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A new short proof is given for 
which uses elementary probability 

the fundamental inequL ity concerning antichains. 
theory and not chains or cyclic permutations. 

A proof 

Let $ be any antichain consisting of subsets sf X = {19 2, . . . , n} (i.e. no 
member of 9 contains another one). Sperner [3] proved that in this case 

holds. This was refined by Lube11 [l], Yamamoto [4] and Meshalkin 

whenever 9 is an antichain on X. (1) 

Here we give a short, inductive argument yielding (1). First note that (1) is 
evident if n = 1, and also if X E S (in the latter case necessarily 9 -= 1.x) holds). 
Now assume (1) is true for n - 1, !F is an antichain and X 4 9. 

Let x be a random variable which takes the values 1,. . . , n; each with 
probability l/n. Let us define s(x) = {FE ZF: x9! fl. For any function g(x), we 
denote by E(g(x)) its expectation. As 9(x) is an antichain on X-(x}, for 9(.x) (1) 
hoids with n - 1 instead of n. We infer (~(FE 9:(x):r denotes the probability that 
FE @ belongs to the random family s(x), thus it equals (n-IF/)/n): 

as desired. 
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