]) 
implies u(B* ) < g(k, j). This proves Theorem 2. B 

In order to apply Theorem 2 to a particular family B, we need to choose 
a suitable partition [In] = Ur=, Si (which determines some maximal value 
of j associated with it). It is always possible to use trivial partitions and 
indeed, these are sometimes optimal. For example, for [n] = S, we have 
k = 1, j= 1, g(k, j) = 1, and so, 

v(B)d2”-’ 

for any family B (which does not contain $3). Of course, for B = ( { 1 } }, for 
example, the family F = {Xc [n]: 1 E X} shows that this bound can be 
achieved. 

On the other hand, suppose we take for B the family of all j-element sub- 
sets of [n]. For the (maximum) partition [n] = ur=, Sj with Si= {i}, the 
condition that Fn F 2 B for some BE B is equivalent to IFn FI >j, i.e., 
Fn F intersects at least j of the Si. In this case, it follows that 

0) Gdn,j). (12) 

In fact, a theorem of Katona in [6] shows that we actually have equality 
in this case as well. 

For any family B, if p(B) denotes the cardinality of a minimum set B, in 
B then by forming a maximum kernel system with kernel B,, we have 

u(B) 2 2” ~ y’B). (13) 
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In order to obtain the exact value of u(B) using (11) and (13) it is 
necessary that 

g(k,j) = 2kpp(B). (14) 

As an illustration of (14) let B(t) denote the family of n c-sets of [n] for- 
med by choosing (cyclically) t consecutive elements of 2,. We claim that if 
n > t* - t then it is always possible to partition [n] into t + 1 subsets Si, 
1 < i< t + 1, so that the distance (in the corresponding n-cycle C,) between 
any s and s’ E Si is at least t. (An easy way to do this is to write n = ut + v, 
0 < u < t, write down the string 1, 2 ,..., t, 1, 2 ,..., t ,.,., 1, 2 ,..., t of u copies of 
1,2,..., t, and then “insert” v copies of t + 1 which are all at distance at least 
t from one another; this now defines a partition of [n] into t + 1 subsets 
with the desired property.) Since any BE B(t) intersects at least t of the 
t + 1 S,‘s then the appropriate values of k and j to use in (11) are k = t + 1, 
j = t. However, since p(B( t)) = t then 

g(t+l, r)=2=2’+‘-’ 

i.e., (14) holds, and consequently 

v(B(t)) = 2”-’ 

when n > t2 - t. In the next section we will extend this to all values of n > t. 

III. ON TRANSLATES OF A BLOCK 

In this section we will show that for any t < rz, the collection B(t) G 2[“’ 
consisting of a kernel system is the largest intersection family for B(t) 
which consists of all cyclic translates of t consecutive numbers. First we will 
make some easy observations. 

FACT 2. Let r <n/2. Let X be a subset of the n-cycle C, such that for 
IA, v E X, the distance between u and v in C, is no more than r - 1. Then 
IXI < r. 

Proof: Note that each vertex v in X excludes an interval, denoted by 
Z(v), of length n + 1 - 2r > 1. We will encounter the Z(v), VEX, in the 
following order. Choose a fixed vertex v = vl. In general, vi is defined to be 
the vertex in X- {vi,..., vieI} closest to {u ,,..., vi-i} (in case of a tie, 
choose arbitrarily). Now Z(u, ) eliminates n + 1 - 2r vertices from C,. Each 
additional Z(vi) eliminates at least one more vertex from C,. Hence the 
total number of excluded vertices is at least n + 1 - 2r + 1 XI - 1. These 
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together with the 1x1 points in X, total at most n. Therefore, 
n+2lXI-2rQn, i.e., 1x1 <r. I 

THEOREM 3. Suppose t < n < 2t. Let B’(t) consist of the cyclic translates 
of both { 1, 2,..., t} (mod n) together with { 1, 2,..., t} (mod(n - 1)). Let F be 
a family of subsets of [n] with the property that F, F E F *F V F’ 2 B for 
some B E B’(t). Then we have JFI 6 2” - ‘. 

Proof: Since (XA Z) V (Y A Z) = X V Y, we may consider F’ = 
{F A F,,: F’ E F} for a fixed subset F, in F. Thus, F’ contains the empty set 
andF,F’EF’~FVF’I>BforsomeBEB’(t).FurthermoreIFI=IF’Isince 
F’ #F” if and only if F, A F’ #F, A F”. It suffices to show IF’1 < 2”-‘. Let 
U denote the set UFE r, F = {x: x E FE F’ >. Suppose i, j E U, i, j # n, and 
[n] (mod n) is viewed as an n-cycle. Then we claim the distance between i 
and j is at most n - t - 1. Assume the contrary. First, suppose i and j both 
are in FE F’. Then F V 0 = F does not contain i and j and cannot contain 
a cyclic translate of {l,..., t > (mod n) or (mod(n - 1)) which is a contradic- 
tion. Suppose i and j are in different subsets F, F’ in F. Then again we have 
i, j$ F V F’ and F V F’ cannot contain a cyclic translate of {l,..., t} 
(mod n) or (mod (n - 1)). Hence, by Fact 2, ZJ contains at most n-t 
elements of [n - 1 ] or n - t + 1 elements of [n]. Clearly, F’ G 2’. Hence if 
IUI <n-t, then IF’1 ~2”~‘. Suppose IUI =n-t+ 1. Let X be a subset of 
UandX’=U-X.Since(XVX’)nU=@,thenIXVX’I<n-IUI<t-1. 
Therefore XV x’ cannot contain a translate of {l,..., t} and X, X’ cannot 
both be in U. Hence F’ contains at most half of the subsets in 2”, i.e., 
IF’1 ~i.2”~ ‘+ ’ = 2”-‘, which completes the proof of Theorem 3. 1 

THEOREM 4. Let F be a family of subsets of [n] such that 
F, I;’ E F * F V F’ contains some cyclic translate of (l,..., t}. Then 
IFI ~2”~‘. 

ProoJ: By Theorem 3 we only have to consider the case that n > 2t. We 
can write any n as im + j(m - 1) for some m, t < m < 2t, where i, j are non- 
negative and i is nonzero. Partition [n] into m subsets Si, 1 < i < m, so that 
the distance between any s and s’ E Si is at least m - 1. Using Theorem 1 we 
have u(B(t)) < v(B*(t))2”-“. Theorem 3 then implies u(B*( t)) < 2”- ‘. 
Therefore we have u(B(t)) d 2”-’ as desired. 1 

As an immediate consequence we have the following: 

THEOREM 5. Let F be a family of subsets of [n] such that 
F, F’ E F * Fn F’ contains some cyclic translate of {l,..., t}. Then 
IF( < 2”-‘. 
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We remark that the kernel system formed by all supersets of {l,..., r} has 
2”-’ subsets and hence is a largest possible family. 

IV. ON TRANSLATES OF A FIXED SET 

We have shown that kernel systems form the best intersection families 
when B consists of all the (cyclic) translates of { 1, 2..., t}. It appears that 
this may hold much more generally. 

Conjecture 1. If B(X) consists of the set of all the cyclic translates of a 
fixed set Xc [n] then 

u(B(X)) = 2”-.IX’. (15) 

Of course a kernel system with kernel X shows that u(B(X)) is at least as 
large as 2”-IXI. Although we could not prove this conjecture, the following 
results provide some evidence in support of the conjecture. 

Let B,(X) denote the set of all n cyclic translates of X in [n] and let 
B,*(X) denote the subset of all translates of X. It follows immediately that 

2”-IX’ d u(B*(X)) < u(B (X)) n n . (16) 

Since u(B,*+ ,(X)) 2 2u(B,*(X)), u(B,*(X))/2” is non-decreasing in n. 
Consequently, 

r*(X):= lim 
VV(W) 

2” 
exists. 

n-m 
(17) 

If X is a block of t consecutive integers, then r*(X) = 2-‘. We will prove 
the following: 

THEOREM 6. 

r(X) := lim ‘(B”(X)) exists 

n+‘x 2” 

and 

r(X) = r*(X). 

Proof. From (16) and (17) we have u(B,(X))/2”> u(B,*(X))/2” and 
lim, + m u(B,(X))/2”= r*(X). Hence, it clearly suffices to show that for any 
E > 0 there exists n, so that for all n > n, we have 

WM)) 
3” d r*(X) + 8. 
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To prove this, it is enough to show for an intersection family F, we can 
find a set H of h consecutive integers, where XE [A], such that 

To see this, note that 1 (FE F: Fn H = @}I < u(B,*-~(X)). Combining this 
with (18) we get 

< r*(X) + E’. (19) 

We only have to consider F with 

IFI >2”-h. (20) 

Now we partition [n] into m = m/h] blocks, i.e., [n] = S1 u 
Sz u . . . u S,, where 1 S,,, < h and Si, i # m, is a set of h consecutive num- 
bers. We consider a random variable X assuming values in F so that each 
element of F is equally likely. For 1 d i< m, let Xi = Xn Si be the 
associated random variable taking values in F, = {F n Si: FE F}. We con- 
sider the entropy (see [ 111) 

H(X)=C-p,log,p,=log,lFI, 
F 

where pF:= Prob(X= F) and the sum is taken over all FEF. Since 
x 1 ,..., X, determine X, we have 

H(X) < f H(X,) 
,=I 

which with (20) implies 

n-h< f H(X,) 
i=l 

i.e., 

;cl (Is,1 - fWi)) d h. 

Therefore there exists an i, say i = 1, such that 

h* 
PII -fW,)+--&-. n-2h (21) 

582a/43/1-3 
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Suppose Prob(X, = /zr) < I/( 1 + ~)2~. Then there exists 6 = 8(c) > 0, such 
that 

WX,)< ISI1 -6. 

Therefore we have h2/(n - 2h) 2 6 which contradicts the fact that 
n > 2h + h2/6 for n sulliciently large. Thus, .Prob(X, = 0) 2 l/( 1 + .~)2~ and 
(19) holds. This completes the proof of Theorem 6. m 

Let X+ i denote the set {x + i(mod n): x E X}. We have the following. 

THEOREM 7. Suppose XE [n] satisfies JXu (X+ i)l > 1x1 + log,(;) for 
all 1 <i<n. Then u(B(X))=~"-'~' where equality holds only for kernel 
systems with kernel X + j, for some j. 

Proof: Let F ~2~“’ be a family of sets such that for any F, F’ EF, 
Fn F’ contains X+ i for some i. We distinguish two cases: 

(i) There exists FE F such that F contains only one translated copy, 
say X+ i, of X. Then X+ i c Fn F’ holds for all 8” E F, i.e., F is contained 
in the kernel system {FE [n]: X+ iC F}, which has size 2”-‘*I. 

(ii) For every FE F there are at least two different numbers i, j, 
1 < i <j < n such that (X+ i) c F, (X + j) c F hold. Since there are only (;) 
choices for (i, j) there is a particular choice, say k, 1, such that 
(X+ k) u (X+ 1) c F holds for at least IFI/ sets FE F. 

However, I((X + k) u (X + I))( = (X u (X + (1 - k))l > 1x1 + log,(;), 
which means that 

I{F&[n]: ((X+k)u(X+l)&F}I <2n~‘x’~‘0gz(~)=2”-‘x’/(~). 

Consequently IFJ < (;) 2”-lX’/(;) = 2”- IX’ holds and Theorem 7 is 
proved. 1 

If c>2 is a constant and clog,n< t <n-clog,n then for almost all 
t-element subsets X of [n], the assumption of Theorem 7 can be verified. 
Thus we have: 

COROLLARY. Given c and t satisfying c> 2, clog,n < t <n- clog,n, 
then for almost all t-subsets X of [n] we have 

u(B(X))= 2"-Ix'. 

V. A PRODUCT THEOREM 

The following result, which seems to be a very useful tool in many 
extremal problems in combinatorics, was first proved by one of us (JBS) in 
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1978 (unpublished). A simpler related result was used by Bombieri [2] in 
connection with a question of J.-P. Serre. 

THE PRODUCT THEOREM. Let 5’ be a finite set and let A 1 ,..., A,,, be sub- 
sets of S such that every element of S is contained in at least k of Al,..., A,,,. 
Let F be a collection of subsets of S and let Fi= {Fn A,: FEF} for 
1 < i < m. Then we have 

IFlkG fi IFil 
i= I 

Proof. Let X be a random variable assuming values in F so that each 
element of F is equally likely. For 1 d id m, let Xi= Xn Ai be the 
associated random variable taking on values in Fi. We will prove 

kH(X)< f H(X,). 
i=l 

(22) 

If k = 1, then S= A, u ‘.. u A,,,. Thhs, X1,..., X,,, determine X and con- 
sequently, H(X) Q X7= 1 H(X,) as desired. Now assume k > 1. Let j denote 
the minimum 
prove (22) by 
tion on k) 

number of Ais whose union is S. Clearly 1 <j < m. We will 
induction on k and j. If j = 1, say A 1 = S, we have (by induc- 

(k- l)ff(X) d 1 ff(Xi) 
i#l 

and consequently 

kH(X) G 2 H(x,). 
i=l 

Suppose j > 1. We may assume without loss of generality that 
A,uA,u ... uAj=S. Let A;=A,uA,,A;=A,nA,. Clearly every 
element of S is in at least k of A;, A;, As,..., A,. By induction on j we have 

kH(X) < c H(X,) + H(X’) + H(X”) 
i# I,2 

where X’ = X n A’, and X” = X n A;. Since it can be shown (by the con- 
vexity of H) that 

H(Y) + H(X”) < H(X,) + H(X,) 

then we have kH( X) < C:! 1 H(X,). 
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Now, H(X) = log, JFI and H(Xi) <log, IFJ. Thus we have 

IF?< fi IFit 
i= 1 

and the proof is complete. 1 

The following inequalities of interest in information theory can be 
proved in a similar way. We will state these inequalities but omit the 
proofs. 

H(X, Y, 2) d 1(H(X Y) + w  Y, Z) + H(X Z)) 

d H(X) + H(Y) + H(Z). 

More generally, 

H(X, ,..., c H(Xil T...) Xi,). 
{il....,i,) E 2[‘1 

We will now use the Product Theorem to prove two theorems on inter- 
section families of graphs. 

THEOREM 8. Suppose F is a family of (labelled) subgraphs of the com- 
plete graph K,, such that for all F, F’ E F, Fn F does not contain any isolated 
vertices. Then 

Proof Choose Ai to be the (spanning) star at vertex vi and let &A,) 
denote the set of edges of Ai. Clearly every edge is in exactly two of 
AI,..., A,,. Now Fi= {Fn Ai: FEF} has the intersection property (i), i.e., 

(FnAi)n(F’nAi)=(FnF’)nAi#/25. 

Therefore IFJ < 21E(Ai)I ~ ’ = 2”-* since for any T c Ai, T and Ai - T cannot 
both be in Fi. Using the Product Theorem, we have 

Therefore 

\FJ2< fi IF,( <2”(“p2). 
,=I 

(FI ,2n+2)/2=2(;)-; 

which proves Theorem 8. 1 
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We note that the bound in Theorem 8 is best possible for the case of n 
even since one such family is a kernel system consisting of all subgraphs of 
K,, containing a fixed matching. 

THEOREM 9. Suppose F is a family of (labelled) subgraphs of K,, such 
that F n F’ contains a triangle for all F, F’ E F. Then 

JFI <2(‘;)p2. 

Proof. First, suppose n is even. We choose Ai, 1 d i < &(,;,), to be all 
possible disjoint unions of two complete (labelled) graphs of n/2 vertices 
each. Then Fj = {F n A i 1 FE F } has the intersection property (i) since no 
triangle can be contained in a bipartite graph. Therefore 

IE(4)l- 1 IFi\< . 

Each edge of K,, is in exactly (“H>Z2) A,‘s. Therefore by the Product Theorem 
we have 

,+3<2 1/2(*(n$2) - d(,;,, 

i.e., 

IFI < 2(;) -n(n- I)/n(n/*- 1) 

,2G-2. 

For the case of n odd, the proof is quite similar and will be omitted. We 
remark that the largest such family we can find so far is the kernel system 

of all 2 2 - ’ graphs which contain a fixed triangle. The above result sup- (“) 

plies evidence in favor of the old conjecture of Simonovits and Sos [ 151. 

Conjecture 2. If F is a family of (labelled) subgraphs of K,, such that for 

any F, F E F, Fn F’ contains a triangle then IFI < 2(G) ~ ‘. 
Let G = K(r,, r2, r3) denote the complete tripartite graph on the vertex 

sets Ri of size rr, 1 < i < 3. Suppose F is a family of (labelled) subgraphs of 
G such that Fn F contains a triangle for all F, F E F. One such family is a 
kernel system of G containing some fixed triangle. Clearly such a family has 
2rlr2+ r2r3+r3r1 - 3 graphs in it. We will show that no family F satisfying the 
hypothesis can have more than this many graphs. To see this, partition the 
edge set E of G into three classes Ei, 1 6 i < 3, where Ei denotes the sets of 
edges which are not incident to a vertex in Ri. It follows from the structure 
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of G that FnF’ must intersect every Ri since all triangles do. Thus, by 
Theorem 1 we have 

IFI <2’+-g(3,3) 
= 2”‘2 + 12’3 + ry, ~ 3 

as claimed. 
Here is another tantalizing conjecture: 

Conjecture 3. Suppose F is a family of (labelled) subgraphs of K, such 
that for any F, FE F, Fn F contains a path of three edges. Then 

IFI < 2(z)-3 

i.e., kernel systems give the largest possible families. 
At present all that is known is that 

2(;)-3<max IFI <2(;)-‘, 
F 

the upper bound resulting from the observation that F cannot contain a 
graph and its complement. We remark that if we only consider paths of 
length 2, then it is not difficult to show that maxF IFI = 2($) ~ ‘+O(‘). 

Finally, we mention one more (related) conjecture of Simonovits and 
Sbs [15]: 

Conjecture 4. If F is a family of subsets of [n] such that 
F, R” E F * Fn F contains a 3-term arithmetic progression, then 
IFJ ~2”-~. 

Note that this bound, if true, would be best possible, since in this case 
the kernel system formed by all sets containing a fixed 3-term arithmetic 
progression has 2”-3 sets in it. 
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