Some Intersection Theorems for Ordered Sets and Graphs

F. R. K. CHUNG* AND R. L. GRAHAM

AT&T Bell Laboratories, Murray Hill, New Jersey 07974 and *Bell Communications Research, Morristown, New Jersey

P. FRANKL

C.N.R.S., Paris, France

AND

J. B. SHEARER¹

University of California, Berkeley, California Communicated by the Managing Editors Received May 22, 1984

A classical topic in combinatorics is the study of problems of the following type: What are the *maximum* families F of subsets of a finite set with the property that the intersection of any two sets in the family satisfies some specified condition?

Typical restrictions on the intersections $F \cap F'$ of any F and F' in F are:

(i) $F \cap F' \neq \emptyset$, where all $F \in F$ have k elements (Erdös, Ko, and Rado (1961)).

(ii) $|F \cap F'| \ge j$ (Katona (1964)).

In this paper, we consider the following general question: For a given family **B** of subsets of $[n] = \{1, 2, ..., n\}$, what is the largest family **F** of subsets of [n] satsifying

 $F, F' \in \mathbf{F} \Rightarrow F \cap F' \supseteq B$ for some $B \in \mathbf{B}$.

Of particular interest are those **B** for which the maximum families consist of socalled "kernel systems," i.e., the family of all *supersets* of some fixed set in **B**. For example, we show that the set of all (cyclic) translates of a block of consecutive integers in [n] is such a family. It turns out rather unexpectedly that many of the results we obtain here depend strongly on properties of the well-known *entropy* function (from information theory).

¹ Current address: IBM Research, PO Box 218, Yorktown Heights, New York 10598.

CHUNG ET AL.

I. INTRODUCTION

A classical topic in combinatorics is the study of questions of the following type: What are the *maximum* families F of subsets of a finite set with the property that the intersection of any two sets in the family satisfies some specified condition?

Typical restrictions on the intersections based on F and F' in F are:

- (i) $\overline{F} \cap F' \neq \emptyset$, where \overline{F} denotes the complement of F [16];
- (ii) $F \cap F' \neq \emptyset$, where all $F \in \mathbf{F}$ have k elements [3];
- (iii) $|F \cap F'| \ge j$ [8].

Good surveys of our current state of knowledge in this area can be found in [6, 7, 9, 17], in addition to the results in [5, 12, 13, 14, 18].

In this note we investigate the following question: For a given family **B** of subsets of $[n] := \{1, 2, ..., n\}$, what is the largest family **F** of subsets of [n] satisfying:

$$F, F' \in \mathbf{F} \Rightarrow F \cap F' \supseteq B \qquad \text{for some } B \in \mathbf{B}. \tag{1}$$

In particular, let $v(\mathbf{B})$ denote the cardinality of the largest family F satisfying (1).

An Easy Example

As a prelude to the general results, we first consider a simple special case. For $\mathbf{B} = \mathbf{B}_2$ we take the set of all pairs $\{i, i+1\}, 1 \le i < n$. For the family \mathbf{B}_2 we prove

$$v(\mathbf{B}_2) = 2^{n-2}.$$
 (2)

Proof of (2): Define S_i , i = 1, 2, by

$$S_i := \{ j \in [n] : j \equiv i \pmod{2} \}.$$
 (3)

Observe that for all i and all $B \in \mathbf{B}$

$$S_i \cap B \neq \emptyset. \tag{4}$$

Suppose $\mathbf{F} \subseteq 2^{[n]}$ satisfies (1). Define the induced families $\mathbf{F}(S_i)$ by

$$\mathbf{F}(\mathbf{S}_i) := \{ F \cap \mathbf{S}_i : F \in \mathbf{F} \}, \qquad i = 1, 2.$$
(5)

Note that if $G, G' \in \mathbf{F}(S_i)$ then

$$G \cap G' = (F \cap S_i) \cap (F' \cap S_i) \quad \text{for some } F, F' \in \mathbf{F}$$

$$= F \cap F' \cap S_i \neq \emptyset$$
(6)

since $F \cap F' \supseteq B'$ for some $B' \in \mathbf{B}$ and by construction $S_i \cap B \neq \emptyset$ for every $B \in \mathbf{B}$. Thus, for i = 1, 2, $\mathbf{F}(S_i)$ is a family of subsets of S_i with the property that no two sets in $\mathbf{F}(S_i)$ are disjoint. This implies that

$$|\mathbf{F}(S_i)| \leqslant \frac{1}{2} \cdot 2^{|S_i|} \tag{7}$$

since we cannot have a set X and its complement $S_i - X$ both in $F(S_i)$. Since any set $F \in F$ is determined by its intersections $F \cap S_i$, i = 1, 2, then by (7)

$$|\mathbf{F}| \leq \frac{1}{2} \cdot 2^{|S_1|} \cdot \frac{1}{2} \cdot 2^{|S_2|} = \frac{1}{4} \cdot 2^{|S_1| + |S_2|} = 2^{n-2}.$$
(8)

On the other hand, for the family \mathbf{F}' given by $\mathbf{F}' = \{X \subseteq [n]: \{1, 2\} \subseteq X\}$, we have

$$F \cap F' \subseteq \{1, 2\} \in \mathbf{B}$$
 for all $F, F' \in \mathbf{F}'$

and

$$|\mathbf{F}'| = 2^{n-2}$$

This proves (2).

Note that the content of (2) is just that no family satisfying (1) for B_2 can have more sets than can be achieved in a trivial way, i.e., by taking all subsets of [n] containing a fixed $B_0 \in \mathbf{B}$. In general, we call such a family a *kernel system* with kernel B_0 . Of course, (2) does not imply that every maximum family **F** is a kernel system.

In what follows, we will be especially interested in those families **B** for which $v(\mathbf{B})$ is attained by kernel systems. This seems to be true, for example, for any family **B** formed by taking the (cyclic) translates of a fixed set in [n] (although we do not prove this).

II. PARTITIONS OF [n]

Although we study set *intersections* here, it is sometimes useful to consider the following variation of set intersection, namely, the complement of the symmetric difference of two sets, defined for $X, Y \subseteq [n]$ by

$$X \nabla Y := (X \cap Y) \cup (\overline{X} \cap \overline{Y}) = \overline{X \Delta Y}$$

where $\overline{X} = [n] - X$. For a given family **B** of subsets of [n], let $\overline{v}(\mathbf{B})$ denote the cardinality of the largest family **F** satisfying

$$F, F' \in \mathbf{F} \Rightarrow F \nabla F' \supseteq B$$
 for some $B \in \mathbf{B}$.

Obviously $v(\mathbf{B}) \leq \bar{v}(\mathbf{B})$.

Slightly less obvious is the following.

FACT 1.

$$v(\mathbf{B}) = \bar{v}(\mathbf{B}) \text{ for all } \mathbf{B}.$$
 (9)

Sketch of proof. Assume F is a maximum ∇ -family for B, i.e., $|\mathbf{F}| = \bar{v}(\mathbf{B})$. Select, if possible, some element $t \in [n]$ so that for some $F \in \mathbf{F}$, $F \cup \{t\} \notin \mathbf{F}$. Replace all such $F \in \mathbf{F}$ (simultaneously) by $F \cup \{t\}$, forming a new family \mathbf{F}' . It is easy to check that \mathbf{F}' is also a ∇ -family for B, and $|\mathbf{F}'| = |\mathbf{F}|$. Continue this process as long as possible, finally forming the family \mathbf{F}^* , which has the property that for any $F \in \mathbf{F}'$, if $t \notin F$ then $F \cup \{t\} \in \mathbf{F}^*$. Thus, \mathbf{F}^* is an upper ideal in the lattice of subsets $2^{[n]}$, i.e., $[n] \supseteq G \supset F \in \mathbf{F}^*$ implies $G \in \mathbf{F}^*$. It now follows easily that \mathbf{F}^* is in fact an \cap -family for B, i.e., $F, F' \in \mathbf{F}^*$ implies $F \cap F' \supseteq B$ for some $B \in \mathbf{B}$. Since $|\mathbf{F}^*| = |\mathbf{F}| = \bar{v}(\mathbf{B})$ then we have $v(\mathbf{B}) \ge (\mathbf{B})$ which implies (9).

THEOREM 1. Suppose $[n] = S_1 \cup \cdots \cup S_k$ is a partition of [n] into k non-empty subsets. For $X \subseteq [n]$, define $f(X) = \{i: S_i \cap X \neq \emptyset\}$. Let **B** be a family of subsets of [n] and define $\mathbf{B}^* = \{f(X): X \in \mathbf{B}\} \subseteq 2^{\lfloor k \rfloor}$. Then we have

$$v(\mathbf{B}) \leqslant v(\mathbf{B}^*) \, 2^{n-k}. \tag{10}$$

Proof. By Fact 1, it is enough to prove

$$\bar{v}(\mathbf{B}) \leqslant \bar{v}(\mathbf{B}^*) \, 2^{n-k}. \tag{10'}$$

Let F be a ∇ -family for **B**, i.e., $F, F' \in \mathbf{F}$ implies $F \nabla F' \supseteq B$ for some $B \in \mathbf{B}$. Also, let W denote the subspace of $2^{[n]}$ (considered as an *n*-dimensional vector space under the operation Δ) generated by the S_i . Partition $2^{[n]}$ into cosets $C_i \Delta \mathbf{W}$, $1 \leq i \leq 2^{n-k}$. It will suffice to show that each coset $C \Delta \mathbf{W}$ contains at most $\overline{v}(\mathbf{B}^*)$ elements of F. Since $(X \Delta C) \nabla (Y \Delta C) = X \nabla Y$, it suffices to prove that W contains at most $\overline{v}(\mathbf{B}^*)$ elements of F. Note that f is a one-to-one map of W to $2^{[k]}$ and it is easily checked that $f(X \nabla Y) = f(X) \nabla f(Y)$. Hence, for $F, F' \in F \cap \mathbf{W}$, we have

$$f(F) \nabla f(F') = f(F \nabla F') \supseteq f(B) \in \mathbf{B}^*$$

for some $B \in \mathbf{B}$. Therefore, W contains at most $\overline{v}(\mathbf{B}^*)$ elements of F and Theorem 1 is proved.

As an immediate consequence of Theorem 1, we have the following result, which has also been obtained independently by Faudree, Schelp, and Sós [4].

THEOREM 2. Suppose $[n] = S_1 \cup \cdots \cup S_k$ is a partition of [n] into k non-empty sets, and $\mathbf{B} \subseteq 2^{[n]}$ is a family with the property that for some j, $1 \le j \le k$, each $B \in \mathbf{B}$ intersects at least j of the S_i , $1 \le i \le k$. Then

$$v(\mathbf{B}) \leq 2^{n-k} g(k,j) \tag{11}$$

where

$$g(k, j) = \begin{cases} \sum_{t \ge v} \binom{k}{t} & \text{if } k+j = 2v, \\ \sum_{t \ge v} \binom{k}{t} + \binom{k-1}{v-1} & \text{if } k+j = 2v-1. \end{cases}$$

Proof. By Fact 1 and Theorem 1 we have

$$v(\mathbf{B}) \leq v(\mathbf{B}^*) 2^{n-k}.$$

Since **B**^{*} is a family of subsets of [k] each containing at least *j* elements, then a result of Kleitman [10] (also see Ahlswede and Katona [1]) implies $v(\mathbf{B}^*) \leq g(k, j)$. This proves Theorem 2.

In order to apply Theorem 2 to a particular family **B**, we need to choose a suitable partition $[n] = \bigcup_{i=1}^{k} S_i$ (which determines some maximal value of *j* associated with it). It is always possible to use trivial partitions and indeed, these are sometimes optimal. For example, for $[n] = S_1$ we have k = 1, j = 1, g(k, j) = 1, and so,

$$v(\mathbf{B}) \leq 2^{n-1}$$

for any family **B** (which does not contain \emptyset). Of course, for **B** = {{1}}, for example, the family **F** = { $X \subseteq [n]: 1 \in X$ } shows that this bound can be achieved.

On the other hand, suppose we take for **B** the family of all *j*-element subsets of [n]. For the (maximum) partition $[n] = \bigcup_{i=1}^{n} S_i$ with $S_i = \{i\}$, the condition that $F \cap F' \supseteq B$ for some $B \in \mathbf{B}$ is equivalent to $|F \cap F'| \ge j$, i.e., $F \cap F'$ intersects at least *j* of the S_i . In this case, it follows that

$$v(\mathbf{B}) \leq g(n, j). \tag{12}$$

In fact, a theorem of Katona in [6] shows that we actually have equality in this case as well.

For any family **B**, if $\mu(\mathbf{B})$ denotes the cardinality of a minimum set B_0 in **B** then by forming a maximum kernel system with kernel B_0 , we have

$$v(\mathbf{B}) \geqslant 2^{n-\mu(\mathbf{B})}.\tag{13}$$

CHUNG ET AL.

In order to obtain the exact value of $v(\mathbf{B})$ using (11) and (13) it is necessary that

$$g(k,j) = 2^{k-\mu(\mathbf{B})}$$
 (14)

As an illustration of (14) let $\mathbf{B}(t)$ denote the family of n t-sets of [n] formed by choosing (cyclically) t consecutive elements of Z_n . We claim that if $n \ge t^2 - t$ then it is always possible to partition [n] into t + 1 subsets S_i , $1 \le i \le t + 1$, so that the distance (in the corresponding *n*-cycle C_n) between any s and $s' \in S_i$ is at least t. (An easy way to do this is to write n = ut + v, $0 \le v < t$, write down the string 1, 2,..., t, 1, 2,..., t, ..., 1, 2,..., t of u copies of 1, 2,..., t, and then "insert" v copies of t + 1 which are all at distance at least t from one another; this now defines a partition of [n] into t + 1 subsets with the desired property.) Since any $B \in \mathbf{B}(t)$ intersects at least t of the t+1 S_i 's then the appropriate values of k and j to use in (11) are k = t+1, j = t. However, since $\mu(\mathbf{B}(t)) = t$ then

$$g(t+1, t) = 2 = 2^{t+1-t}$$

i.e., (14) holds, and consequently

$$v(\mathbf{B}(t)) = 2^{n-t}$$

when $n \ge t^2 - t$. In the next section we will extend this to all values of n > t.

III. ON TRANSLATES OF A BLOCK

In this section we will show that for any t < n, the collection $\mathbf{B}(t) \subseteq 2^{[n]}$ consisting of a kernel system is the largest intersection family for $\mathbf{B}(t)$ which consists of all cyclic translates of t consecutive numbers. First we will make some easy observations.

FACT 2. Let $r \leq n/2$. Let X be a subset of the n-cycle C_n such that for $u, v \in X$, the distance between u and v in C_n is no more than r-1. Then $|X| \leq r$.

Proof. Note that each vertex v in X excludes an interval, denoted by I(v), of length $n+1-2r \ge 1$. We will encounter the I(v), $v \in X$, in the following order. Choose a fixed vertex $v = v_1$. In general, v_i is defined to be the vertex in $X - \{v_i, ..., v_{i-1}\}$ closest to $\{v_1, ..., v_{i-1}\}$ (in case of a tie, choose arbitrarily). Now $I(v_1)$ eliminates n+1-2r vertices from C_n . Each additional $I(v_i)$ eliminates at least one more vertex from C_n . Hence the total number of excluded vertices is at least n+1-2r + |X|-1. These

together with the |X| points in X, total at most n. Therefore, $n+2|X|-2r \le n$, i.e., $|X| \le r$.

THEOREM 3. Suppose $t < n \le 2t$. Let $\mathbf{B}'(t)$ consist of the cyclic translates of both $\{1, 2, ..., t\} \pmod{n}$ together with $\{1, 2, ..., t\} \pmod{(n-1)}$. Let \mathbf{F} be a family of subsets of [n] with the property that $F, F' \in \mathbf{F} \Rightarrow F \nabla F' \supseteq B$ for some $B \in \mathbf{B}'(t)$. Then we have $|\mathbf{F}| \le 2^{n-t}$.

Proof. Since $(X \Delta Z) \nabla (Y \Delta Z) = X \nabla Y$, we may consider $\mathbf{F}' =$ $\{F \Delta F_0: F' \in \mathbf{F}\}$ for a fixed subset F_0 in **F**. Thus, **F**' contains the empty set and $F, F' \in \mathbf{F}' \Rightarrow F \nabla F' \supseteq B$ for some $B \in \mathbf{B}'(t)$. Furthermore $|\mathbf{F}| = |\mathbf{F}'|$ since $F' \neq F''$ if and only if $F_0 \Delta F' \neq F_0 \Delta F''$. It suffices to show $|\mathbf{F}'| \leq 2^{n-t}$. Let U denote the set $\bigcup_{F \in \mathbf{F}'} F = \{x: x \in F \in \mathbf{F}'\}$. Suppose $i, j \in U, i, j \neq n$, and $[n] \pmod{n}$ is viewed as an *n*-cycle. Then we claim the distance between *i* and j is at most n-t-1. Assume the contrary. First, suppose i and j both are in $F \in \mathbf{F}'$. Then $F \nabla \emptyset = \overline{F}$ does not contain *i* and *j* and cannot contain a cyclic translate of $\{1, ..., t\} \pmod{n}$ or $(\operatorname{mod}(n-1))$, which is a contradiction. Suppose i and j are in different subsets F, F' in F. Then again we have *i*, $j \notin F \nabla F'$ and $F \nabla F'$ cannot contain a cyclic translate of $\{1, ..., t\}$ $(\mod n)$ or $(\mod (n-1))$. Hence, by Fact 2, U contains at most n-telements of [n-1] or n-t+1 elements of [n]. Clearly, $\mathbf{F}' \subseteq 2^U$. Hence if $|U| \leq n-t$, then $|\mathbf{F}'| \leq 2^{n-t}$. Suppose |U| = n-t+1. Let X be a subset of U and X' = U - X. Since $(X \nabla X') \cap U = \emptyset$, then $|X \nabla X'| \leq n - |U| \leq t - 1$. Therefore $X \nabla X'$ cannot contain a translate of $\{1, ..., t\}$ and X, X' cannot both be in U. Hence F' contains at most half of the subsets in 2^{U} , i.e., $|\mathbf{F}'| \leq \frac{1}{2} \cdot 2^{n-t+1} = 2^{n-t}$, which completes the proof of Theorem 3.

THEOREM 4. Let **F** be a family of subsets of [n] such that $F, F' \in \mathbf{F} \Rightarrow F \nabla F'$ contains some cyclic translate of $\{1, ..., t\}$. Then $|\mathbf{F}| \leq 2^{n-t}$.

Proof. By Theorem 3 we only have to consider the case that n > 2t. We can write any n as im + j(m-1) for some m, $t < m \le 2t$, where i, j are non-negative and i is nonzero. Partition [n] into m subsets S_i , $1 \le i \le m$, so that the distance between any s and $s' \in S_i$ is at least m-1. Using Theorem 1 we have $v(\mathbf{B}(t)) \le v(\mathbf{B}^*(t)) \le 2^{n-t}$. Theorem 3 then implies $v(\mathbf{B}^*(t)) \le 2^{m-t}$. Therefore we have $v(\mathbf{B}(t)) \le 2^{n-t}$ as desired.

As an immediate consequence we have the following:

THEOREM 5. Let **F** be a family of subsets of [n] such that $F, F' \in \mathbf{F} \Rightarrow F \cap F'$ contains some cyclic translate of $\{1, ..., t\}$. Then $|\mathbf{F}| \leq 2^{n-t}$.

CHUNG ET AL.

We remark that the kernel system formed by all supersets of $\{1,..., t\}$ has 2^{n-t} subsets and hence is a largest possible family.

IV. ON TRANSLATES OF A FIXED SET

We have shown that kernel systems form the best intersection families when **B** consists of all the (cyclic) translates of $\{1, 2..., t\}$. It appears that this may hold much more generally.

Conjecture 1. If B(X) consists of the set of all the cyclic translates of a fixed set $X \subseteq [n]$ then

$$v(\mathbf{B}(X)) = 2^{n - |X|}.$$
(15)

Of course a kernel system with kernel X shows that $v(\mathbf{B}(X))$ is at least as large as $2^{n-|X|}$. Although we could not prove this conjecture, the following results provide some evidence in support of the conjecture.

Let $\mathbf{B}_n(X)$ denote the set of all *n* cyclic translates of X in [n] and let $\mathbf{B}_n^*(X)$ denote the subset of all translates of X. It follows immediately that

$$2^{n-|\mathcal{X}|} \leqslant v(\mathbf{B}_n^*(\mathcal{X})) \leqslant v(\mathbf{B}_n(\mathcal{X})).$$
(16)

Since $v(\mathbf{B}_{n+1}^*(X)) \ge 2v(\mathbf{B}_n^*(X))$, $v(\mathbf{B}_n^*(X))/2^n$ is non-decreasing in *n*. Consequently,

$$r^{*}(X) := \lim_{n \to \infty} \frac{\nu(\mathbf{B}_{n}^{*}(X))}{2^{n}} \quad \text{exists.}$$
(17)

If X is a block of t consecutive integers, then $r^*(X) = 2^{-t}$. We will prove the following:

THEOREM 6.

$$r(X) := \lim_{n \to \infty} \frac{v(\mathbf{B}_n(X))}{2^n}$$
 exists

and

$$r(X) = r^*(X).$$

Proof. From (16) and (17) we have $v(\mathbf{B}_n(X))/2^n \ge v(\mathbf{B}_n^*(X))/2^n$ and $\lim_{n \to \infty} v(\mathbf{B}_n(X))/2^n = r^*(X)$. Hence, it clearly suffices to show that for any $\varepsilon > 0$ there exists n_0 so that for all $n > n_0$ we have

$$\frac{v(\mathbf{B}_n(X))}{2^n} \leqslant r^*(X) + \varepsilon.$$

To prove this, it is enough to show for an intersection family F, we can find a set H of h consecutive integers, where $X \subseteq [h]$, such that

$$|\{F \in \mathbf{F}: F \cap H = \emptyset\}| \ge |\mathbf{F}|/2^{h}(1+\varepsilon).$$
(18)

To see this, note that $|\{F \in \mathbf{F}: F \cap H = \emptyset\}| \leq v(\mathbf{B}^*_{n-h}(X))$. Combining this with (18) we get

$$\frac{|\mathbf{F}|}{2^n} \leqslant (1+\varepsilon) \frac{v(\mathbf{B}_{n-h}^*(X))}{2^{n-h}} \leqslant r^*(X) + \varepsilon'.$$
(19)

We only have to consider F with

$$|\mathbf{F}| \ge 2^{n-h}.\tag{20}$$

Now we partition [n] into $m = \lceil n/h \rceil$ blocks, i.e., $[n] = S_1 \cup S_2 \cup \cdots \cup S_m$, where $|S_m| \leq h$ and S_i , $i \neq m$, is a set of h consecutive numbers. We consider a random variable X assuming values in \mathbf{F} so that each element of \mathbf{F} is equally likely. For $1 \leq i \leq m$, let $X_i = X \cap S_i$ be the associated random variable taking values in $F_i = \{F \cap S_i : F \in \mathbf{F}\}$. We consider the entropy (see [11])

$$H(X) = \sum_{F} -p_{F} \log_{2} p_{F} = \log_{2} |\mathbf{F}|,$$

where $p_F := \operatorname{Prob}(X = F)$ and the sum is taken over all $F \in \mathbf{F}$. Since X_1, \dots, X_m determine X, we have

$$H(X) \leqslant \sum_{i=1}^{m} H(X_i)$$

which with (20) implies

$$n-h \leq \sum_{i=1}^{m} H(X_i)$$

i.e.,

$$\sum_{i=1}^{m} \left(|S_i| - H(X_i) \right) \leq h.$$

Therefore there exists an *i*, say i = 1, such that

$$|S_1| - H(X_1) \le \frac{h}{m-1} < \frac{h^2}{n-2h}.$$
(21)

Suppose $\operatorname{Prob}(X_1 = \emptyset) < 1/(1 + \varepsilon)2^h$. Then there exists $\delta = \delta(\varepsilon) > 0$, such that

$$H(X_1) < |S_1| - \delta.$$

Therefore we have $h^2/(n-2h) \ge \delta$ which contradicts the fact that $n > 2h + h^2/\delta$ for *n* sufficiently large. Thus, $\operatorname{Prob}(X_1 = \emptyset) \ge 1/(1+\varepsilon)2^h$ and (19) holds. This completes the proof of Theorem 6.

Let X + i denote the set $\{x + i \pmod{n} : x \in X\}$. We have the following.

THEOREM 7. Suppose $X \subseteq [n]$ satisfies $|X \cup (X+i)| > |X| + \log_2(\frac{n}{2})$ for all $1 \leq i < n$. Then $v(\mathbf{B}(X)) = 2^{n-|X|}$ where equality holds only for kernel systems with kernel X + j, for some j.

Proof. Let $\mathbf{F} \subseteq 2^{[n]}$ be a family of sets such that for any $F, F' \in \mathbf{F}$, $F \cap F'$ contains X + i for some *i*. We distinguish two cases:

(i) There exists $F \in \mathbf{F}$ such that F contains only one translated copy, say X + i, of X. Then $X + i \subseteq F \cap F'$ holds for all $F' \in \mathbf{F}$, i.e., \mathbf{F} is contained in the kernel system $\{F \subseteq [n]: X + i \subseteq F\}$, which has size $2^{n-|X|}$.

(ii) For every $F \in \mathbf{F}$ there are at least two different numbers i, j, $1 \leq i < j \leq n$ such that $(X+i) \subset F$, $(X+j) \subset F$ hold. Since there are only $\binom{n}{2}$ choices for (i, j) there is a particular choice, say k, l, such that $(X+k) \cup (X+l) \subseteq F$ holds for at least $|\mathbf{F}|/\binom{n}{2}$ sets $F \in \mathbf{F}$.

However, $|((X + k) \cup (X + l))| = |X \cup (X + (l - k))| > |X| + \log_2(\frac{n}{2})$, which means that

$$|\{F \subseteq [n]: ((X+k) \cup (X+l)) \subseteq F\}| < 2^{n-|X|-\log_2\binom{n}{2}} = 2^{n-|X|}/\binom{n}{2}.$$

Consequently $|\mathbf{F}| < \binom{n}{2} 2^{n-|X|} / \binom{n}{2} = 2^{n-|X|}$ holds and Theorem 7 is proved.

If c > 2 is a constant and $c \log_2 n < t < n - c \log_2 n$ then for almost all *t*-element subsets X of [n], the assumption of Theorem 7 can be verified. Thus we have:

COROLLARY. Given c and t satisfying c > 2, $c \log_2 n < t < n - c \log_2 n$, then for almost all t-subsets X of [n] we have

$$v(\mathbf{B}(X)) = 2^{n-|X|}.$$

V. A PRODUCT THEOREM

The following result, which seems to be a very useful tool in many extremal problems in combinatorics, was first proved by one of us (JBS) in 1978 (unpublished). A simpler related result was used by Bombieri [2] in connection with a question of J.-P. Serre.

THE PRODUCT THEOREM. Let S be a finite set and let $A_1,..., A_m$ be subsets of S such that every element of S is contained in at least k of $A_1,..., A_m$. Let F be a collection of subsets of S and let $\mathbf{F}_i = \{F \cap A_i : F \in \mathbf{F}\}$ for $1 \leq i \leq m$. Then we have

$$|\mathbf{F}|^k \leqslant \prod_{i=1}^m |\mathbf{F}_i|.$$

Proof. Let X be a random variable assuming values in **F** so that each element of **F** is equally likely. For $1 \le i \le m$, let $X_i = X \cap A_i$ be the associated random variable taking on values in **F**_i. We will prove

$$kH(X) \leq \sum_{i=1}^{m} H(X_i).$$
(22)

If k = 1, then $S = A_1 \cup \cdots \cup A_m$. Thus, $X_1, ..., X_m$ determine X and consequently, $H(X) \leq \sum_{i=1}^m H(X_i)$ as desired. Now assume k > 1. Let j denote the minimum number of A_i 's whose union is S. Clearly $1 \leq j \leq m$. We will prove (22) by induction on k and j. If j = 1, say $A_1 = S$, we have (by induction on k)

$$(k-1)H(X) \leq \sum_{i \neq 1} H(X_i)$$

and consequently

$$kH(X) \leq \sum_{i=1}^{m} H(X_i).$$

Suppose j > 1. We may assume without loss of generality that $A_1 \cup A_2 \cup \cdots \cup A_j = S$. Let $A'_1 = A_1 \cup A_2$, $A'_2 = A_1 \cap A_2$. Clearly every element of S is in at least k of A'_1 , A'_2 , A_3 ,..., A_m . By induction on j we have

$$kH(X) \leq \sum_{i \neq 1,2} H(X_i) + H(X') + H(X'')$$

where $X' = X \cap A'_1$ and $X'' = X \cap A'_2$. Since it can be shown (by the convexity of H) that

$$H(X') + H(X'') \leq H(X_1) + H(X_2)$$

then we have $kH(X) \leq \sum_{i=1}^{m} H(X_i)$.

Now, $H(X) = \log_2 |\mathbf{F}|$ and $H(X_i) \le \log_2 |\mathbf{F}_i|$. Thus we have

$$|\mathbf{F}|^k \leqslant \prod_{i=1}^m |\mathbf{F}_i|$$

and the proof is complete.

The following inequalities of interest in information theory can be proved in a similar way. We will state these inequalities but omit the proofs.

$$H(X, Y, Z) \leq \frac{1}{2}(H(X, Y) + H(Y, Z) + H(X, Z))$$

$$\leq H(X) + H(Y) + H(Z).$$

More generally,

$$H(X_1,...,X_l) \leq {\binom{l-1}{j-1}}^{-1} \sum_{\{i_1,...,i_j\} \leq 2^{[l]}} H(X_{i_1},...,X_{i_j}).$$

We will now use the Product Theorem to prove two theorems on intersection families of graphs.

THEOREM 8. Suppose \mathbf{F} is a family of (labelled) subgraphs of the complete graph K_n such that for all $F, F' \in \mathbf{F}, F \cap F'$ does not contain any isolated vertices. Then

$$|\mathbf{F}| \leq 2^{\binom{n}{2} - \frac{n}{2}}.$$

Proof. Choose A_i to be the (spanning) star at vertex v_i and let $E(A_i)$ denote the set of edges of A_i . Clearly every edge is in exactly two of $A_1, ..., A_n$. Now $\mathbf{F}_i = \{F \cap A_i : F \in \mathbf{F}\}$ has the intersection property (i), i.e.,

$$(F \cap A_i) \cap (F' \cap A_i) = (F \cap F') \cap A_i \neq \emptyset.$$

Therefore $|\mathbf{F}_i| \leq 2^{|E(A_i)|-1} = 2^{n-2}$ since for any $T \subset A_i$, T and $A_i - T$ cannot both be in \mathbf{F}_i . Using the Product Theorem, we have

$$|\mathbf{F}|^2 \leqslant \prod_{i=1}^n |\mathbf{F}_i| \leqslant 2^{n(n-2)}.$$

Therefore

$$|\mathbf{F}| \leq 2^{n(n-2)/2} = 2^{\binom{n}{2} - \frac{n}{2}}$$

which proves Theorem 8.

We note that the bound in Theorem 8 is best possible for the case of n even since one such family is a kernel system consisting of all subgraphs of K_n containing a fixed matching.

THEOREM 9. Suppose \mathbf{F} is a family of (labelled) subgraphs of K_n such that $F \cap F'$ contains a triangle for all $F, F' \in \mathbf{F}$. Then

$$|\mathbf{F}| \leq 2^{\binom{n}{2}-2}.$$

Proof. First, suppose *n* is even. We choose A_i , $1 \le i \le \frac{1}{2} \binom{n}{n/2}$, to be all possible disjoint unions of two complete (labelled) graphs of n/2 vertices each. Then $\mathbf{F}_i = \{F \cap A_i | F \in \mathbf{F}\}$ has the intersection property (i) since no triangle can be contained in a bipartite graph. Therefore

$$|\mathbf{F}_i| \leq 2^{|E(A_i)|-1}.$$

Each edge of K_n is in exactly $\binom{n-2}{n/2} A_i$'s. Therefore by the Product Theorem we have

$$|\mathbf{F}|^{\binom{n-2}{n/2}} \leq 2^{1/2\binom{n/2}{2}-1\binom{n}{n/2}}$$

i.e.,

$$|\mathbf{F}| \leq 2^{\binom{n}{2} - n(n-1)/n(n/2-1)} \leq 2^{\binom{n}{2} - 2}.$$

For the case of *n* odd, the proof is quite similar and will be omitted. We remark that the largest such family we can find so far is the kernel system of all $2^{\binom{n}{2}-3}$ graphs which contain a fixed triangle. The above result supplies evidence in favor of the old conjecture of Simonovits and Sós [15].

Conjecture 2. If **F** is a family of (labelled) subgraphs of K_n such that for any $F, F' \in \mathbf{F}, F \cap F'$ contains a triangle then $|\mathbf{F}| \leq 2^{\binom{n}{2}-3}$.

Let $G = K(r_1, r_2, r_3)$ denote the complete tripartite graph on the vertex sets R_i of size r_i , $1 \le i \le 3$. Suppose F is a family of (labelled) subgraphs of G such that $F \cap F'$ contains a triangle for all $F, F' \in F$. One such family is a kernel system of G containing some fixed triangle. Clearly such a family has $2^{r_1r_2 + r_2r_3 + r_3r_1 - 3}$ graphs in it. We will show that no family F satisfying the hypothesis can have more than this many graphs. To see this, partition the edge set E of G into three classes E_i , $1 \le i \le 3$, where E_i denotes the sets of edges which are not incident to a vertex in R_i . It follows from the structure of G that $F \cap F'$ must intersect every R_i since all triangles do. Thus, by Theorem 1 we have

$$|\mathbf{F}| \leq 2^{|E|-3}g(3,3)$$

= $2^{r_1r_2+r_2r_3+r_3r_1-3}$

as claimed.

Here is another tantalizing conjecture:

Conjecture 3. Suppose F is a family of (labelled) subgraphs of K_n such that for any $F, F' \in F, F \cap F'$ contains a path of three edges. Then

$$|\mathbf{F}| \leq 2^{\binom{n}{2}-3}$$

i.e., kernel systems give the largest possible families.

At present all that is known is that

$$2^{\binom{n}{2}-3} \leq \max_{\mathbf{F}} |\mathbf{F}| \leq 2^{\binom{n}{2}-1},$$

the upper bound resulting from the observation that **F** cannot contain a graph and its complement. We remark that if we only consider paths of length 2, then it is not difficult to show that $\max_{\mathbf{F}} |\mathbf{F}| = 2^{\binom{n}{2} - 1 + o(1)}$.

Finally, we mention one more (related) conjecture of Simonovits and Sós [15]:

Conjecture 4. If **F** is a family of subsets of [n] such that $F, F' \in \mathbf{F} \Rightarrow F \cap F'$ contains a 3-term arithmetic progression, then $|\mathbf{F}| \leq 2^{n-3}$.

Note that this bound, if true, would be best possible, since in this case the kernel system formed by all sets containing a fixed 3-term arithmetic progression has 2^{n-3} sets in it.

REFERENCES

- 1. R. AHLSWEDE AND G. O. H. KATONA, Contributions to the geometry of Hamming spaces, *Discrete Math.* 17 (1977), 1-22.
- 2. E. BOMBIERI, personal communication.
- 3. P. ERDÖS, C. KO, AND R. RADO, Intersection theorems for systems of finite sets, Quart. J. Math. 2 (1961), 313-320.
- 4. R. FAUDREE, R. SCHELP, AND V. T. Sós, Some intersection theorems on two-valued functions, to appear.
- R. L. GRAHAM, M. SIMONOVITS, AND V. T. Sós, A note on the intersection properties of subsets of integers, J. Combin. Theory Ser. A 28 (1980), 106-110.

- C. GREENE AND D. J. KLEITMAN, Proof techniques in the theory of finite sets, *in* "Studies in Combinatorics," M.A.A. Studies in Mathematics Vol. 17, (G.-C. Rota, Ed.), pp. 22-79, 1978.
- 7. A. J. W. HILTON, On ordered set systems and some conjectures related to the Erdös-Ko-Rado theorem and Turán's theorem, *Mathematika* 28 (1981), 54-66.
- 8. G. KATONA, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
- G. O. H. KATONA, Extremal problems among subsets of a finites set, in "Combinatorics" (M. Hall and J. H. van Lint, Eds.), Math. Centrum Tracts Vol. 50, pp. 13-42, Math. Centrum, Amsterdam, 1974.
- 10. D. J. KLEITMAN, On a combinatorial conjecture of Erdös, J. Combin. Theory 1 (1966), 209-214.
- 11. R. J. MCELIECE, "The Theory of Information and Coding," Addison-Wesley, Reading, Mass., 1977.
- 12. M. SIMONOVITS AND V. T. Sós, Graph intersection theorems, in "Proc. Colloq. Combinatorics and Graph Theory," Orsay, Paris, 1976, pp. 389–391.
- M. SIMONOVITS AND V. T. Sós, Intersection theorems for subsets of integers, Notices Amer. Math. Soc. 25 (1978), A-33.
- 14. M. SIMONOVITS AND V. T. Sós, Intersections on structures, Ann. Discrete Math. 6 (1980), 301–314.
- 15. M. SIMONOVITS AND V. T. Sós, personal communication.
- E. S. SPERNER, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.
- 17. M. DEZA AND P. FRANKL, Erdös-Ko-Rado Theorem 22 years later, SIAM J. Alg. Disc. Math. 4 (1983), 419-431.
- 18. P. FRANKL AND Z. FUREDI, Forbidding just one intersection, J. Combin. Theory Ser. A 39 (1985), 160–176.