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Following a conjecture of P. Erdos, we show that if 9 is a family of k-subsets of 
an n-set no two of which intersect in exactly I elements then for k 2 21+ 2 and n suf- 
ficiently large IF:/ < (;:‘,I:) with equality holding if and only if 9 consists of all 
the k-sets containing a fixed (I+ I)-set. In general we show 19) <dknmax(‘.k-‘-l), 
where dk is a constant depending only on k. These results are special cases of more 
general theorems (Theorem 2.1-2.3). (0 1985 Academic PKSS. hc. 

1. INTR~D~JCTI~N 

Let X be a finite set, 1x1 = n. By a family of subsets .F we just mean 
B c 2x. We call 9 a multi-family if it may have repeated members. (i) 
denotes the family of all k-subsets of X. Let a(n), b(n) be two positive real 
functions over the positive integers. If there are positive reals c and c’ such 
that ca(n)>, b(n) 2 c’s(n) hold for n > n, then we shall write a(n)%:(n). 
One of the most important intersection theorems concerning finite sets is 

THEOREM 1.1 (Erdos, Ko, and Rado [4]). Suppose k, t are integers, 
k b t >, 1, and 9 is a family of k-subsets of X, i.e., 9 c (f). Suppose further 
that for all F, F’ E 6 we have 

IFnF’l>t. (1) 

Then for n > n,(k, t) 

IFI Q (2) 
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ho& moreover equality holds in (2) if and only iffor some Tc X, ) TJ = t we 
have P= {FE(~): TcF}. 

In 1975 ErdGs [2] raised the problem of what happens if we weaken the 
condition (1) to 

lFnFI#t-1. (3) 

In this case one can easily construct a family of k-subsets @, 
)F”I =((l +o(l))(n/k)‘-‘z;n’-’ such that for all F, F’E~, IFnF’I <t- 1, 
in particular, (3) holds. Therefore if k < 2t - 1 (and in the case k = 2t - 1, 
see later), one cannot hope to have a bound like (2). Erdos [2] conjec- 
tured that for kZ2t the condition (3) implies (2) if n>n,(k). Here we 
prove this conjecture. 

2. RESULTS 

For a subset L = {II ,..., I,) of the integers satisfying 0 < lI < . . . < 1, < k, 
we call a family 9 c (f) an (n, k, L)-system if [Fn F’( EL holds for all dis- 
tinct F, F E 9:. The maximum cardinality of an (n, k, L)-system is denoted 
by m(n, k, L). Suppose Z, I’ are nonnegative integers satisfying I+ I’ <k. Let 
us define L(1, I’)= (0, l,..., I- 1, k-I’, k-I’+ l,..., k- l}. Abusing of 
notation we shall call an (n, k, L(1, 1’))-system an (1, II)-system, i.e., either 
IFn FI < 1 or (8” n FI k k- I’ hold for all distinct members F, F’ of an 
(1, I’)-system. Our main results are 

THEOREM 2.1. There exists a positive constant dk such that 
m(n, k, L(1, 1)) < dknmax{‘l’} holds. Consequently, m(n, k, L(1, Z’))znmax~~[‘}. 

THEOREM 2.2. If n > n,,(k) and I’ > 1 then 

m(n, k, L(1, 1’)) = 
r-F+7 

holds. Moreover the (1, I’)-system F attains equality in d4) if and only iffor 
some (k - I’)-element subset T we have 9 = (FE (t): Tc F). 

Note that the problem of Erdos is the special case k = I+ I’ + 1, I= t - 1. 
Also, for these values, Theorem 2.2 is the up-to-date strongest version of 
the Erdbs-Ko-Rado theorem. 
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The Case I> 1’. 

THEOREM 2.3. Suppose I>, l’, moreover k - 1 has a primepower divisor q 
satisfying q > I’. Then 

m(n, k, L(l, I’)) = (1 + o( 1)) (‘l)((“f’)/(“~“)). (5) 

In the case of 12 I’ the right-hand side of (5) is always a lower bound for 
mfn, k, L(Z, I’)). (See examples in Chap. 7) 

Conjecture 2.4. In (5) equality holds for all I> I’. 
Note that our conjecture holds by Theorem 2.3 whenever I’ = 1,2 or 

k>l+3’. 

3. REMARKS 

Concerning Theorems 2.1 and 2.2 the best results were due to the first 
author. In [S] he solved the case I= 1, and in [6] he proved that 
m(n, k, L(1, I’)) < c(k). nmaxj”,‘+ [l’~-‘- (“I I. In the nonuniform case the 
following holds. 

THEOREM 3.1 (Katona [13]). Suppose t > 1 and for all F, F’E~ c 2x 
(1) holds (i.e., 1 Fn F’I > t). Then one of the following 2 cases occurs 

(a) n + t is even, 

and for t > 2 equality holds if and only if P = {F c X: (F( > (n + t)/2 ). 

(b) n + t - 1 is even, 

and equality holds for t > 2 if and only if for some x E X we have 
F={(FcX:JFn(X-(x})l3(n+t-1)/2}. 

In the nonuniform case to any family satisfying (l), one can add 
(g,u(f,u ... u(,X2 ) without contradicting (3). In [S] we have shown 
that for n > n,( t) one cannot do better, (n,,(t) < 3’). 

Conjecture 3.2l (Erdos [3]). Suppose that 9 ~2~, lFnF’( ft for 
F, F E 9, and tx < t < (i-E) n. Then there exists a c = C(E) > 0 such that 
19;1<(2-c)“. 

’ This conjecture was proved recently by Frank1 and R6dl. 
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4. TOOLS OF PROOFS 

Set System with Lots of Stars 

The main tool in proving Theorems 2.1 and 2.2 is a recent result of the 
second author. To state it we need some definitions. We call the family of 
sets JX! an s-star with center K if Id/ = s and for ,a11 distinct A, A’E d, 
A n A’ = K holds. We say that S?I c 2x is closed under intersection if for all 
B, B’ E 9, (B n B’) E SI holds. If B E a c 2x, we define M(B, 99) = (B n B’: 
BfBW?}. 

THEOREM 4.1 (Fiiredi [ 123). For any two positive integers k, s there 
exists a positive constant c(k, s) such that every 9 c (c) contains some 
9 * c 9, satisfying 

(6.1) IF-*/ 3 c(k, s) 191 

(6.2) all the families M(F, 9*) are isomorphic, FE 9*, 

(6.3) every A E M(F, 9*) is the center of an s-star d, A c 8*, 

(6.4) M(F, 9*) is closed under intersection, i.e., A, A’E M(F, 9*) 
impIies A n A’E M(F, 9*). 

When we refer to Theorem 4.1 we always mean the case s = k i- 1, and 
we set ck = c(k, k + 1). The reason for this is given by 

PROPOSITION 4.2. Suppose 9 is an (n, k, L)-system, F, F EF*, 
A E M(F, 9*), A’E M(F, 9*), F’ E 9. Then we have 

IAl EL, {A~A’(EL, (A~F”(EL. (7) 

Let us mention that the idea of using (k + 1)-stars for investigating 
(n, k, L)-systems is due to M. Deza. Proposition 4.2 can be verified easily 
by using that if A is the center of the (k + 1)-star (FL,..., Fk+ ,}, then the 
sets Fi - A are pairwise disjoint. For a proof see [ 11. 

Set Systems with Many Intersection Conditions 

We will also use 

THEOREM 4.3 (Frank1 and Katona [9]). Suppose 9 = {Dl ,..., Dm} is a 
collection of not necessarily distinct subsets of Y, 1 YI = r. Suppose further s is 
a positive integer such that for all t, 1 < t ,< m, and all 1 6 i, x . ‘. < i, d m, 

IDi, n . . . n DJ # t - s 

holds. Then we have ($9l=m<r+(s-1). 

582al39/2-4 



164 FRANKLANDFijREDI 

We shall need the following strengthening of this theorem. 

PROPOSITION 4.4. Suppose that 9 satisfies the assumptions of 
Theorem 4.3. If ]$!$I= r + s - 1, then for every y E D E 9 the number of sets in 
9 containing y is 1 D] + s - 1. (Moreover, for s > 2 $9 consists of r + s - 1 
copies is Y.) Zf 19 = r + s - 2 then there exists at most one set D’ such that 
9’ = 9 u {D’} satisfies the assumptions, too. 

To prove Proposition 4.4 we shall give a new proof for Theorem 4.3. We 
present the proof of these statements at the end of the paper in Chapter 8. 

Shadows of Set Systems 

For Fe(t), O<s<a, let us define .4,(F)= {GE(T):~FE@,G~F}. 
Given ISI what is the minimum of Ids(Y)]? This problem was completely 
solved by Kruskal [15] and Katona [14], however their formula for 
min IA,(R)\ is not convenient for computation. We will rather use the 
following version of the Kruskal-Katona theorem. 

THEOREM 4.5 (LovQsz [ 161). Suppose that the real number x, x > a is 
dejmedby Isl=(;)=x(x-l)...(x--++)/a!. Then 

holds for all 0 < s < a. 

(Cf. [ 191 for a unified, simple proof of the Kruskal-Katona theorem and 
Theorem 4.5.) 

A General Bound for m(n, k, L) 

For the proof of Theorem 2.3 we need 

THEOREM 4.6 (Frank1 and Wilson [ 111). Suppose that for some integer 
valued polynomial of degree d and a prime p for all 1 E L p I g(1) holds but 
p lg( k). Then we have 

m(n, k, L) < 
n 0 d’ 

Steiner-Systems and Quasi-Steiner-Systems 

Suppose r > t > 1. We say that Y c (f) is a Steiner-system, S(n, t, r) if for 
every TE (f) there exists exactly one SE 9, containing T. Of course, we 
have I.Y’I = (y)/(i), and Y is a maximal (n, r, (0, l,..., t - 1 })-system. 

For t = 1 a Steiner-system is just a partition of X into r subsets, it exists 



FORBIDDING JUST ONE INTERSECTION 165 

if and only if r 1 n. For t = 2, n > n,,(r) Wilson [ 183 proved that the trivial 
necessary conditions (;) I(;), (r - 1) 1 (n - 1) are sufficient for the existence 
of Steiner-systems. However, very little is known about the existence of 
Steiner-systems for r 2 3. We shall use 

THEOREM 4.7 (Rod1 [17]). For all r> t 2 1 

m(n,r, {OJ )...) t-1})=(1+0(1)) ; 
( )I( ) 

; 

holds. 

5. THE PROOF OF THEOREM 2.1 AND SOME LEMMAS 

Actually we prove the following stronger statement: 

THEOREM 5.1. Suppose B is an (I, I’)-system, ck = c(k, k + 1) is the con- 
stant from Theorem 4.1, then we have 

Proof: Apply Theorem 4.1 to 9. We obtain a family 9* c S satisfying 
(6.1)-(6.4), i.e., IF-*/ >ck 191, all the families M(F, S*) are isomorphic 
for FEF*, each A EM(F, P*) is a center of a (k+ l)-star, M(F, 9*) is 
closed under intersection. 

In view of (6.1) it will be sufficient to deal with 9*. We say that B c F is 
an own subset of FE9* if BcF’E.Y* implies F=F. 

LEMMA 5 2 
IBI <max{i,l’}. 

Each FE 9-* has an own subset B satisfying 

First we finish the proof of the Theorem 5.1 using this Lemma. Let us 
note that B c F is an own subset of F if and only if B G! A holds for all 
A EM(F, 9*). 

If B is an own subset of F and B c B’ c F then B’ is an own subset of F 
as well. Thus by Lemma 5.2 for each FE S* we may chqose an own subset 
B(F) of F, having IB(F)I =max{& I’}. Consequently a= (B(F): FEN*} 
satisfies g c A maxfl,rl(~*) and I4 = 19 I * 2 ck 191, yielding the statement 
of Theorem 5.1. Q.E.D. 

Remark. Theorem 5.1 is related to the following theorem due to Frank1 
and Singhi [lo]. 
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THEOREM 5.3. Zf 9 c (f) is an (n, k, L(1, l’))-system with k = 1+ 1’ + 1 
and I > 3” then IA,(F)1 2 191. 

They conjecture that Theorem 5.3 holds for all 12 1’. The above proof 
shows that it is useful to investigate M(F, 9*), i.e., the intersection struc- 
ture of F. 

Let F be a k-element set and let Jk’ c 2F - {F). Suppose ,X is closed 
under intersection and for all ME JZ we have [MI < 1 or IMI 2 k - I’. We 
say that B c F is covered (by k!) if there exists an A E &? such that BE A. 
Clearly Lemma 5.2 is a consequence of the following 

LEMMA 5.4 (Main Lemma). There exists a subset B c F satisfying 
1 BI < max(l, I’} which is not covered by k’. 

LEMMA 5.5. Suppose now I’ > I and all (I’ - 1 )-element subsets of F are 
covered by 4. Then (c) and one of (a) and (b) hold. 

(a) There exists a (k - l’)-element subset A(F) of F such that JY con- 
sists of all supersets of A(F) an d eventually some at most (1- 1 )-element sub- 
sets. 

(b) I’ = I+ 1, k = I’ + 1+ 1 and there are at least two I’-element subsets 
of F which are not covered by .&. 

(c) If B is an uncovered I’-element subset of F and Bs C 4 F then 
l<IAnCI<k-l’holdsforsome AEJ%‘. 

Lemma 5.5 says that in the cases I’ > I+ 2, I’ = 1+ 1 < (k/2) there exists 
only one JV which covers all (I’ - 1 )-element subsets. However the descrip- 
tion of such .k’s seems to be very hard in the case I’ = 1+ 1, k = 21+ 2. In 
fact, an S(21+ 2, I+ 1, I) Steiner-system extended with all subsets of size 
less than 1 satisfies the assumptions of Lemma 5.5, and the existence of 
these designs is an old unsolved problem. 

Proof of Lemmas 5.4 and 5.5. We prove these lemmas together. Choose 
a minimal subset B of F which is uncovered by JZ. It is possible because F 
is not covered. We may suppose ) BI = b > 1 holds. Let B = {x,, x1 ,..., xt,}. 
As B- {xi} is covered, there exists an A,E&! for which Bn A,= B- (x,} 
holds. First we show that b < I+ 1’. Indeed, let A = A, n A, n . . n Ar + , , 
then AE&, xiCA for l<i<l’+ 1 which implies (Al <k--l’, i.e., IAl ~1. 
But IAnBI =b-I’+ 1, whence b<l+l’. 

Fix an arbitrary (1+ /’ + 1 - b)-element subset Y of F- B. Define 
Di = Yn Ai, i = l,..., b. We claim that for 1 < i, < . .. < i, < b we have 

ID, n .. . n Dizl # t - (b - 1). (*I 

Suppose the contrary and consider the set A = (Aj, n . . . n A,) E JZ. By 
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definition (AnBI =6-t and OG IAn(F-B- Y)I <k-Z--Z’- 1. Using 
IAI=IAn~l+IAnYl+IAn(F-B-Y)1 weinferZ<IAI<k-ll,acon- 
tradiction. 

Now, let us apply Theorem 4.3 to the multi-family 9 = {Or ,..., Db}. We 
conclude b=l$@l<IYI+(b-I)-l=(Z+Z’+l-b)+(b-I)-l=Z’, i.e., 
b < I’ proving Lemma 5.4. 

For the proof of Lemma 5.5 we suppose that IB( = Z’, whence I YI = I+ 1. 
When we apply Theorem 4.3 for the family 9 with s = 1’ - I we get equality 
191 = 1 YI + (I’ - I) - 1. Thus we can use Proposition 4.4. Hence we get in 
the case 2’ - 12 2 that 9 consists of I’ copies of Y. The choice of Y was 
arbitrary so we get A,=F,-(xi} for all l<i<Z’, A(F)=F- {xl,...,xIr}. 
Now we prove this in the case I’ - I= 1, 1 YI < IF- BI (i.e., k > 2Z+ 2). 

The arbitrary choice of Y and Proposition 4.4 yields U Ai = F. Since 
IF- B( > IBI = Z’, we may choose an Aj satisfying IAj - BI > 2. If 
I AjJ = k - 1, that is Aj - B = F- B, then again by Proposition 4.4, 
Ai- B= F- B follows for all i. 

Since A is closed under intersection, we gain the assertion of the lemma 
with A(F) = F- B. 

To complete the proof, we derive a contradiction from 
2<(Ai-B(<(F-B(. Choose u,uEA~-B, WE(F-B)-Aj, and let Y, Y’ 
chosen such that uE Yn Y’ and Y’= Y-{u>u{w}. Denote 9= 
{Ain Y: l<i<Z’}, 9’= {Ain Y’: l,<i<Z’} and D=Ajn Y, D’=Ajn Y’. 
We have D’ = D - {u} so using Proposition 4.4 we get the contradiction 
IDI =d,(v)=d,, (u)= ID’]. 

Now investigate the case Z’=Z+l, k=Z’+Z+l. Then Y=F-B. If 
A $ {A: Y z A G$ F} then there exists an Ai such that lA,n YI < I YI. Let 
y E Y - Ai. We claim that B - {xi) u { y 3 is not covered by A! either. Sup- 
pose on the contrary that there exists an A;I> B- {xi} LJ {y}, Ai E dtf. 
xi e! Ai because B is not covered. Hence Bn Ai = Bn Ai, i.e., in the system 

{D r ,-.., Or} we can replace Di by DI = Ai n Y, But this is impossible by 
Proposition 4.4. This finishes the proof of (a) and (b). 

The subset A(F) is unique. (If there were two such A(F), e.g., A and A’ 
then Au(A’- {x}) would intersect A’ in k-I’- 1 elements (xEA’-A).) 

The proof of (c) in the case (a) is similar to the proof of uniqueness 
of A(F). If Z’=l+l=(k/2) then set IC-BI=t. Now 
ICn(A,n ... nA,nA,+,)J=I, proving(c). 

6. THE PROOF OF THEOREM 2.2 

Let A,, be a fixed (k-Z’)-subset of Xand let &={FE(~):A~~F}. In 
this family M(F, PO) = {A: A, c A $ F} holds for all FE &. This 
motivates our procedure of proof. 
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Assume 191 2 (“-F+ ‘) holds. First, as in the proof of Theorem 2.1 we 
apply Theorem 4.1 to 9 and obtain 9i = 4* satisfying (6.1) - (6.4). Then 
we apply Theorem 4.1 to 9 - 6 to obtain 4 = (F - 9i)*, in the mth step 
we obtain 9m = (9 - (Fi u .*. u 9jj- i))*. We stop either if there are no 
more sets or if for FE 9m there is no A E (k_Fr) such that 
M(F, Fm)z {B: A c B $ F}. 

LEMMA 6.1. IY- (6 u ... u$$-,)I < ch( r ! , ) holds for some constant 
C;. 

We obtain Lemma 6.1 by proving a series of propositions. First we con- 
tinue applying Theorem 4.1 to obtain pm+ i = (F - (pi u .. . u sm))*,..., 
until we get an &,, with the property that for some FE 9$, F has an own 
subset of size strictly less than I’. Then by Theorem 4.1 (6.2) all FE Y$ 
share this property, yielding 

PROPOSITION 6.2. 19 - (9, u . . uRd-1)16(W,) I%4 ~(l/c!J(l'nl) 
holds for n > 21’. (Note that eventually m’ = m holds.) 

By Lemma 5.4 we know that all FE S$, 1~ i < m’, have an own subset of 
size I’, i.e., which is not contained in any other member of e. Lem- 
ma 5.5(c) yields that these sets are not contained in any member of 9 - 6 
either. We infer 

PROPOSITION 6.3. Suppose B c F’E & 1 6 i < m’, IB\ = I’, and B is an 
own subset of F in S$. Then B is an own subset of F in P, too. 

Similarly, Lemma 5.5 (a) and (b) give 

PROPOSITION 6.4. Zf m Q i < m’ then every FE S$ has at least 2 own sub- 
sets of size 1’. 

PROPOSITION 6.5. CIGi,, lS$l +CmGicmr2 lS$ <(;). 

ProoJ It is a direct consequence of Proposition 6.3, 6.4., and Lem- 
ma 5.2. 1 

Now l~l>/(“~B+I’)>(~)-(k-l’)(rll), Proposition 6.2, and 
Proposition 6.5 imply 

,lxm I%1 <($+k-qrg. 
.’ ’ 
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We infer by Proposition 6.2, 

proving Lemma 6.1. 
For FE 8, I< id m - 1, let us denote by A(F) the (k - I’)-subset of F 

for which M(F, z) 3 {B: A(F) c B g F) holds. (It is easy to see that A(F) 
is uniquely determined and it is the only (k - I’)-element set in M(F, 9).) 

PROPOSITION 6.6. Zf FE(~~u ... LJ~~-,), F’E@-, and IFnF’>,l then 
A(F)cF’ holds. Moreover if F’E(~,u ... uFmpl) then A(F)=A(F’) 
holds. 

Proof. Suppose the contrary. Then IA(F) n FI < k - 1’ holds. Consider 
an arbitrary chain of subsets A, = A(F) $ A 1 S$ . . . g Ar = F. Let i be the 
last index in this chain for which lAj n Fj < k - I’ holds. Then IFn,FI B 1 
and I<k-1’ imply ld(A,nF’l <k-l’, contradicting (7). 

For the case FE(~~ u ... uYJ-i) we infer A(F)EM(F’,~). Since 
IA(F)1 = k - I’, A(F) = A(F) follows. i 

Let A, , A2 ,..., Ah be the list of (k - /‘)-sets for which Ai = A(F) holds for 
some FE(S$U ... uS$-~). Define gl={G~(F1u ... u&-,):AicG} 
and gi= (G- Ai: GE$}. Assume lgi\ > I$\ > ... B [%J. 

PROPOSITION 6.7. The sets A,($)),..., A,(c?&) are pairwise disjoint. 

Proof. It is a direct consequence of the preceding proposition. 1 
Let us define the real number xi by 141 = (3), xi > 1’, i = l,..., h. 

PROPOSITION 6.8. A !(‘Z+.) > (T), i = l,..., h. 

Proof. Since d,(q)=d,(s), this follows from 13.1 = 131 and 
Theorem 4.5. i 

Note that in view of Lemma 6.1 we may assume 

where c$ is a constant. From Proposition 6.7. and 6.8 we have 

(9) 
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Using that (4)/(y) 2 (T?)/( 7) 2 . . . 2 (T!)/(T), we infer 

> -. 
1 

Now, (8) and (9) yield 

xl>n-c,“‘, 

and consequently ( ;I) > (7) - c;l( ,: i). Using (9) we obtain 
CZGiGh (p)<c;l(,!,) and consequently 

Using Lemma 6.1 and (10) we get 

Let US define Xx= {FEY: A, cF and for each A,cB C$ F there is a 
(k + 1)-star in 9 with center B}. Of course, 4 c X. Let us set 
d= (FE~:A,CF, F&X}, and $?a==-X-d, i.e., B= 
{FE~:A, d F). 

For the family FO= {FE(;): A, c F}, all its members would be in X, 
i.e., X consists of the “regular” elements of 9. Our aim is to show S = X. 
For g0 one has d,.(&)=(f). On the other hand d,.(.X)~(X;~Al) is 
equivalent to 9 = 2”. We will derive a contradiction from F - 3” # ~3 by 
showing that d,(X) and consequently A,.(X) miss too many subsets of X. 
We distinguish two cases according to which is larger (dl or 1221. 

(a) If JdJ 6 )g\. It can be proved in the same way as Proposition 6.6 
that A,(X) n A,(Sil) = @. Let lAr(B)I = (;). Apply Theorem 4.5 to A,.(a) 
and use Theorem 5.1 for a: 

x 

0 
0 

lAr(99)l = lA,(A,.(W)l 2 ; =+ IAr(g’)l 

0 1 

>o, /98 >LL,,, + pq) ‘(;) k ‘(;) 2 . 
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(A,(~p)I~(~)l~l~(~)~~)(~~~) by (11). Hence x<cjJ)n’-‘I’ so we get 

W;b (;)/G), i.e., 

(12) 

Denote by 2={F-A,:FM}. Obviously IA,(Wl = 
CoGiGl lA1-J~)l (k;“). If 121= (;), then Theorem 4.5 yields 

Adding (12) and (13) we obtain 

0 ‘I 3 IAA9N2 IAd-x)l + IA, > PI (;)y(*-:“)? 

i.e., 19-l < (n-F+r), as desired. 

(b) IdI > I?#[. Apply Theorem 4.1 to d to obtain d*. By definition 
ofXforFE&*wehaveM(F,&*)$ {H:A,cH$F}.By(6.4)wecan 
hndmissing(k--l)sets, i.e., A,cH$ F, [HI=&1, HdM(F,d*). 

PROPOSITION 6.9. We can find an H,A,cH$ F, lH)=k-1, 
HthM(F,d*) such that H&A,-,(xX). 

Proof. As F d X we can find a H’ such that Al c H’ c F, H’ is not the 
center of any (k + I)-star consisting of members of 8. Then, again by the 
definition of Xx, H’ ti K holds for all K E X. 

Let H, ,..., H, be the (k - l)-sets satisfying H’ c Hi c F, 1 < i < r, 
r= k- (H’(. By the choice of H’, Hi d K holds for all KE X. Since 
H’=H,n . ..nH.,byTheorem4.1 (6.4)wemaypickani(l<i<r)such 
that H = Hi # M(F, d*), proving the proposition. 1 

Now let us choose such an H = H(F) for each FE d*. Define 
St’= {H(F)-A,:FE~*). As H(F)PM(F,d*), [%‘[=I&*/ holds. By 
the choice of H(F) we have Xn A,._ ,(2) = 0, hence 

WI + IA,- I( qr”:“). (14) 
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and for large enough n, 

holds. Adding (15) and (16) in view of (14) we obtain 

7. PROOF OF THEOREM 2.3 

Suppose 9 is an (I, I’)-system, 191 = m(n, k, L(f, ,‘)). Let us set b = I-Y. 
For BE(~) define 9(B)= {F-B:B~FE~}. Of course we have 

(17) 

F(B) is an (n-b, k - b, L(l’, f’))-system. Let q=p” be a primepower 
divisor of k - I = (k - b) - I’, satisfying q > I’. Define g(x) = (;I). Then 
g(k-b)=g(l’)= 1 (modp), i.e., p[g(k- b). On the other hand pi g(r) 
holds for r = 0, l,..., I’ - 1 because of g(r) = (;) = 0, and for 
r=(k-b)-I’=k-I, k--1+1,..., k - b + 1 because of the exponent of p in 
g(r) = r!/l’!(r - /I)! is CDaI (Lr/pp_I - Lt/pBJ - L(r- WP~_J) by Legendre 
formula, and the CI th member of this sum is positive. 

Thus we may apply Theorem 4.6 to 9(B). We infer 

(18) 

Combining (17) and ( 18) we obtain 
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yielding 

m(n, k, UZ, I’)) < (l)(“f ‘)i(“:‘)y 
the upper bound part of the theorem. 

To prove the lower bound take an (n, k + I’, (0, l,..., I- 1 ))-system Y 
with 19’ =m(n, k+l’, (0, l,..., I- 1 }). Define B = dJ9’). Obviously, 
we have 191 = (“F”) 19’1, thus Theorem4.7 yields 191 = 
(1 +O(l))(‘f)(k~l’)l(k:l’). 

It remains to show that 9 is an (l, 1’)-system. Suppose F, F E 8. Then 
there exists S, S’ E 9, such that Fc S, F c S’. If S # S’, then IFn F’I 6 
lSnS’l<Z. IfS=S’, then /FnFI=jFI+IFI-IFuF’I>2k-JSI=k--I’. 

Remark 7.1. Our proof shows that if S(n, k + I’, I) exists, k, 1, I’ as in 
Theorem 2.3, then m(n, k, L(I, Z’)) = (;)( k T “)/( k : “) holds. Frank1 [ 71 has 
shown that in the case k - I = I’ + 1 a prime, the converse holds, too, i.e., 
the above equality implies the existence of S(n, k + I’, I). 

8. THE PROOFS OF THEOREM 4.3 AND PROPOSITION 4.4. 

First we show that the case s 3 2 is an easy consequence of the case s = 1. 
In fact, take an (s - 1)-element set Z which is disjoint to Y. Define 
P= Y u 2, L8 = { Di u Z: Di E 9}. Then y and G satisfy the assumptions 
for s = 1, yielding 

as desired. 
Note that, any ZE Z satisfies z~fi for all B EL%‘. Thus Proposition 4.4 

applied to g yields that all the sets of $$ have the same size, namely that of 
(8: 2 E B E S}, i.e., 1581. Consequently, 9 consists of r + s - 1 copies of Y. 

Now we must deal with the case s = 1. We apply induction on 1 YI = r. 
Both Theorem 4.3 and Proposition 4.4 are trivial if r Q 1. Suppose r > 2. If y 
is an arbitrary element of Y denote by d(y) its degree, i.e., 
d(y)= I(DE~&~ED}I. 

PROPOSITION 8.1. For every y E D E 5@ we have 

d(y) G IDI. (19) 

Proof Define P=D- {y}, a= {(D- {y})nDj: yEDiEG@, Di#D}. 
Then P and L?? satisfy the assumptions of Theorem 4.3 (with s = 1). By the 
induction hypothesis we infer d(y) - 1 = lgl < I PI = I DI - 1. 1 
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If d(y) = 0 for some y E Y then we can use the induction hypothesis for 
Y - { y }. Hence we can suppose d(y) 2 1 for all y E Y. 

If 191 < 1 Yj we have nothing to prove. So suppose 191 = m 2 r = I YI 
holds. By Proposition 8.1 for all y E D E 9 we have 

m-d(y)ar-IDI. 

From this, using IDI 2 d(y) > 0 we infer 

m-0) r- IDI 
d(y) aIDI. (20) 

Let us sum up (20) for all y E DE 9: 

c c m-d(y) 

On the left-hand size of (21) the interior summation gives m - d(y), while 
that of the right-hand side is r- IDI. Thus (21) reduces to 

mr- 1 d(y)>mr- 1 IDI. 
.I’ E Y  DEY 

However, CycY4Y)=CDs9 IDI, i.e., the assumption m > r leads to a con- 
tradiction unless equality holds in (19) for all YE D E 9. In that case 
obviously m = r holds, proving Theorem 4.3 and the first part of 
Proposition 4.4. 

To prove the second statement of the proposition, suppose that both 
9u{D’} and 9u{D”> satisfy the assumptions of Theorem 4.3 and 
Igl=r-l=lY(--1. 

If ID’1 = (D”I = 1 then IDnD’l # 1, lDnD”l # 1 hold for all DEB. This 
implies Dc(Y-(D’uD”)) for all DEB. As gj=jYI--1, Theorem4.3 
implies I Y - (D’ u D”‘)l 2 / YI - 1, that is, D’ = D”. 

Next we assume by symmetry ID’1 > 2, D’ @ D”. Let y belong to 
D’ - D”. Then d, v ( DZr( y) = ID’1 > 2 by the first statement of the 
proposition. Thus we may find a DE 9 such that .VE 9. Now, the first 
statement of the proposition yields 

d ~u;n.;(V)= PI =d,,i,+V). 

However, by the definition of y, we have 

&u {D’)(y) = 4, (D”)bd + 1, 

a contradiction. 



FORBIDDING JUST ONE INTERSECTION 175 

9. AN OPEN PROBLEM CONCERNING DESIGNS 

The investigation of the extremal families for Theorem 4.3 led to the 
following notion. Call the family 9 = {Or, Dz,..., D,} on the underlying set 
Y a well-intersecting design of order r if 

(i) IY/ =m, lDil =r for all 1 <i<m. 
6) IDi,n ... n Dir1 # t - 1 for all 1 < i, < .. . < i, <m. 

(iii) 9 is connected, i.e., for all partitions {A, B} of Y there exists a 
DES such that AnD#%#BnD. 

Proposition 4.4 implies that 9 is a l-design, d,(x) = r holds for all x E Y. 
Some examples 

(1) m=r, Di= Y for all 1 <i<m. 

(2) m=r+l, risodd, and Di=Y-{y,) (Y={y,,y, ,..., y,>). 

If r < 3 then these are the only well-intersecting designs. But for r = 4 
there are exactly four: type 1, the complement of the Fano-plane (m = 7), 
the extended Hamming code (m = 8), and a simple construction on 6 
points. See Fig. 1. 

(3) m = (;) + 1, the biplanes of order r. 

(4) m = q3 + q2 + q + 1, r = q* + q + 1, the planes of PG(3, q). 

(5) Finally, it is easy to prove that: If A is the incidence matrix of a 
well-intersecting design of order r and A is symmetric then the matrix 
B = [f i] is the incidence matrix of a well-intersecting design of order 
r + 1. (Here Z denotes the m x m identity matrix.) 

In this way we can obtain a well-intersecting design of order r with 

m = 2’- 1. 
It would be interesting to know more about the structure of well-inter- 

secting designs. 

Problem 9. Is it true that the number of different well-intersecting 
designs of order r is finite for any fixed r? 

FIG. 1. The only well-intersecting designs of order 4. (c) Biplane of order 4. (d) Extended 

Hamming code. 
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Nore Added in Proof. Cameron, Frank], and Wilson have shown that any well-intersecting 
design of order r satisfies m = n < 2’- I. Moreover, the only design with I)? = n = 2’- ’ is coming 
from the r-dimensional cube: the incidence matrix of the design is the adjacenty matrix of the 
cube as a bipartite graph. 
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