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We give a non-constructive proof ot the existence of good coverings of binary and non binary
Hamming spaces by spheres centered on a subspace (linear codes). The results hold for tiles
other than spheres.

1. Introduction

We denote by H(n, q) the n dimensional vector space over F, endowed with
the Hamming metric: for x=(x;), y=(y;) in H(nq), d(x,y)=
Hi:1<i<n, x;#y:}|. A sphere S(c, r) with center ¢ and radius r has cardinality
S, =Y 5(g—1)(D. For an {(n, k) linear code C (i.e., a linear k dimensional
subspace of H(n, q)) denote by d(C) its minimum distance, p(C) its covering
radius, defined respectively as:

d(C)=mind(c, ¢;), over all ¢, ¢ in C

p(C)y=minrs.t. |J S(c, r)=H(n, q).
ceC

The covering radius problem has been considered by many authors (e.g. [1, 5,
6]). Finally, let t(n, k) be the minimum possible covering radius for an (n, k) code
and k(n, p) the minimum possible dimension of a code with covering radius p. The
study of #(n, k) was initiated by Karpovsky. For a survey of these questions, see
[4].

The main goal of this paper is to find good linear coverings.

The unrestricted (nonlinear) case is considered in Section 4, where existence
theorems for coverings are given in a generalized setting, namely coverings of
association schemes by tiles, using a result of Lovasz (based on the greedy
algorithm [8]).

Our first result is the following.

Theorem 1.
n—log,S,<k(n, p)yn-—log,S,+2log, n—log, n+0O(1). 1)
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In the sequel, C; will denote a (n, j) code and N; the proportion of elements in
H(n, q) at distance more than p from C,. At each step ; is obtained from C;_, by
adding a new element x¢ C;_,, chosen so as to minimize N; (linear greedy
algorithm), i.e., C; ={C;_y; x), the subspace spanned by C;_, and x.

2. The binary case

The case g=2, solved in [3], is proved here in a different way, using the
following simple lemma, valid for ail q.

Lemma 1. Let Y, Z be subsets of H(n, q), and Y+x={y+x:veY,xe H(n, q)},
then the average value of |Y+xMZ| over all x in H(n,q), EQY+xNZ)), is
q " Y]|Z).

Proof.

2 ly+xnzl= ¥ Y Y 1=} Y Y 1=lvjiz|

xeH{n.gq) xeHi{nag) veY zeZ veY zeZ xeH(n,qg)
yHx=z X=z—y

When |Y|=1{Z|, this yields E(Q—q ™" |[Y+xUZ)=(1-q ™" |Z|)% Setting Y=Z =
Ucec, , S(c, p), we have

N<(l-q™|Z])?, N<NL,<Nj=(1-q7"S,)” 2

(See [11], for g=2.)

For q=2 and j equal to the RHS of (1), N, <2™. Hence N; = 0. That is there
exists a {n, j) code having covering radius p, with j at most equal to the RHS of
(1.

The lower bound in (1) is an immediate consequence of the sphere covering
bound 25§, =2". 0O

3. The non binary case

We use the same method: construct a (n, j+1) code C;., from C; by adding a
generator x ‘optimally’, but we don’t get an analogous result (namely N;,; <N9),
because for v in Fj, the events constituting the set {v: ve Z;, +ax, a €F_} can no
longer be viewed as independent. Still it will ‘almost’ be true for a while: namely,
as long as N; <1—(gn)™", and this we prove now.

Lemma 2. For Z<F} s.t. [Z|q" =e<(qn)™', one has

U Z+ax

a€F,

P=E(1—q""

) = (1 - E)q(l—(Zn)“).
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Proof. By the principle of inclusion—exclusion.
P<l-qe+ (g)sz

=1-q(1—qe/2)e
< (1-¢)a1*%/? (Bernouilli’s inequality).
Setting as in Lemma 1, Z = U ..¢, S(c, p), for |Z|<q"'/n, N;,, < N§* @™ That

18
Nir S (1-g 78, 0 V< (1- g 7S, )

since (1-(2n) Y =(1-2n) )" '=e 2 O

Lemma 3. The minimum value j, of j s.t. N;<1—(qn)™" satisfies:

J1=<n-—log, S, ~log, n+0O(1). 3)

Proof. According to Lemma 2, one has
1—(qn)lsl\li—ls(l_q"Sp)q'l'leﬂ/z (4)

Comparing the two extreme sides in this double inequality, one gets (3). O

Now we start with a (n, j,) code C. We have N,.;=< N7 by (2) and next we are
looking for the minimum number j, of generators x that must be added to C to
get a (n, j, +j,) code with N, ,;, <q™". But N; =1—(gn)™", so by (4) we only need
(1-(gn)"H**<q™ which is realized for j,=2log, n+O(1). Hence there exist
codes (n, j) with j=<j, +j, having covering radius at most p, proving the upper
bound in (1).

Like for the binary case, the lower bound comes from the sphere covering
bound q*S,=q".

Defining E,(x)=x log,(q—1)—x log, x —(1—x)log,(1—x) for 0sx=<1/2 (q-
ary entropy function), it is well known that

- c N i n nE_(c
An 1/2anq( )< Z (q-1) <i)sq E ()
i=0

0<c<1/2, ¢, A, constant, which gives:

Corollary 1.

n(1-E,(p/n))<k(n, p)=n(1-E,(p/n))+O(og n),
and for k/n = R fixed,

lim n~'t(n, Rn)= E;'(1-R),

n—0

because nE;'(1- R)<t(n,nR)<nE;'(1- R)+O(log n).
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Conjecture. Corollary 1 holds for almost all codes, i.e., when n goes to infinity,
the proportion of (n, nR) codes C whose covering radius p(C) satisfies

nE;'(1-R)<p(C)<nE,'(1-R)+O(logn)

goes to one for fixed R.

Depending on this conjecture, we present another ‘proof’ of the following
known result [7].

Theorem 2. For almost all codes, the Varshamov-Gilbert (VG) bound is tight,
namely d <nE_'(1—-k/n).

Proof. The proof uses the following lemma’s.
Lemma 4 (‘Supercode’ lemma). If C < C', then p(C)=d(C").
The proof is easy: take v e C'\ C, then p(C)=d(v, C)=d(C").

Lemma 5. Let 4, be the family of (n,i) codes. Then p|%, .. codes (n,k+1)
contain at least p |€,| codes (n, k); 0<<p=1.

Proof. Let G be the bipartite graph with vertex set €, U %, ., and with an edge
between Ce %, and C'€ 4., if Cc C’. G is ‘regular’ with degrees a and b for
vertices of 4, and %, respectively and a |4, |=b |4, 4|

Now consider the subgraph H induced by a subfamily €., of 4,,; with
cardinality p |€y.1|. Let €} be the subfamily of 4, contained by elements of €} ;.
then in H every vertex in €/ _; has degree b and every vertex in €} has degree
<a, yielding |6} 1|b<[€{] a, ie., |6{|=p |G| (B/a)=p|€]. O

Back to the theorem now. The VG bound {9, p. 557] states that there exists an
(n, k) code with minimum distance d and S;_;=q"™* or equivalently d/n=
E_ '(1—k/n).

Let €}., be the family of (n, k+1) codes C’, with n '(k +1)= R, above this
bound, i.e., satisfying nﬂd(C')ZE;l(l—R)Jrf(R) for some positive function f.
Then the associated family €} contains (n, k) codes whose covering radius satisfy
the same lower bound by Lemma 4. Hence by the conjecture, p goes to O when n
goes to . On the other hand it has recently been proved [10] that there exist
codes better than the VG bound. O

4. The non linear case

The problem of determining the minimum number K(n, p) of code words in a
non linear code with covering radius p, can also be formulated in the form: What
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is the minimum number of spheres of radius p which cover the Hamming space
Fro
Using a result of Lovisz [8] we deduce the following.

Theorem 3. Suppose for every x €F; we are given a set B(x) <F} such that:

(@) |B(x)|=|B(y)|=b, ¥x, yelFy,

(i) {yelFs: xe B(y)}l=b,VxelF}
(i.e., B ={B(x): x €[y} is a b-uniform, regular hypergraph [12]). Then there exists a
code C <F}, such that .. B(x)=F;, and |C|=<(q"/b)(1+log, b).

Proof. Let # be the dual hypergraph of &, i.e., the vertices of # are the edges of
B, and for every vertex of B we have an edge of ¥, consisting of those edges of &
which contain this vertex. Then # is b-uniform and b-regular, as well. Applying
Corollary 2 of Lovisz [8] we obtain that there exists a set A of vertices of % with
|A|=a=<(q"/b)(1+log, b), such that every edge H € # satisfies HN A # {J. By the
definition of # we have A ={B(x,),..., B(x,)}.

Now the condition HNA#@ is equivalent to |Ji, B(x;)=F}, i.e., choose
C={x,,...,x,} and the theorem is proved. O

Remark. Of course, by taking B(x)= S(x, p) in Theorem 3, we get:
K(n,p)=<q"S,'(1+log, S,). (5)

Theorem 3 can be generalized to any association scheme A with relations
Ry, R, ..., R, by defining for all x in A: B(x,r)={ye A:3i,0<si<r, xRyy}. In
particular, it holds for the Johnson scheme J(n, q, w), set of all g-ary n-tuples
having exactly w non-zero coordinates. This answers a question of Csiszar,
Namely

AC={¢}=J(n,q,w), st.UBl(cr)>J(n g, w)
and

(q— 1)‘”(”)
b

where b=3i_, (N("7")=|B(c, 2r)|.
Wyner and Ziv consider a related question in [13], and get the weaker
expression K(n, p)=<q"S,'- o(q") instead of (5).

|C|$ (1+10g2 b),

5. The value of t(n, n —[c log, n]), for fixed ¢

We want to give a more precise estimation of j, (see proof of Lemma 3). To
that end, we notice that we only need to reach N, <q ™**, because if for a given
(n, k) code C, there exists a v at distance more than p from C, then the whole
coset C+v has the same property. Hence N, <q "** implies N, =0.
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For fixed ¢, n—k =log, S. (Theorem 1) implies n—k <clog,n+0O(1), so we
want N, <An™°. We shall reach N, <An™° in three steps:

(1) For small j: N; < N3¢ @™,

(2) For intermediate j:N; <N?7/,

(3) For larger j:N; <N} .

Lemma 6. Suppose q =3, then

N, <1~(gn)™' for j=n—log, S. ~log, n +O(1), (6)
N;.;<1-q* for j3=log, ; n+0O(1), @)
Njsiri, <An™¢ for j,=clog, log, n +O(1). (8)

Proof. (6) is already proved in Lemma 3. For (7) we use the fact that £ <q 2 and
deduce like in Lemma 2 N;,; < N7 9% < N91 for j,<j<j,. Hence j, is the
minimal integer s.t. (1—(qn) " H“@ V> <1—q?, yielding (7).
To finish, we only use N;,;=< N7, which is always true, and get (8). [l
Hence for ¢ fixed, k(n, ¢)<j,+j3+]a4, i.e., for n large
k(n,c)sn—(c—1)log,n
from which follows
t(n,n—[(c~Nog, nl)<t(n, k(n,c))=c. )

Now the left-hand side of (9) is strictly greater than ¢ —1 (this follows from the
sphere-covering bound g*S,=q"). We thus have proved:

Theorem 4. For ¢ =2 and integer, n large enough:

t(h,n—[(c~Dlog,n])=c.

Remark. The case q=2 is simpler. We use N;,;<N? and reach N3<n™ for

j=n-—log, S, +log,log, n + O(1). The proof goes then like for general q.

Example. n =2" -1, q=2, eeN—-{0, 1}. For large enough n,
tR"—1,2"—1—me)=e+1, ie., BCH codes with ¢>2 are not optimal for
covering radius.

6. Conclusion

We exhibit here by non constructive methods efficient coverings of the Ham-
ming space, using ‘reasonable’ tiles (not necessarily spheres). One can define the
efficiency of a covering C of H(n, q) by tiles B; of cardinality b by

A=n""log, |UB/|-1.
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Then we get lattice (or linear) coverings with
0=A<2n'log,n

and non lattice coverings with
0s=A=<n"log,log, b.

For q and the diameter d of the tiles fixed, b <O(n?), g-ary or even binary lattice
coverings exist with

0=A=<cn 'loglogn = c(log(H(n, q))) ' logloglog(H(n, q)),

for some constants c, d.
On the other hand, it is known that coverings with A = 0 (perfect codes) almost
never exist [2].
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