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A classical topic in combinatorics is the study of problems of the following type:
What are the maximum families F of subsets of a finite set with the property that
the intersection of any two sets in the family satisfies some specified condition?

Typical restrictions on the intersections Fn F of any F and F' in F are:

(i) FnF #, where all FeF have k elements (Erdés, Ko, and Rado
(1961)).

(i) |FnF'|>j (Katona (1964)).

In this paper, we consider the following general question: For a given family B of
subsets of [n] = {1, 2,.., n}, what is the largest family F of subsets of [n] satsifying

FFeF=FnF2B for some BeB.

Of particular interest are those B for which the maximum families consist of so-
called “kernel systems,” i.e., the family of all supersets of some fixed set in B. For
example, we show that the set of all {cyclic) translates of a block of consecutive
integers in [n] is such a family. It turns out rather unexpectedly that many of the
results we obtain here depend strongly on properties of the well-known entropy
function (from information theory).
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I. INTRODUCTION

A classical topic in combinatorics is the study of questions of the follow-
ing type: What are the maximum families F of subsets of a finite set with
the property that the intersection of any two sets in the family satisfies
some specified condition?

Typical restrictions on the intersections based on F and F' in F are:

(i) FnF # &, where F denotes the complement of F [16];
(il) FnF # ¢, where all FeF have k elements [3];
(iii) |[FAF|zj[8])
Good surveys of our current state of knowledge in this area can be found
in [6, 7,9, 17], in addition to the results in [5, 12, 13, 14, 18].
In this note we investigate the following question: For a given family B

of subsets of [n]:={l,2,..,n}, what is the largest family F of subsets of
[n] satisfying:

FFFeF=FnF2>B8B for some Be B. (1)
In particular, let »(B) denote the cardinality of the largest family F satisfy-
ing (1).
An Easy Example

As a prelude to the general results, we first consider a simple special case.
For B =B, we take the set of all pairs {4, i+ 1}, 1 <i<n. For the family B,
we prove

o(B,)=2""2 2)
Proof of (2): Define S;, i=1,2, by

S;:={je[n]:j=i(mod2)}. (3)
Observe that for all i and all BeB
S:NB#. (4)

Suppose F <201 satisfies (1). Define the induced families F(S;) by
F(S,y={FnS, FeF}, i=1,2. (5)
Note that if G, G’ e F(S;) then

GNnG =(FnS)n(FnS) for some F, F' e F (6)
=FNnFnS;#
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since Fn F' 2 B’ for some B’ € B and by construction S;n B# (J for every
BeB. Thus, for i=1, 2, F(S,) is a family of subsets of S; with the property
that no two sets in F(S;) are disjoint. This implies that

[F(S)| <3-2" (7)

since we cannot have a set X and its complement S;— X both in F(S),).
Since any set FeF is determined by its intersections Fn S, i=1, 2, then
by (7)

|F|g%.zlsll.%.zlszlzi.zlé’llﬂszl:2"72' (8)

On the other hand, for the familyF’ given by
F'={Xc[n]: {1,2} <X}, we have

FnFc{l1,2}eB forall F, FeF'

and
|F'|=2""2

This proves (2). |

Note that the content of (2) is just that no family satisfying (1) for B,
can have more sets than can be achieved in a trivial way, i.e., by taking all
subsets of [n] containing a fixed B, € B. In general, we call such a family a
kernel system with kernel B,. Of course, (2) does not imply that every
maximum family F is a kernel system.

In what follows, we will be especially interested in those families B for
which v(B) is attained by kernel systems. This seems to be true, for exam-
ple, for any family B formed by taking the (cyclic) translates of a fixed set
in [n] (although we do not prove this).

II. PARTITIONS OF [#]

Although we study set intersections here, it is sometimes useful to con-
sider the following variation of set intersection, namely, the complement of
the symmetric difference of two sets, defined for X, Y< [n] by

XVY=(XnNu(XnY)=XAY

where X = [n] — X. For a given family B of subsets of [n], let #(B) denote
the cardinality of the largest family F satisfying

F,FeF=FVF2>B for some BeB.
Obviously v(B) < #(B).
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Slightly less obvious is the following.

Fact 1.

o(B) = #(B) for all B. (9)

Sketch of proof. Assume F is a maximum V-family for B, ie.,
|F| = 8(B). Select, if possible, some element te [n] so that for some FeF,
Fu {1} ¢ F. Replace all such FeF (simultaneously) by Fu {r}, forming a
new family F'. Tt is easy to check that F’ is also a V-family for B, and
IF’| = |F|. Continue this process as long as possible, finally forming the
family F*, which has the property that for any FeF’, if t¢ F then
Fu {t}eF* Thus, F* is an upper ideal in the lattice of subsets 2["), ie.,
[n]) 2G> FeF* implies G e F*. It now follows easily that F* is in fact an
n-family for B, ie., F, F'eF* implies FnF' =2 B for some BeB. Since
|[F*| = |F| =4(B) then we have v(B) = (B) which implies (9). |

THEOREM 1. Suppose [n]=S,u - US, is a partition of [n] into k
non-empty subsets. For X < [n], define f(X)={i:S;nX# & }. Let B be a
family of subsets of [n] and define B* = { f{X). X€ B} < 2¥). Then we have

o(B) <v(B*) 2" *, (10)

Proof. By Fact 1, it is enough to prove
3(B) < 6(B*) 2" % (10"

Let F be a V-family for B, i¢., F, F € F implies FV F' 2 B for some BeB.
Also, let W denote the subspace of 2!") (considered as an n-dimensional
vector space under the operation A) generated by the S,. Partition 2t into
cosets C;,AW, 1<i<2" * It will suffice to show that each coset CAW
contains at most 7(B*) elements of F. Since (XAC)V(YAC)=X VY, it
suffices to prove that W contains at most 7(B*) elements of F. Note that f
is a one-to-one map of W to 2'¥? and it is easily checked that f(X V Y)=
fIX)YV f(Y). Hence, for F, F' e Fn'W, we have

SIO)Vf(F)=f(FVF)=2f(B)eB*

for some BeB. Therefore, W contains at most #(B*) elements of F and
Theorem 1 is proved. ||

As an immediate consequence of Theorem 1, we have the following
result, which has also been obtained independently by Faudree, Schelp,
and So6s [4].
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THEOREM 2. Suppose [n]=S,u -+ US, is a partition of [n] into k
non-empty sets, and B <2 is a family with the property that for some j,
1 < j<k, each BeB intersects at least j of the S;, 1 <i<k. Then

v(B) < 2" *glk, j) (11)

where

Y <It‘> if k+j=2u,

gk, j)= (="

k k—1
i = 20— 1.
é\:u(t)—i-(v_l) if k+j=2

Proof. By Fact 1 and Theorem 1 we have
v(B) < v(B*)2"~*,

Since B* is a family of subsets of [ k] each containing at least j elements,
then a result of Kleitman [10] (also see Ahlswede and Katona [1])
implies v(B*) < g{k, /). This proves Theorem 2. ||

In order to apply Theorem 2 to a particular family B, we need to choose
a suitable partition [n]={J%_, S; (which determines some maximal value
of j associated with it). It is always possible to use trivial partitions and
indeed, these are sometimes optimal. For example, for [#]=S, we have
k=1, j=1, gk, j)=1, and so,

(By<2" !

for any family B (which does not contain &F). Of course, for B= {{1}}, for
example, the family F={X< [n]: 1€ X} shows that this bound can be
achieved.

On the other hand, suppose we take for B the family of all j~element sub-
sets of [n]. For the (maximum) partition [#n]=)7_, S; with ;= {i}, the
condition that Fn F' 2 B for some BeB is equivalent to |Fn F'| >}, ie,
Fn F intersects at least j of the S,. In this case, it follows that

v(B)<g(n, j). (12)

In fact, a theorem of Katona in [6] shows that we actually have equality
in this case as well.

For any family B, if x(B) denotes the cardinality of a minimum set B, in
B then by forming a maximum kernel system with kernel B;, we have

o(B) > 27 H(B), (13)
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In order to obtain the exact value of v(B) using (11) and (13) it is
necessary that

gk, jy="2""4"®, (14)

As an illustration of (14) let B(¢) denote the family of n t-sets of [n] for-
med by choosing (cyclically) ¢ consecutive elements of Z,. We claim that if
n>t*—1 then it is always possible to partition [n] into ¢+ 1 subsets S;,
1 €i<t+1, so that the distance (in the corresponding n-cycle C,) between
any s and s'€ S, is at least ¢. (An easy way to do this is to write n=ut + v,
0<v<t, write down the string 1,2,.., 1 1,2,.., .., 1, 2,.., t of u copies of
1, 2,..., t, and then “insert” v copies of ¢+ 1 which are all at distance at least
t from one another; this now defines a partition of [#] into ¢+ 1 subsets
with the desired property.) Since any BeB(¢) intersects at least 7 of the
t+1 ;s then the appropriate values of £ and j to use in (11) are k=¢+1,
Jj=1t However, since u(B(t))=1¢ then

gt+1,1)=2=2"*"""
ie., {14) holds, and consequently
v(B(1))=2"""

when n = t2 — t. In the next section we will extend this to all values of n> ¢,

III. ON TRANSLATES OF A BLOCK

In this section we will show that for any 7 <n, the collection B(r) =2
consisting of a kernel system is the largest intersection family for B(z)
which consists of all cyclic translates of ¢ consecutive numbers. First we will
make some easy observations.

FACT 2. Let r<nj2. Let X be a subset of the n-cycle C, such that for
u, ve X, the distance between u and v in C, is no more than r—1. Then
Xl <r.

Proof. Note that each vertex v in X excludes an interval, denoted by
I(v), of length n+1—2r>1. We will encounter the I(v), veX, in the
following order. Choose a fixed vertex v =v,. In general, v, is defined to be
the vertex in X — {v,,..,v;,_,} closest to {v,,.,v, ,} (in case of a tie,
choose arbitrarily). Now I(v,) eliminates n + 1 — 2r vertices from C,. Each
additional I(v;) eliminates at least one more vertex from C,. Hence the
total number of excluded vertices is at least n+1—2r+|X| —1. These
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together with the |X| points in X, total at most n Therefore,
n+2|X|=2r<n, ie, | X|<r. 1

THEOREM 3. Suppose t <n<2t. Let B'(¢) consist of the cyclic translates
of both {1,2,...,t} (mod n) together with {1,2,.., t} (mod(n—1)). Let F be
a family of subsets of [n] with the property that F, FF e F=FV F' 2 B for
some BeB'(t). Then we have |F| <2" ™",

Proof. Since (XYAZ)V(YAZ)=XVY, we may consider F'=
{FAF,: F'eF} for a fixed subset Fy, in F. Thus, F’ contains the empty set
and F, F'e F'= FV F'2 B for some Be B’(t). Furthermore |F| = |F’| since
F' s F" if and only if Fy A F' # Fy A F". It suffices to show |F’| <2" " Let
U denote the set {Jz g F={x:xe FeF'}. Suppose i, je U, i, j#n, and
[#] (mod n) is viewed as an n-cycle. Then we claim the distance between i
and j is at most n — ¢ — 1. Assume the contrary. First, suppose i and j both
are in FeF'. Then FV @ = F does not contain i/ and j and cannot contain
a cyclic translate of {1,..., ¢} (mod r) or (mod(n — 1)), which is a contradic-
tion. Suppose i and j are in different subsets F, F’ in F. Then again we have
,j¢ FVF and FVF cannot contain a cyclic translate of {1,..,¢}
(mod n) or (mod (n—1)). Hence, by Fact2, U contains at most n—1¢
elements of [n—1] or n—t+ ! elements of [n]. Clearly, F' =2V, Hence if
|[U <n—1, then |F'| 2"’ Suppose |Ul=n—t+1. Let X be a subset of
Uand X’ =U—-X.Since (X VX)nU=, then | X VX' |<n—-|U|Lt—1.
Therefore X V X" cannot contain a translate of {1,.., ¢} and X, X" cannot
both be in U. Hence F’ contains at most half of the subsets in 2Y, i.e.,
[F'| <1-2"7"*1=2""' which completes the proof of Theorem 3. |

THEOREM 4. Let ¥ be a family of subsets of [n] such that
F,FFeF=FVF' contains some cyclic translate of {l,..,t}. Then
IF| <27

Proof. By Theorem 3 we only have to consider the case that n>2t. We
can write any # as im + j(m — 1) for some m, t <m < 2t, where i, j are non-
negative and i is nonzero. Partition [n] into m subsets S;, 1 <i<m, so that
the distance between any s and s’ € S, is at least m — 1. Using Theorem 1 we
have o(B(¢)) <v(B*(r))2"~™. Theorem 3 then implies v(B*(z))<2™ "
Therefore we have v(B(¢))<2"~" as desired. |

As an immediate consequence we have the following:

THEOREM 5. Let F be a family of subsets of [n] such that

F,FFeF=FnF contains some cyclic translate of {1,.,t}. Then
IF| 2"~
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We remark that the kernel system formed by all supersets of {1,..,, t} has
2"~ ! subsets and hence is a largest possible family.

IV. ON TRANSLATES OF A FIXED SET

We have shown that kernel systems form the best intersection families
when B consists of all the (cyclic) translates of {1, 2..,, ¢}. It appears that
this may hold much more generally.

Conjecture 1. If B(X) consists of the set of all the cyclic translates of a
fixed set X< [n] then

o(B(X))=2""1X, (15)

Of course a kernel system with kernel X shows that »(B(X)) is at least as
large as 2"~ ¥\ Although we could not prove this conjecture, the following
results provide some evidence in support of the conjecture.

Let B,(X) denote the set of all n cyclic translates of X in [#] and let
B*(X) denote the subset of all translates of X. It follows immediately that

2" M < o(B¥(X)) < v(B,(X)). (16)
Since ov(BX, (X)) =20(BX(X)), v(BX(X))/2" is non-decreasing in n.
Consequently,

r*(X):= Iim M exists. (17)

new 2"

If X is a block of 7 consecutive integers, then +*(X)=2"". We will prove
the following:

THEOREM 6.
r(X):= lim %@ exists
and
r(X)=r*(X).

Proof. From (16) and (17) we have v(B,(X))/2" = v(B¥(X))/2" and
lim, ., v(B,(X))/2" =r*(X). Hence, it clearly suffices to show that for any
£> 0 there exists n, so that for all n>n, we have

v(B,(X))

o <r¥(X)+e
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To prove this, it is enough to show for an intersection family F, we can
find a set H of h consecutive integers, where X < [#], such that

|{FeF: FnH=&}| > |F|/2"(1 +¢). (18)

To see this, note that |{FeF: Fn H= J}| <v(B¥_,(X)). Combining this
with (18) we get

%S(l+£)—-—-—D(B§;_}'E,X))<r*(X)+s’. (19)

We only have to consider F with
[F|>2"" (20)
Now we partition [a] into m=[n/h7] blocks, ie, [n]=S;u
S,u - uS,, where |S,,| <hand S,, i#m, is a set of h consecutive num-
bers. We consider a random variable X assuming values in F so that each
element of F is equally likely. For 1<ig<m, let X;=XnS, be the

associated random variable taking values in F,={FnS;: FeF}. We con-
sider the entropy (see [11])

H(X)= Z ~prlog,pr=log,|F|,
F

where pp:=Prob(X=F) and the sum is taken over all FeF. Since
X,,..., X,, determine X, we have

H(X)< ), H(X)
i=1
which with (20) implies

n—h< Y HX)

i=1

ie.,
z (IS4 —H(X)))<h.
i=1

Therefore there exists an 7, say i=1, such that

h h?
—HX,)s—— .
ISil = HX ) S —— <——

(21)

582a/43/1-3



32 CHUNG ET AL.

Suppose Prob(X, = (F) < 1/(1+¢)2". Then there exists § =d(¢)>0, such
that

H(X)<|S,| -0

Therefore we have A%/(n—2h)>6 which contradicts the fact that
n>2h+ h*/d for n sufliciently large. Thus, Prob(X, = &) > 1/(1 + ¢)2" and
(19) holds. This completes the proof of Theorem 6. |

Let X + i denote the set {x+ i(mod n): xe X}. We have the following.

THEOREM 7. Suppose X < [n] satisfies | X U (X +i)| > |X] + log,(2) for
all 1<i<n. Then v(B(X))=2""'" where equality holds only for kernel
systems with kernel X + j, for some j.

Proof. Let F<=2l") be a family of sets such that for any F, F'eF,
Fn F' contains X + i for some i. We distinguish two cases:

(1) There exists FeF such that F contains only one translated copy,
say X+1i, of X. Then X+i< Fn F’ holds for all F'€F, ie., F is contained
in the kernel system {F< [n]: X + i< F}, which has size 2"~ ¥\,

(ii) For every FeF there arc at least two different numbers / j,
1 <i<j<nsuch that (X+i)c F, (X+j)< F hold. Since there are only (%)
choices for (i,j) there is a particular choice, say k,/, such that
(X+k)u(X+1)< F holds for at least |F|/(5) sets FeF.

However, [(X+k)u (X +D)| =|Xu (X + (I —k))| >|X|+ log,(5),
which means that

HFS [n]: (X +k) U (X + 1)) S F}| <27~ X¥1-1os(3) = pn=1¥1(m),
Consequently |F| < (2)2"~"¥/(z)=2"""" holds and Theorem7 is
proved. |

If ¢c>2 is a constant and clog,n<t<n—clog,n then for almost all
t-element subsets X of [#], the assumption of Theorem 7 can be verified.
Thus we have:

COROLLARY. Given ¢ and t satisfying c¢>2, clog,n<t<n-—clog,n,
then for almost all t-subsets X of [n] we have

v(B(X))=2""".

V. A PrRODUCT THEOREM

The following result, which seems to be a very useful tool in many
extremal problems in combinatorics, was first proved by one of us (JBS) in
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1978 (unpublished). A simpler related result was used by Bombieri [2] in
connection with a question of J.-P. Serre.

THE PrRODUCT THEOREM. Let S be a finite set and let A,..., A,, be sub-
sets of S such that every element of S is contained in at least k of A,,..., A,,.
Let F be a collection of subsets of S and let Fi.={FnA;:FeF} for

1 <i<m. Then we have
IFI*< ] IF4.
i=1

Proof. Let X be a random variable assuming values in F so that each
element of F is equally likely. For 1<i<m, let X;=Xn A4, be the
associated random variable taking on values in F,. We will prove

kH(X)< f H(X,). (22)

If k=1, then S=4,u - u4d,,. Thys, X,,.., X,, determine X and con-
sequently, H(X)< Y7 , H(X,) as desired. Now assume k > 1. Let j denote
the minimum number of 4;s whose union is S. Clearly 1 <j<m. We will
prove (22) by induction on k and j. If j= 1, say 4, = S, we have (by induc-
tion on k)

(k—DH(X)< ), H(X)
i#1
and consequently

kH(X) < f H(X).

i=1

Suppose j>1. We may assume without loss of generality that
AyvA,u - UAd;=8 Let A1=A,UA,, A3=A4,nA,. Clearly every
element of S is in at least k of 47, A5, 4,..., 4,,. By induction on j we have

kH(X)< Y H(X)+H(X')+H(X")

i#1,2

where X’ =Xn A} and X" = X A5. Since it can be shown (by the con-
vexity of H) that

HX')+ H(X")<H(X,)+ H(X;)
then we have kH(X) <Y | H(X)).
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Now, H(X)=1log,|F| and H(X,)<log,|F,. Thus we have

Fl*< [] IF

i=1
and the proof is complete. [
The following inequalities of interest in information theory can be

proved in a similar way. We will state these inequalities but omit the
proofs.

H(X, Y, Z)<YH(X, Y)+ H(Y, Z)+ H(X, Z))
<H(X)+ H(Y)+ H(Z).

More generally,

).

i

r—1\!
HEex0<((T1)F He X
J—1 {iteriy} = 2100

We will now use the Product Theorem to prove two theorems on inter-
section families of graphs.

THEOREM 8. Suppose ¥ is a family of (labelled) subgraphs of the com-
plete graph K, such that for all F, F' € F, Fn F' does not contain any isolated

vertices. Then
IF| <2(5) -1
Proof. Choose A, to be the (spanning) star at vertex v; and let E(4);)

denote the set of edges of A;. Clearly every edge is in exactly two of
Aiyy A,. Now F;= {Fn A;: FeF} has the intersection property (i), Le.,

(FRNAIN(F nA)=(FnF)nA,#J.

Therefore |F,| < 254" ~1 =272 gince for any T< 4,, T and 4,— T cannot
both be in F,. Using the Product Theorem, we have

IFPP< [T IF <2772

i=1
Therefore

IFI < =202 2(3) -4

which proves Theorem 8. |
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We note that the bound in Theorem 8 is best possible for the case of n
even since one such family is a kernel system consisting of all subgraphs of
K, containing a fixed matching.

THEOREM 9. Suppose F is a family of (labelled) subgraphs of K, such
that F~ F' contains a triangle for all F, F' € F. Then

|F| <2(§)7z.

Proof. First, suppose n is even. We choose 4,, 1 <i<i(,,), to be all
possible disjoint unions of two complete (labelled) graphs of n/2 vertices
each. Then F,;= {Fn A4,|FeF} has the intersection property (i) since no
triangle can be contained in a bipartite graph. Therefore

IFil < ZiE(A.)l -1

Each edge of K, is in exactly (",,722) A/s. Therefore by the Product Theorem
we have

|F|(nn722) < 21/2(2("£2) - 1)(n72)

1e.,

(3) = ntn— 1ym(miz— 1
|F| <2

<202

For the case of n odd, the proof is quite similar and will be omitted. We
remark that the largest such family we can find so far is the kernel system

of all 2('1;-)”3 graphs which contain a fixed triangle. The above result sup-
plies evidence in favor of the old conjecture of Simonovits and Soés [15].

Conjecture 2. If F is a family of (labelled) subgraphs of K, such that for

any F, F eF, Fn F' contains a triangle then |F| <2(3)*3.

Let G=K(r,, r,, r;) denote the complete tripartite graph on the vertex
sets R; of size r;, 1 <i<3. Suppose F is a family of (labelled) subgraphs of
G such that F F’ contains a triangle for all F, F' € F. One such family is a
kernel system of G containing some fixed triangle. Clearly such a family has
2rntnntn=3 oraphs in it. We will show that no family F satisfying the
hypothesis can have more than this many graphs. To see this, partition the
edge set E of G into three classes E,, 1 <i< 3, where E; denotes the sets of
edges which are not incident to a vertex in R;. It follows from the structure
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of G that Fn F' must intersect every R, since all triangles do. Thus, by
Theorem 1 we have

[F| <2'%1~%(3,3)

= Qrr2trars+rrg—3

as claimed.
Here is another tantalizing conjecture:

Conjecture 3. Suppose F is a family of (labelled) subgraphs of K, such
that for any F, F' € F, Fn F’ contains a path of three edges. Then

k| <2(2)-3

i.e., kernel systems give the largest possible families.
At present all that is known is that

2('21)—3 < max |F| gz(g)— 1,
F

the upper bound resulting from the observation that F cannot contain a
graph and its complement. We remark that if we only consider paths of

length 2, then it is not difficult to show that maxg |F| =2(3)—1+o)
Finally, we mention one more (related) conjecture of Simonovits and
Sos [15]:

Conjecture4. If F is a family of subsets of [n] such that
F FeF=FnF contains a 3-term arithmetic progression, then
|F| <23

Note that this bound, if true, would be best possible, since in this case
the kernel system formed by all sets containing a fixed 3-term arithmetic
progression has 2"~ sets in it.
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