Forbidding Just One Intersection

PETER FRANKL

CNRS, 15 Quai Anatole France, Paris 75007, France

AND

Zoltán Füredi

Math Institute, Hungarian Academy of Science, 1364 Budapest, P.O.B. 127, Hungary

Communicated by the Managing Editors

Received July 14, 1983

Following a conjecture of P. Erdös, we show that if \mathscr{F} is a family of k-subsets of an *n*-set no two of which intersect in exactly *l* elements then for $k \ge 2l + 2$ and *n* sufficiently large $|\mathscr{F}| \le {n-l-1 \choose k-l-1}$ with equality holding if and only if \mathscr{F} consists of all the k-sets containing a fixed (l+1)-set. In general we show $|\mathscr{F}| \le d_k n^{\max\{l,k-l-1\}}$, where d_k is a constant depending only on k. These results are special cases of more general theorems (Theorem 2.1-2.3). © 1985 Academic Press, Inc.

1. INTRODUCTION

Let X be a finite set, |X| = n. By a family of subsets \mathscr{F} we just mean $\mathscr{F} \subset 2^X$. We call \mathscr{F} a multi-family if it may have repeated members. $\binom{X}{k}$ denotes the family of all k-subsets of X. Let a(n), b(n) be two positive real functions over the positive integers. If there are positive reals c and c' such that $ca(n) \ge b(n) \ge c'a(n)$ hold for $n > n_0$ then we shall write $a(n) \approx b(n)$. One of the most important intersection theorems concerning finite sets is

THEOREM 1.1 (Erdös, Ko, and Rado [4]). Suppose k, t are integers, $k \ge t \ge 1$, and \mathscr{F} is a family of k-subsets of X, i.e., $\mathscr{F} \subset \binom{X}{k}$. Suppose further that for all F, $F' \in \mathscr{F}$ we have

$$|F \cap F'| \ge t. \tag{1}$$

Then for $n > n_0(k, t)$

$$|\mathscr{F}| \leq \binom{n-t}{k-t} \tag{2}$$

holds, moreover equality holds in (2) if and only if for some $T \subset X$, |T| = t we have $\mathscr{F} = \{F \in \binom{X}{k}: T \subset F\}$.

In 1975 Erdös [2] raised the problem of what happens if we weaken the condition (1) to

$$|F \cap F'| \neq t - 1. \tag{3}$$

In this case one can easily construct a family of k-subsets \mathscr{F} , $|\mathscr{F}| = ((1+o(1))(n/k)^{t-1} \approx n^{t-1}$ such that for all $F, F' \in \mathscr{F}$, $|F \cap F'| < t-1$, in particular, (3) holds. Therefore if k < 2t-1 (and in the case k = 2t-1, see later), one cannot hope to have a bound like (2). Erdös [2] conjectured that for $k \ge 2t$ the condition (3) implies (2) if $n > n_0(k)$. Here we prove this conjecture.

2. RESULTS

For a subset $L = \{l_1, ..., l_s\}$ of the integers satisfying $0 \le l_1 < \cdots < l_s < k$, we call a family $\mathscr{F} \subset \binom{x}{k}$ an (n, k, L)-system if $|F \cap F'| \in L$ holds for all distinct $F, F' \in \mathscr{F}$. The maximum cardinality of an (n, k, L)-system is denoted by m(n, k, L). Suppose l, l' are nonnegative integers satisfying l + l' < k. Let us define $L(l, l') = \{0, 1, ..., l-1, k-l', k-l'+1, ..., k-1\}$. Abusing of notation we shall call an (n, k, L(l, l'))-system an (l, l')-system, i.e., either $|F \cap F'| < l$ or $|F' \cap F| \ge k - l'$ hold for all distinct members F, F' of an (l, l')-system. Our main results are

THEOREM 2.1. There exists a positive constant d_k such that $m(n, k, L(l, l')) < d_k n^{\max\{l,l'\}}$ holds. Consequently, $m(n, k, L(l, l')) \approx n^{\max\{l,l'\}}$.

THEOREM 2.2. If $n > n_0(k)$ and l' > l then

$$m(n, k, L(l, l')) = \binom{n-k+l'}{l'}$$
(4)

holds. Moreover the (l, l')-system \mathcal{F} attains equality in (4) if and only if for some (k - l')-element subset T we have $\mathcal{F} = \{F \in \binom{X}{k}: T \subset F\}$.

Note that the problem of Erdös is the special case k = l + l' + 1, l = t - 1. Also, for these values, Theorem 2.2 is the up-to-date strongest version of the Erdös-Ko-Rado theorem. The Case $l \ge l'$.

THEOREM 2.3. Suppose $l \ge l'$, moreover k - l has a primepower divisor q satisfying q > l'. Then

$$m(n,k,L(l,l')) = (1+o(1))\binom{n}{l}\binom{k+l'}{l'}/\binom{k+l'}{l}.$$
(5)

In the case of $l \ge l'$ the right-hand side of (5) is always a lower bound for m(n, k, L(l, l')). (See examples in Chap. 7)

Conjecture 2.4. In (5) equality holds for all $l \ge l'$.

Note that our conjecture holds by Theorem 2.3 whenever l' = 1, 2 or $k > l + 3^{l'}$.

3. REMARKS

Concerning Theorems 2.1 and 2.2 the best results were due to the first author. In [5] he solved the case l=1, and in [6] he proved that $m(n, k, L(l, l')) \leq c(k) \cdot n^{\max\{l', l+\lfloor l'/(k-l-l')\rfloor\}}$. In the nonuniform case the following holds.

THEOREM 3.1 (Katona [13]). Suppose $t \ge 1$ and for all $F, F' \in \mathcal{F} \subset 2^{X}$ (1) holds (i.e., $|F \cap F'| \ge t$). Then one of the following 2 cases occurs

(a) n+t is even,

$$|\mathscr{F}| \leq \sum_{i \geq (n+i)/2} {n \choose i},$$

and for $t \ge 2$ equality holds if and only if $\mathscr{F} = \{F \subset X : |F| \ge (n+t)/2\}$.

(b) n+t-1 is even,

$$|\mathscr{F}| \leq \sum_{i \geq (n+t+1)/2} \binom{n}{i} + \binom{n-1}{(n+t-1)/2},$$

and equality holds for $t \ge 2$ if and only if for some $x \in X$ we have $\mathscr{F} = \{F \subset X: |F \cap (X - \{x\})| \ge (n + t - 1)/2\}.$

In the nonuniform case to any family satisfying (1), one can add $\binom{x}{0} \cup \binom{x}{1} \cup \cdots \cup \binom{x}{t-2}$ without contradicting (3). In [8] we have shown that for $n > n_0(t)$ one cannot do better, $(n_0(t) < 3^t)$.

Conjecture 3.2¹ (Erdös [3]). Suppose that $\mathscr{F} \subset 2^{\chi}$, $|F \cap F'| \neq t$ for $F, F' \in \mathscr{F}$, and $\varepsilon_n < t < (\frac{1}{2} - \varepsilon) n$. Then there exists a $c = c(\varepsilon) > 0$ such that $|\mathscr{F}| < (2-c)^n$.

¹ This conjecture was proved recently by Frankl and Rödl.

4. TOOLS OF PROOFS

Set System with Lots of Stars

The main tool in proving Theorems 2.1 and 2.2 is a recent result of the second author. To state it we need some definitions. We call the family of sets \mathscr{A} an *s*-star with center K if $|\mathscr{A}| = s$ and for all distinct A, $A' \in \mathscr{A}$, $A \cap A' = K$ holds. We say that $\mathscr{B} \subset 2^{\chi}$ is closed under intersection if for all $B, B' \in \mathscr{B}, (B \cap B') \in \mathscr{B}$ holds. If $B \in \mathscr{B} \subset 2^{\chi}$, we define $M(B, \mathscr{B}) = (B \cap B')$: $B \neq B' \in \mathscr{B}$.

THEOREM 4.1 (Fürcdi [12]). For any two positive integers k, s there exists a positive constant c(k, s) such that every $\mathcal{F} \subset {X \choose k}$ contains some $\mathcal{F}^* \subset \mathcal{F}$, satisfying

- $(6.1) \quad |\mathcal{F}^*| \ge c(k,s) |\mathcal{F}|$
- (6.2) all the families $M(F, \mathcal{F}^*)$ are isomorphic, $F \in \mathcal{F}^*$,
- (6.3) every $A \in M(F, \mathcal{F}^*)$ is the center of an s-star $\mathcal{A}, A \subset \mathcal{F}^*$,

(6.4) $M(F, \mathcal{F}^*)$ is closed under intersection, i.e., $A, A' \in M(F, \mathcal{F}^*)$ implies $A \cap A' \in M(F, \mathcal{F}^*)$.

When we refer to Theorem 4.1 we always mean the case s = k + 1, and we set $c_k = c(k, k + 1)$. The reason for this is given by

PROPOSITION 4.2. Suppose \mathscr{F} is an (n, k, L)-system, $F, F' \in \mathscr{F}^*$, $A \in M(F, \mathscr{F}^*), A' \in M(F', \mathscr{F}^*), F'' \in \mathscr{F}$. Then we have

$$|A| \in L, \qquad |A \cap A'| \in L, \qquad |A \cap F''| \in L. \tag{7}$$

Let us mention that the idea of using (k+1)-stars for investigating (n, k, L)-systems is due to M. Deza. Proposition 4.2 can be verified easily by using that if A is the center of the (k+1)-star $\{F_1, ..., F_{k+1}\}$, then the sets $F_i - A$ are pairwise disjoint. For a proof see [1].

Set Systems with Many Intersection Conditions

We will also use

THEOREM 4.3 (Frankl and Katona [9]). Suppose $\mathcal{D} = \{D_1, ..., D_m\}$ is a collection of not necessarily distinct subsets of Y, |Y| = r. Suppose further s is a positive integer such that for all t, $1 \le t \le m$, and all $1 \le i_1 < \cdots < i_t \le m$,

$$|D_{i_1} \cap \cdots \cap D_{i_i}| \neq t-s$$

holds. Then we have $|\mathcal{D}| = m \leq r + (s-1)$.

We shall need the following strengthening of this theorem.

PROPOSITION 4.4. Suppose that \mathcal{D} satisfies the assumptions of Theorem 4.3. If $|\mathcal{D}| = r + s - 1$, then for every $y \in D \in \mathcal{D}$ the number of sets in \mathcal{D} containing y is |D| + s - 1. (Moreover, for $s \ge 2$ \mathcal{D} consists of r + s - 1 copies is Y.) If $|\mathcal{D}| = r + s - 2$ then there exists at most one set D' such that $\mathcal{D}' = \mathcal{D} \cup \{D'\}$ satisfies the assumptions, too.

To prove Proposition 4.4 we shall give a new proof for Theorem 4.3. We present the proof of these statements at the end of the paper in Chapter 8.

Shadows of Set Systems

For $\mathscr{F} \subset \binom{x}{a}$, $0 \le s \le a$, let us define $\Delta_s(\mathscr{F}) = \{G \in \binom{x}{s} : \exists F \in \mathscr{F}, G \subset F\}$. Given $|\mathscr{F}|$ what is the minimum of $|\Delta_s(\mathscr{F})|$? This problem was completely solved by Kruskal [15] and Katona [14], however their formula for min $|\Delta_s(\mathscr{F})|$ is not convenient for computation. We will rather use the following version of the Kruskal-Katona theorem.

THEOREM 4.5 (Lovász [16]). Suppose that the real number $x, x \ge a$ is defined by $|\mathscr{F}| = \binom{x}{a} = x(x-1)\cdots(x-a+1)/a!$. Then

$$|\varDelta_s(\mathscr{F})| \ge \binom{x}{s}$$

holds for all $0 \leq s \leq a$.

(Cf. [19] for a unified, simple proof of the Kruskal-Katona theorem and Theorem 4.5.)

A General Bound for m(n, k, L)

For the proof of Theorem 2.3 we need

THEOREM 4.6 (Frankl and Wilson [11]). Suppose that for some integer valued polynomial of degree d and a prime p for all $l \in L$ $p \mid g(l)$ holds but $p \nmid g(k)$. Then we have

$$m(n, k, L) \leq \binom{n}{d}.$$

Steiner-Systems and Quasi-Steiner-Systems

Suppose $r > t \ge 1$. We say that $\mathscr{G} \subset \binom{x}{r}$ is a Steiner-system, S(n, t, r) if for every $T \in \binom{x}{t}$ there exists exactly one $S \in \mathscr{G}$, containing T. Of course, we have $|\mathscr{G}| = \binom{n}{t}/\binom{r}{t}$, and \mathscr{G} is a maximal $(n, r, \{0, 1, ..., t-1\})$ -system.

For t = 1 a Steiner-system is just a partition of X into r subsets, it exists

if and only if r|n. For t=2, $n > n_0(r)$ Wilson [18] proved that the trivial necessary conditions $\binom{r}{2} |\binom{n}{2}$, (r-1)|(n-1) are sufficient for the existence of Steiner-systems. However, very little is known about the existence of Steiner-systems for $r \ge 3$. We shall use

THEOREM 4.7 (Rödl [17]). For all $r > t \ge 1$

$$m(n, r, \{0, 1, ..., t-1\}) = (1 + o(1)) \binom{n}{t} / \binom{r}{t}$$

holds.

5. The Proof of Theorem 2.1 and Some Lemmas

Actually we prove the following stronger statement:

THEOREM 5.1. Suppose \mathscr{F} is an (l, l')-system, $c_k = c(k, k+1)$ is the constant from Theorem 4.1, then we have

$$|\varDelta_{\max\{l,l'\}}(\mathscr{F})| \ge c_k |\mathscr{F}|.$$

Proof. Apply Theorem 4.1 to \mathscr{F} . We obtain a family $\mathscr{F}^* \subset \mathscr{F}$ satisfying (6.1)-(6.4), i.e., $|\mathscr{F}^*| > c_k |\mathscr{F}|$, all the families $M(F, \mathscr{F}^*)$ are isomorphic for $F \in \mathscr{F}^*$, each $A \in M(F, \mathscr{F}^*)$ is a center of a (k+1)-star, $M(F, \mathscr{F}^*)$ is closed under intersection.

In view of (6.1) it will be sufficient to deal with \mathscr{F}^* . We say that $B \subset F$ is an *own* subset of $F \in \mathscr{F}^*$ if $B \subset F' \in \mathscr{F}^*$ implies F' = F.

LEMMA 5.2. Each $F \in \mathcal{F}^*$ has an own subset B satisfying $|B| \leq \max\{l, l'\}$.

First we finish the proof of the Theorem 5.1 using this Lemma. Let us note that $B \subset F$ is an own subset of F if and only if $B \notin A$ holds for all $A \in M(F, \mathcal{F}^*)$.

If B is an own subset of F and $B \subset B' \subset F$ then B' is an own subset of F as well. Thus by Lemma 5.2 for each $F \in \mathscr{F}^*$ we may choose an own subset B(F) of F, having $|B(F)| = \max\{l, l'\}$. Consequently $\mathscr{B} = \{B(F): F \in \mathscr{F}^*\}$ satisfies $\mathscr{B} \subset \Delta_{\max\{l,l'\}}(\mathscr{F}^*)$ and $|\mathscr{B}| = |\mathscr{F}^*| \ge c_k |\mathscr{F}|$, yielding the statement of Theorem 5.1. Q.E.D.

Remark. Theorem 5.1 is related to the following theorem due to Frankl and Singhi [10].

THEOREM 5.3. If $\mathscr{F} \subset \binom{x}{k}$ is an (n, k, L(l, l'))-system with k = l + l' + 1and $l > 3^{l'}$ then $|\Delta_l(\mathscr{F})| \ge |\mathscr{F}|$.

They conjecture that Theorem 5.3 holds for all $l \ge l'$. The above proof shows that it is useful to investigate $M(F, \mathscr{F}^*)$, i.e., the intersection structure of F.

Let F be a k-element set and let $\mathcal{M} \subset 2^F - \{F\}$. Suppose \mathcal{M} is closed under intersection and for all $M \in \mathcal{M}$ we have |M| < l or $|M| \ge k - l'$. We say that $B \subset F$ is *covered* (by \mathcal{M}) if there exists an $A \in \mathcal{M}$ such that $B \subseteq A$. Clearly Lemma 5.2 is a consequence of the following

LEMMA 5.4 (Main Lemma). There exists a subset $B \subset F$ satisfying $|B| \leq \max\{l, l'\}$ which is not covered by \mathcal{M} .

LEMMA 5.5. Suppose now l' > l and all (l' - 1)-element subsets of F are covered by \mathcal{M} . Then (c) and one of (a) and (b) hold.

(a) There exists a (k-l')-element subset A(F) of F such that \mathcal{M} consists of all supersets of A(F) and eventually some at most (l-1)-element subsets.

(b) l' = l + 1, k = l' + l + 1 and there are at least two l'-element subsets of F which are not covered by \mathcal{M} .

(c) If B is an uncovered l'-element subset of F and $B \subseteq C \subsetneq F$ then $l \leq |A \cap C| < k - l'$ holds for some $A \in \mathcal{M}$.

Lemma 5.5 says that in the cases $l' \ge l+2$, l' = l+1 < (k/2) there exists only one \mathcal{M} which covers all (l'-1)-element subsets. However the description of such \mathcal{M} s seems to be very hard in the case l' = l+1, k = 2l+2. In fact, an S(2l+2, l+1, l) Steiner-system extended with all subsets of size less than l satisfies the assumptions of Lemma 5.5, and the existence of these designs is an old unsolved problem.

Proof of Lemmas 5.4 and 5.5. We prove these lemmas together. Choose a minimal subset B of F which is uncovered by \mathcal{M} . It is possible because F is not covered. We may suppose |B| = b > l holds. Let $B = \{x_1, x_2, ..., x_b\}$. As $B - \{x_i\}$ is covered, there exists an $A_i \in \mathcal{M}$ for which $B \cap A_i = B - \{x_i\}$ holds. First we show that $b \le l + l'$. Indeed, let $A = A_1 \cap A_2 \cap \cdots \cap A_{l'+1}$, then $A \in \mathcal{M}$, $x_i \notin A$ for $1 \le i \le l' + 1$ which implies |A| < k - l', i.e., |A| < l. But $|A \cap B| = b - l' + 1$, whence $b \le l + l'$.

Fix an arbitrary (l+l'+1-b)-element subset Y of F-B. Define $D_i = Y \cap A_i$, i = 1, ..., b. We claim that for $1 \le i_1 < \cdots < i_i \le b$ we have

$$|D_{i_1} \cap \cdots \cap D_{i_l}| \neq t - (b - l). \tag{(*)}$$

Suppose the contrary and consider the set $A = (A_{i_1} \cap \cdots \cap A_{i_\ell}) \in \mathcal{M}$. By

definition $|A \cap B| = b - t$ and $0 \le |A \cap (F - B - Y)| \le k - l - l' - 1$. Using $|A| = |A \cap B| + |A \cap Y| + |A \cap (F - B - Y)|$ we infer $l \le |A| < k - l'$, a contradiction.

Now, let us apply Theorem 4.3 to the multi-family $\mathcal{D} = \{D_1, ..., D_b\}$. We conclude $b = |\mathcal{D}| \leq |Y| + (b-l) - 1 = (l+l'+1-b) + (b-l) - 1 = l'$, i.e., $b \leq l'$ proving Lemma 5.4.

For the proof of Lemma 5.5 we suppose that |B| = l', whence |Y| = l + 1. When we apply Theorem 4.3 for the family \mathscr{D} with s = l' - l we get equality $|\mathscr{D}| = |Y| + (l' - l) - 1$. Thus we can use Proposition 4.4. Hence we get in the case $l' - l \ge 2$ that \mathscr{D} consists of l' copies of Y. The choice of Y was arbitrary so we get $A_i = F_i - \{x_i\}$ for all $1 \le i \le l'$, $A(F) = F - \{x_1, ..., x_l'\}$. Now we prove this in the case l' - l = 1, |Y| < |F - B| (i.e., k > 2l + 2).

The arbitrary choice of Y and Proposition 4.4 yields $\bigcup A_i = F$. Since |F - B| > |B| = l', we may choose an A_j satisfying $|A_j - B| \ge 2$. If $|A_j| = k - 1$, that is $A_j - B = F - B$, then again by Proposition 4.4, $A_i - B = F - B$ follows for all *i*.

Since \mathcal{M} is closed under intersection, we gain the assertion of the lemma with A(F) = F - B.

To complete the proof, we derive a contradiction from $2 \leq |A_i - B| < |F - B|$. Choose $u, v \in A_j - B$, $w \in (F - B) - A_j$, and let Y, Y' chosen such that $v \in Y \cap Y'$ and $Y' = Y - \{u\} \cup \{w\}$. Denote $\mathcal{D} = \{A_i \cap Y: 1 \leq i \leq l'\}, \mathcal{D}' = \{A_i \cap Y': 1 \leq i \leq l'\}$ and $D = A_j \cap Y, D' = A_j \cap Y'$. We have $D' = D - \{u\}$ so using Proposition 4.4 we get the contradiction $|D| = d_{\mathcal{D}}(v) = d_{\mathcal{D}}, (v) = |D'|$.

Now investigate the case l' = l + 1, k = l' + l + 1. Then Y = F - B. If $\mathcal{M} \neq \{A: Y \subseteq A \subsetneq F\}$ then there exists an A_i such that $|A_i \cap Y| < |Y|$. Let $y \in Y - A_i$. We claim that $B - \{x_i\} \cup \{y\}$ is not covered by \mathcal{M} either. Suppose on the contrary that there exists an $A'_i \supset B - \{x_i\} \cup \{y\}$, $A'_i \in \mathcal{M}$. $x_i \notin A'_i$ because B is not covered. Hence $B \cap A'_i = B \cap A_i$, i.e., in the system $\{D_1, ..., D_{l'}\}$ we can replace D_i by $D'_i = A'_i \cap Y$, But this is impossible by Proposition 4.4. This finishes the proof of (a) and (b).

The subset A(F) is unique. (If there were two such A(F), e.g., A and A' then $A \cup (A' - \{x\})$ would intersect A' in k - l' - 1 elements $(x \in A' - A)$.)

The proof of (c) in the case (a) is similar to the proof of uniqueness of A(F). If l' = l + 1 = (k/2) then set |C - B| = t. Now $|C \cap (A_1 \cap \cdots \cap A_t \cap A_{t+1})| = l$, proving (c).

6. The Proof of Theorem 2.2

Let A_0 be a fixed (k - l')-subset of X and let $\mathscr{F}_0 = \{F \in \binom{X}{k} : A_0 \subset F\}$. In this family $M(F, \mathscr{F}_0) = \{A : A_0 \subset A \subsetneq F\}$ holds for all $F \in \mathscr{F}_0$. This motivates our procedure of proof.

Assume $|\mathscr{F}| \ge {\binom{n-k+l}{l}}$ holds. First, as in the proof of Theorem 2.1 we apply Theorem 4.1 to \mathscr{F} and obtain $\mathscr{F}_1 = \mathscr{F}^*$ satisfying (6.1) – (6.4). Then we apply Theorem 4.1 to $\mathscr{F} - \mathscr{F}_1$ to obtain $\mathscr{F}_2 = (\mathscr{F} - \mathscr{F}_1)^*$, in the *m*th step we obtain $\mathscr{F}_m = (\mathscr{F} - (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1}))^*$. We stop either if there are no more sets or if for $F \in \mathscr{F}_m$ there is no $A \in \binom{F}{k-l}$ such that $M(F, \mathscr{F}_m) \supset \{B: A \subset B \subseteq F\}$.

LEMMA 6.1. $|\mathscr{F} - (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1})| \leq c'_k \binom{n}{l-1}$ holds for some constant c'_k .

We obtain Lemma 6.1 by proving a series of propositions. First we continue applying Theorem 4.1 to obtain $\mathscr{F}_{m+1} = (\mathscr{F} - (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_m))^*,...,$ until we get an $\mathscr{F}_{m'}$ with the property that for some $F \in \mathscr{F}_{m'}$, F has an own subset of size strictly less than l'. Then by Theorem 4.1 (6.2) all $F \in \mathscr{F}_{m'}$ share this property, yielding

PROPOSITION 6.2. $|\mathcal{F} - (\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{m'-1})| \leq (1/c_k) |\mathcal{F}_{m'}| \leq (1/c_k) (\binom{n}{l'-1})$ holds for n > 2l'. (Note that eventually m' = m holds.)

By Lemma 5.4 we know that all $F \in \mathscr{F}_i$, $1 \le i < m'$, have an own subset of size l', i.e., which is not contained in any other member of \mathscr{F}_i . Lemma 5.5(c) yields that these sets are not contained in any member of $\mathscr{F} - \mathscr{F}_i$ either. We infer

PROPOSITION 6.3. Suppose $B \subset F \in \mathcal{F}_i$, $1 \leq i < m'$, |B| = l', and B is an own subset of F in \mathcal{F}_i . Then B is an own subset of F in \mathcal{F} , too.

Similarly, Lemma 5.5 (a) and (b) give

PROPOSITION 6.4. If $m \leq i < m'$ then every $F \in \mathcal{F}_i$ has at least 2 own subsets of size l'.

Proposition 6.5. $\sum_{1 \leq i < m} |\mathscr{F}_i| + \sum_{m \leq i < m'} 2 |\mathscr{F}_i| \leq {n \choose i'}$

Proof. It is a direct consequence of Proposition 6.3, 6.4., and Lemma 5.2.

Now $|\mathscr{F}| \ge \binom{n-k+l'}{l} > \binom{n}{l} - (k-l')\binom{n}{l'-1}$, Proposition 6.2, and Proposition 6.5 imply

$$\sum_{m \leq i < m'} |\mathscr{F}_i| < \left(\frac{1}{c_k} + k - l'\right) \binom{n}{l' - 1}.$$

We infer by Proposition 6.2,

$$|\mathscr{F} - (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1})| \leq \left(\frac{2}{c_k} + k - l'\right) \binom{n}{l'-1},$$

proving Lemma 6.1.

For $F \in \mathscr{F}_i$, $1 \le i \le m-1$, let us denote by A(F) the (k-l')-subset of F for which $M(F, \mathscr{F}_i) \supset \{B: A(F) \subset B \subsetneq F\}$ holds. (It is easy to see that A(F) is uniquely determined and it is the only (k-l')-element set in $M(F, \mathscr{F})$.)

PROPOSITION 6.6. If $F \in (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1})$, $F' \in \mathscr{F}$, and $|F \cap F'| \ge l$ then $A(F) \subset F'$ holds. Moreover if $F' \in (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1})$ then A(F) = A(F') holds.

Proof. Suppose the contrary. Then $|A(F) \cap F'| < k - l'$ holds. Consider an arbitrary chain of subsets $A_0 = A(F) \subsetneq A_1 \subsetneq \cdots \subsetneq A_{l'} = F$. Let *i* be the last index in this chain for which $|A_i \cap F'| < k - l'$ holds. Then $|F \cap F'| \ge l$ and l < k - l' imply $l \le |A_i \cap F'| < k - l'$, contradicting (7).

For the case $F' \in (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1})$ we infer $A(F) \in M(F', \mathscr{F})$. Since |A(F)| = k - l', A(F) = A(F') follows.

Let $A_1, A_2, ..., A_h$ be the list of (k - l')-sets for which $A_i = A(F)$ holds for some $F \in (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1})$. Define $\mathscr{G}_i = \{G \in (\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{m-1}) : A_i \subset G\}$ and $\widetilde{\mathscr{G}}_i = \{G - A_i : G \in \mathscr{G}_i\}$. Assume $|\mathscr{G}_1| \ge |\mathscr{G}_2| \ge \cdots \ge |\mathscr{G}_h|$.

PROPOSITION 6.7. The sets $\Delta_{l}(\mathscr{G}_{1}), \dots, \Delta_{l}(\mathscr{G}_{h})$ are pairwise disjoint.

Proof. It is a direct consequence of the preceding proposition. Let us define the real number x_i by $|\mathscr{G}_i| = \binom{x_i}{l'}$, $x_i \ge l'$, i = 1, ..., h.

PROPOSITION 6.8. $\Delta_{l}(\mathscr{G}_{i}) \geq \binom{x_{i}}{l}, i = 1, ..., h.$

Proof. Since $\Delta_l(\mathscr{G}_i) \supset \Delta_l(\widetilde{\mathscr{G}}_i)$, this follows from $|\widetilde{\mathscr{G}}_i| = |\mathscr{G}_i|$ and Theorem 4.5.

Note that in view of Lemma 6.1 we may assume

$$\sum_{l \leq i \leq h} |\mathscr{G}_{l}| \ge {\binom{n-k+l'}{l'}} - c'_{k} {\binom{n}{l'-1}} > {\binom{1-\frac{c''_{k}}{n}}{l'}} {\binom{n}{l'}},$$
(8)

where c_k'' is a constant. From Proposition 6.7. and 6.8 we have

$$\sum_{1 \le i \le h} \binom{x_i}{l} \le \binom{n}{l}.$$
(9)

Using that $\binom{x_1}{l} \ge \binom{x_2}{l} \ge \frac{x_2}{l} > \frac{x_2}{l}$, we infer

$$\sum_{1 \leq i \leq h} |\mathscr{G}_i| = \sum_{i} \binom{x_i}{l} \binom{x_i}{l'} / \binom{x_i}{l} \leq \sum_{i} \binom{x_i}{l} \frac{\binom{x_1}{l'}}{\binom{x_1}{l}} \leq \binom{n}{l} \frac{\binom{x_1}{l'}}{\binom{x_1}{l}}.$$

Now, (8) and (9) yield

 $x_1 > n - c_k^{\prime\prime\prime},$

and consequently $\binom{x_1}{l} > \binom{n}{l} - c_k^{m''}\binom{n}{l-1}$. Using (9) we obtain $\sum_{2 \le i \le h} \binom{x_i}{l} \le c_k^{m''}\binom{n}{l-1}$ and consequently

$$\sum_{\substack{2 \leqslant i \leqslant h}} |\mathscr{G}_i| = \sum_{\substack{2 \leqslant i \leqslant h}} \binom{x_i}{l'} < c_k''' \binom{n}{l'-1}.$$
(10)

Using Lemma 6.1 and (10) we get

$$|\mathscr{F} - \mathscr{G}_1| < c_k^{(\text{iv})} \binom{n}{l'-1}.$$
(11)

Let us define $\mathscr{H} = \{F \in \mathscr{F} : A_1 \subset F \text{ and for each } A_1 \subset B \subsetneq F \text{ there is a } (k+1)\text{-star in } \mathscr{F} \text{ with center } B\}$. Of course, $\mathscr{G}_1 \subset \mathscr{H}$. Let us set $\mathscr{A} = \{F \in \mathscr{F} : A_1 \subset F, F \notin \mathscr{H}\}$, and $\mathscr{B} = \mathscr{F} - \mathscr{H} - \mathscr{A}$, i.e., $\mathscr{B} = \{F \in \mathscr{F} : A_1 \notin F\}$.

For the family $\mathscr{F}_0 = \{F \in \binom{X}{k}: A_1 \subset F\}$, all its members would be in \mathscr{K} , i.e., \mathscr{K} consists of the "regular" elements of \mathscr{F} . Our aim is to show $\mathscr{F} = \mathscr{K}$. For \mathscr{F}_0 one has $\Delta_r(\mathscr{F}_0) = \binom{X}{r}$. On the other hand $\Delta_r(\mathscr{K}) \supset \binom{X-A_1}{r}$ is equivalent to $\mathscr{F} = \mathscr{K}$. We will derive a contradiction from $\mathscr{F} - \mathscr{K} \neq \emptyset$ by showing that $\Delta_l(\mathscr{K})$ and consequently $\Delta_r(\mathscr{K})$ miss too many subsets of X. We distinguish two cases according to which is larger $|\mathscr{A}|$ or $|\mathscr{B}|$.

(a) If $|\mathscr{A}| \leq |\mathscr{B}|$. It can be proved in the same way as Proposition 6.6 that $\Delta_l(\mathscr{K}) \cap \Delta_l(\mathscr{B}) = \emptyset$. Let $|\Delta_{l'}(\mathscr{B})| = {x \choose l}$. Apply Theorem 4.5 to $\Delta_{l'}(\mathscr{B})$ and use Theorem 5.1 for \mathscr{B} :

$$\begin{split} |\Delta_{l}(\mathcal{B})| &= |\Delta_{l}(\Delta_{l'}(\mathcal{B}))| \ge \binom{x}{l} = \frac{\binom{x}{l}}{\binom{x}{l'}} |\Delta_{l}(\mathcal{B})| \\ &\ge \frac{\binom{x}{l}}{\binom{x}{l'}} c_{k} |\mathcal{B}| \ge \frac{\binom{x}{l}}{\binom{x}{l'}} \frac{c_{k}}{2} (|\mathcal{A}| + |\mathcal{B}|). \end{split}$$

 $|\Delta_{l'}(\mathscr{B})| \leq \binom{k}{l'} |\mathscr{B}| \leq \binom{k}{l'} c_k^{(iv)}\binom{n}{l'-1}$ by (11). Hence $x < c_k^{(v)} n^{1-1/l'}$ so we get $\binom{k}{l'}\binom{n}{l'-1}$, i.e.,

$$|\Delta_{l}(\mathscr{B})| > \frac{\binom{n}{l}}{\binom{n-k+l'}{l'}} (|\mathscr{A}| + |\mathscr{B}|).$$
(12)

Denote by $\tilde{\mathscr{K}} = \{F - A_1 : F \in \mathscr{K}\}$. Obviously $|\Delta_l(\mathscr{K})| = \sum_{0 \le i \le l} |\Delta_{l-i}(\tilde{\mathscr{K}})| \ \binom{k-l}{i}$. If $|\tilde{\mathscr{K}}| = \binom{y}{l}$, then Theorem 4.5 yields

$$|\Delta_{l}(\mathscr{K})| \leq \sum_{0 \leq i \leq l} \binom{y}{l-i} \binom{k-l'}{i} = \binom{y+k-l'}{l} \geq |\mathscr{K}| \frac{\binom{n}{l}}{\binom{n-k+l'}{l'}}.$$
(13)

Adding (12) and (13) we obtain

$$\binom{n}{l} \ge |\Delta_l(\mathscr{F})| \ge |\Delta_l(\mathscr{K})| + |\Delta_l(\mathscr{B})| > |\mathscr{F}|\binom{n}{l} / \binom{n-k+l'}{l'},$$

i.e., $|\mathscr{F}| < {\binom{n-k+l'}{l}}$, as desired.

(b) $|\mathscr{A}| > |\mathscr{B}|$. Apply Theorem 4.1 to \mathscr{A} to obtain \mathscr{A}^* . By definition of \mathscr{K} for $F \in \mathscr{A}^*$ we have $M(F, \mathscr{A}^*) \neq \{H: A_1 \subset H \subsetneq F\}$. By (6.4) we can find missing (k-1) sets, i.e., $A_1 \subset H \subsetneq F$, |H| = k-1, $H \notin M(F, \mathscr{A}^*)$.

PROPOSITION 6.9. We can find an $H, A_1 \subseteq H \subsetneq F, |H| = k-1, H \notin M(F, \mathscr{A}^*)$ such that $H \notin \mathcal{A}_{k-1}(\mathscr{K})$.

Proof. As $F \notin \mathscr{H}$ we can find a H' such that $A_1 \subset H' \subset F$, H' is not the center of any (k+1)-star consisting of members of \mathscr{F} . Then, again by the definition of \mathscr{H} , $H' \notin K$ holds for all $K \in \mathscr{H}$.

Let $H_1, ..., H_r$ be the (k-1)-sets satisfying $H' \subset H_i \subset F$, $1 \leq i \leq r$, r = k - |H'|. By the choice of H', $H_i \notin K$ holds for all $K \in \mathscr{K}$. Since $H' = H_1 \cap \cdots \cap H_r$, by Theorem 4.1 (6.4) we may pick an i $(1 \leq i \leq r)$ such that $H = H_i \notin M(F, \mathscr{A}^*)$, proving the proposition.

Now let us choose such an H = H(F) for each $F \in \mathscr{A}^*$. Define $\mathscr{H} = \{H(F) - A_1 : F \in \mathscr{A}^*\}$. As $H(F) \notin M(F, \mathscr{A}^*)$, $|\mathscr{H}| = |\mathscr{A}^*|$ holds. By the choice of H(F) we have $\mathscr{H} \cap A_{F-1}(\widetilde{\mathscr{H}}) = \emptyset$, hence

$$|\mathscr{H}| + |\varDelta_{l'-1}(\widetilde{\mathscr{H}})| \leq \binom{n-k+l'}{l'-1}.$$
(14)

Obviously,

$$|\Delta_{l'-1}(\tilde{\mathscr{K}})| \ge |\tilde{\mathscr{K}}| \cdot l'/(n-k+1)$$
$$= |\tilde{\mathscr{K}}| \binom{n-k+l'}{l'-1} / \binom{n-k+l'}{l'}$$
(15)

and for large enough n,

$$|\mathscr{H}| = |\mathscr{A}^*| \ge c_k |\mathscr{A}| \ge \frac{c_k}{2} |\mathscr{A} \cup \mathscr{B}| > \frac{l'}{n-k+1} |\mathscr{A} \cup \mathscr{B}|$$
(16)

holds. Adding (15) and (16) in view of (14) we obtain

$$|\mathcal{F}| = |\mathcal{K}| + |\mathcal{A} \cup \mathcal{B}| < \binom{n-k+l'}{l'}$$

7. PROOF OF THEOREM 2.3

Suppose \mathscr{F} is an (l, l')-system, $|\mathscr{F}| = m(n, k, L(l, l'))$. Let us set b = l - l'. For $B \in \binom{\chi}{b}$ define $\mathscr{F}(B) = \{F - B: B \subset F \in \mathscr{F}\}$. Of course we have

$$\sum_{B \in \binom{K}{b}} |\mathscr{F}(B)| = \binom{k}{b} |\mathscr{F}|.$$
(17)

 $\mathscr{F}(B)$ is an (n-b, k-b, L(l', l'))-system. Let $q = p^{\alpha}$ be a primepower divisor of k-l = (k-b)-l', satisfying q > l'. Define $g(x) = \binom{x}{l}$. Then $g(k-b) \equiv g(l') \equiv 1 \pmod{p}$, i.e., $p \nmid g(k-b)$. On the other hand $p \mid g(r)$ holds for r = 0, 1, ..., l'-1 because of $g(r) = \binom{r}{l} = 0$, and for r = (k-b)-l' = k-l, k-l+1, ..., k-b+1 because of the exponent of p in g(r) = r!/l'!(r-l')! is $\sum_{\beta \ge 1} (\lfloor r/p^{\beta} \rfloor - \lfloor l'/p^{\beta} \rfloor - \lfloor (r-l')/p^{\beta} \rfloor)$ by Legendre formula, and the α th member of this sum is positive.

Thus we may apply Theorem 4.6 to $\mathcal{F}(B)$. We infer

$$|\mathscr{F}(B)| \leq \binom{n-b}{l'}.$$
(18)

Combining (17) and (18) we obtain

$$|\mathscr{F}| \leq \binom{n}{b}\binom{n-b}{l'} / \binom{k}{b} = \binom{n}{l}\binom{k+l'}{l'} / \binom{k+l'}{l},$$

172

yielding

$$m(n, k, L(l, l')) \leq {\binom{n}{l}}{\binom{k+l'}{l'}} / {\binom{k+l'}{l}},$$

the upper bound part of the theorem.

To prove the lower bound take an $(n, k+l', \{0, 1, ..., l-1\})$ -system \mathscr{S} with $|\mathscr{S}| = m(n, k+l', \{0, 1, ..., l-1\})$. Define $\mathscr{F} = \varDelta_k(\mathscr{S})$. Obviously, we have $|\mathscr{F}| = \binom{k+l'}{l} |\mathscr{S}|$, thus Theorem 4.7 yields $|\mathscr{F}| = (1+o(1))\binom{n}{l}\binom{k+l'}{k+l'}$.

It remains to show that \mathscr{F} is an (l, l')-system. Suppose $F, F' \in \mathscr{F}$. Then there exists $S, S' \in \mathscr{S}$, such that $F \subset S, F' \subset S'$. If $S \neq S'$, then $|F \cap F'| \leq |S \cap S'| < l$. If S = S', then $|F \cap F'| = |F| + |F'| - |F \cup F'| \ge 2k - |S| = k - l'$.

Remark 7.1. Our proof shows that if S(n, k + l', l) exists, k, l, l' as in Theorem 2.3, then $m(n, k, L(l, l')) = {n \choose l} {k+l' \choose l'} / {k+l' \choose l}$ holds. Frankl [7] has shown that in the case k - l = l' + 1 a prime, the converse holds, too, i.e., the above equality implies the existence of S(n, k + l', l).

8. The Proofs of Theorem 4.3 and Proposition 4.4.

First we show that the case $s \ge 2$ is an easy consequence of the case s = 1. In fact, take an (s-1)-element set Z which is disjoint to Y. Define $\tilde{Y} = Y \cup Z$, $\tilde{\mathscr{D}} = \{D_i \cup Z : D_i \in \mathscr{D}\}$. Then \tilde{Y} and $\tilde{\mathscr{D}}$ satisfy the assumptions for s = 1, yielding

$$m = |\tilde{\mathscr{D}}| \leq |\tilde{Y}| = |Y| + s - 1,$$

as desired.

Note that, any $z \in Z$ satisfies $z \in \tilde{D}$ for all $\tilde{D} \in \tilde{\mathscr{D}}$. Thus Proposition 4.4 applied to $\tilde{\mathscr{D}}$ yields that all the sets of $\tilde{\mathscr{D}}$ have the same size, namely that of $\{\tilde{D}: z \in \tilde{D} \in \tilde{\mathscr{D}}\}$, i.e., $|\tilde{\mathscr{D}}|$. Consequently, \mathscr{D} consists of r+s-1 copies of Y.

Now we must deal with the case s = 1. We apply induction on |Y| = r. Both Theorem 4.3 and Proposition 4.4 are trivial if $r \le 1$. Suppose $r \ge 2$. If y is an arbitrary element of Y denote by d(y) its degree, i.e., $d(y) = |\{D \in \mathcal{D} : y \in D\}|.$

PROPOSITION 8.1. For every $y \in D \in \mathcal{D}$ we have

$$d(y) \leqslant |D|. \tag{19}$$

Proof. Define $\overline{Y} = D - \{y\}$, $\overline{\mathscr{D}} = \{(D - \{y\}) \cap D_i : y \in D_i \in \mathscr{D}, D_i \neq D\}$. Then \overline{Y} and $\overline{\mathscr{D}}$ satisfy the assumptions of Theorem 4.3 (with s = 1). By the induction hypothesis we infer $d(y) - 1 = |\overline{\mathscr{D}}| \leq |\overline{Y}| = |D| - 1$. If d(y) = 0 for some $y \in Y$ then we can use the induction hypothesis for $Y - \{y\}$. Hence we can suppose $d(y) \ge 1$ for all $y \in Y$.

If $|\mathcal{D}| < |Y|$ we have nothing to prove. So suppose $|\mathcal{D}| = m \ge r = |Y|$ holds. By Proposition 8.1 for all $y \in D \in \mathcal{D}$ we have

$$m - d(y) \ge r - |D|$$

From this, using $|D| \ge d(y) > 0$ we infer

$$\frac{m-d(y)}{d(y)} \ge \frac{r-|D|}{|D|}.$$
(20)

Let us sum up (20) for all $y \in D \in \mathcal{D}$:

$$\sum_{y \in Y} \sum_{y \in D \in \mathscr{D}} \frac{m - d(y)}{d(y)} \ge \sum_{y \in Y} \sum_{y \in D \in \mathscr{D}} \frac{r - |D|}{|D|} = \sum_{D \in \mathscr{D}} \sum_{y \in D} \frac{r - |D|}{|D|}.$$
 (21)

On the left-hand size of (21) the interior summation gives m - d(y), while that of the right-hand side is r - |D|. Thus (21) reduces to

$$mr - \sum_{y \in Y} d(y) \ge mr - \sum_{D \in \mathscr{D}} |D|.$$

However, $\sum_{y \in Y} d(y) = \sum_{D \in \mathcal{D}} |D|$, i.e., the assumption $m \ge r$ leads to a contradiction unless equality holds in (19) for all $y \in D \in \mathcal{D}$. In that case obviously m = r holds, proving Theorem 4.3 and the first part of Proposition 4.4.

To prove the second statement of the proposition, suppose that both $\mathscr{D} \cup \{D'\}$ and $\mathscr{D} \cup \{D''\}$ satisfy the assumptions of Theorem 4.3 and $|\mathscr{D}| = r - 1 = |Y| - 1$.

If |D'| = |D''| = 1 then $|D \cap D'| \neq 1$, $|D \cap D''| \neq 1$ hold for all $D \in \mathcal{D}$. This implies $D \subset (Y - (D' \cup D''))$ for all $D \in \mathcal{D}$. As $\mathcal{D}| = |Y| - 1$, Theorem 4.3 implies $|Y - (D' \cup D''')| \ge |Y| - 1$, that is, D' = D''.

Next we assume by symmetry $|D'| \ge 2$, $D' \not \equiv D''$. Let y belong to D' - D''. Then $d_{\mathscr{D} \cup \{D'\}}(y) = |D'| \ge 2$ by the first statement of the proposition. Thus we may find a $D \in \mathscr{D}$ such that $y \in \mathscr{D}$. Now, the first statement of the proposition yields

$$d_{\mathscr{D}\cup\{D'\}}(y)=|D|=d_{\mathscr{D}\cup\{D''\}}(y).$$

However, by the definition of y, we have

$$d_{\mathscr{D}\cup\{D'\}}(y) = d_{\mathscr{D}\cup\{D''\}}(y) + 1,$$

a contradiction.

9. AN OPEN PROBLEM CONCERNING DESIGNS

The investigation of the extremal families for Theorem 4.3 led to the following notion. Call the family $\mathcal{D} = \{D_1, D_2, ..., D_m\}$ on the underlying set Y a well-intersecting design of order r if

- (i) |Y| = m, $|D_i| = r$ for all $1 \le i \le m$.
- (i) $|D_{i_1} \cap \cdots \cap D_{i_l}| \neq t-1$ for all $1 \leq i_1 < \cdots < i_t \leq m$.

(iii) \mathscr{D} is connected, i.e., for all partitions $\{A, B\}$ of Y there exists a $D \in \mathscr{D}$ such that $A \cap D \neq \emptyset \neq B \cap D$.

Proposition 4.4 implies that \mathscr{D} is a 1-design, $d_{\mathscr{D}}(x) = r$ holds for all $x \in Y$. Some examples

(1)
$$m = r, D_i = Y$$
 for all $1 \le i \le m$.

(2) m = r + 1, r is odd, and $D_i = Y - \{y_i\}$ $(Y = \{y_1, y_2, ..., y_m\})$.

If $r \leq 3$ then these are the only well-intersecting designs. But for r = 4 there are exactly four: type 1, the complement of the Fano-plane (m = 7), the extended Hamming code (m = 8), and a simple construction on 6 points. See Fig. 1.

(3) $m = \binom{r}{2} + 1$, the biplanes of order r.

(4) $m = q^3 + q^2 + q + 1$, $r = q^2 + q + 1$, the planes of PG(3, q).

(5) Finally, it is easy to prove that: If A is the incidence matrix of a well-intersecting design of order r and A is symmetric then the matrix $B = \begin{bmatrix} A & I \\ I & A \end{bmatrix}$ is the incidence matrix of a well-intersecting design of order r + 1. (Here I denotes the $m \times m$ identity matrix.)

In this way we can obtain a well-intersecting design of order r with $m = 2^{r-1}$.

It would be interesting to know more about the structure of well-intersecting designs.

Problem 9. Is it true that the number of different well-intersecting designs of order r is finite for any fixed r?

FIG. 1. The only well-intersecting designs of order 4. (c) Biplane of order 4. (d) Extended Hamming code.

FRANKL AND FÜREDI

Note Added in Proof. Cameron, Frankl, and Wilson have shown that any well-intersecting design of order r satisfies $m = n \leq 2^{r-1}$. Moreover, the only design with $m = n = 2^{r-1}$ is coming from the r-dimensional cube: the incidence matrix of the design is the adjacenty matrix of the cube as a bipartite graph.

REFERENCES

- 1. M. DEZA, P. ERDÖS, AND P. FRANKL, Intersection properties of systems of finite sets, Proc. London Math. Soc. (3) 36 (1978), 369-384.
- P. ERDÖS, Problems and results in graph theory and combinatorial analysis, in "Proceedings 5th British Combinatorial Conf., University of Aberdeen, Aberdeen, 1975," pp. 169–172, Congress. Numer. 15. Utilitas Math. Winnipeg, 1976.
- 3. P. ERDÖS, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25-42.
- P. ERDÖS, CHAO KO, AND R. RADO, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
- 5. P. FRANKL, On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17 (1977), 125-134.
- 6. P. FRANKL, Extremal problems and coverings of the space, *European J. Combin.* 1 (1980), 101-106.
- 7. P. FRANKL, An extremal set theoretic characterization of some Steiner-systems, Combinatorica 3 (1983), 193-199.
- 8. P. FRANKL AND Z. FÜREDI, On hypergraphs without two edges intersecting in a given number of vertices, J. Combin. Theory Ser. A 36 (1984), 230-236.
- 9. P. FRANKL AND G. O. H. KATONA, If the intersection of any r sets has a size $\neq r-1$, Studia Sci. Math. Hungar. 14 (1979), 47-49.
- 10. P. FRANKL AND N. M. SINGHI, Linear dependencies among subsets of a finite set, *European J. Combin.* 4 (1983), 313-318.
- 11. P. FRANKL AND R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
- 12. Z. FÜREDI, On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983), 129-132.
- 13. G. KATONA, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
- 14. G. O. H. KATONA, A theorem of finite sets, in "Theory of Graphs," pp. 187–207. Akad. Kiadó, Budapest, 1968; Proc. Colloq., Tihany, 1966.
- J. B. KRUSKAL, The numbers of simplices in a complex, in "Mathematical Optimization Techniques," pp. 251–278, Univ. of California Press, Berkely, 1963.
- L. Lovàsz, "Combinatorial Problems and Exercises," Problem 13.31, Akad. Kiadó, Budapest; North-Holland, Amsterdam, 1979.
- 17. V. RÖDL, On a packing and covering problem, European J. Combin., in press.
- R. M. WILSON, An existence theory for pairwise balanced designs I-III, J. Combin. Theory Ser. A 13 (1972), 220-273; 18 (1975), 71-79.
- 19. P. FRANKL, A new short proof for the Kruskal-Katona theorem, Discrete Math. 48 (1984), 327-329.