COMMUNICATION

A PROBABILISTIC PROOF FOR THE LYM-INEQUALITY

Peter FRANKL
C.N.R.S., Université de Paris VI, Paris, France
Communicated by C. Berge
Received 7 September 1982

A new short proof is given for the fundamental inequelity concerning antichains. A proof which uses elementary probability theory and not chains or cyclic permutations.

Let \mathscr{F} be any antichain consisting of subsets of $X=\{1,2, \ldots, n\}$ (i.e. no member of \mathscr{F} contains another one). Sperner [3] proved that in this case $|\mathscr{F}| \leqslant\binom{ n}{n / 2}$ holds. This was refined by Lubell [1], Yamamoto [4] and Meshalkin [2] to

$$
\begin{equation*}
\sum_{F \in \mathscr{F}} 1 /\binom{n}{|F|} \leqslant 1, \quad \text { whenever } \mathscr{F} \text { is an antichain on } X . \tag{1}
\end{equation*}
$$

Here we give a short, inductive argument yielding (1). First note that (1) is evident if $n=1$, and also if $X \in \mathscr{F}$ (in the latter case necessarily $\mathscr{F}=\{X\}$ holds). Now assume (1) is true for $n-1, \mathscr{F}$ is an antichain and $X \notin \mathscr{F}$.

Let x be a random variable which takes the values $1, \ldots, n$; each with probability $1 / n$. Let us define $\mathscr{F}(x)=\{F \in \mathscr{F}: x \notin F\}$. For any function $g(x)$, we denote by $E(g(x))$ its expectation. As $\mathscr{F}(x)$ is an antichain on X - $\{x\}$, for $\mathscr{F}(x)$ (1) hoids with $n-1$ instead of n. We infer $(p(F \in \mathscr{F}(x))$ denotes the probability that $F \in \mathscr{F}$ belongs to the random family $\mathscr{F}(x)$, thus it equals $(n-|F|) / n)$:

$$
\begin{aligned}
1 & \geqslant E\left(\sum_{F \in \mathscr{F}(x)} 1 /\binom{n-1}{|F|}\right) \\
& =\sum_{F \in \mathscr{F}} p(F \in \mathscr{F}(x)) /\binom{n-1}{|F|}=\sum_{F \in \mathscr{F}} \frac{n-|F|}{n} /\binom{n-1}{|F|}=\sum_{F \in \mathscr{F}} 1 /\binom{n}{|F|},
\end{aligned}
$$

as desired.

References

[1] D. Lubell, A short proof of Sperner's theorem, J. Combin. Theory 1 (1966) 299.
[2] L.D. Meshalkin, A generalization of Sperner's theorem on the number of subsets of a finite set, Theor. Probability Appl. 8 (1963) 203-204.
[3] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544-548
[4] K. Yamamoto, Logarithmic order of free distributive lattices, J. Math. Soc. Japan 6 (1954) 343-353.

