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For a family # of subsets of an n-set X we define the trace of it on a subset ¥ of
X by T(Y)={FNY:FEF}. We say that (m,n)- (r,s) if for every # with
| #|>m we can find a YC X|Y|=s such that |T#(Y)|>r. We give a unified
proof for results of Bollobas, Bondy, and Sauer concerning this arrow function, and
we prove a conjecture of Bondy and Lovész saying (|n%/4] +n+2,n)- (3,7),
which generalizes Turan’s theorem on the maximum number of edges in a graph
not containing a triangle.

1. INTRODUCTION

Let # be a family of subsets of X = {1, 2,...,, n}. For a subset Y of X we
set THY)={FNY:FE.#}. Note that in TY) we take every set only
once. We call T (Y the trace of # on Y.

DEFINITION. The arrow relation (m,n)— (r,s) means that whenever
|# | > m, we can find Y c X, | Y| =s such that | T AY) >r.

Bondy (1] proved that
(m,n)-> (m,n—1) if mgn. (D)
Bollobas (see [6]) proved that
(mn)>(m—1,n—1) if m<|[3n]. )
Sauer [8] proved that
s—1 n
(m,m)> (2%s)  if m> Y (l) 3)
izo

Let us remark that these bounds are easily seen to be best possible.
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2. RESULTS

Recall that a family, # of sets is hereditary if G F€& . # implies
G € #. Our main result is the following:

THEOREM 1. (m, n)— (r,s) holds if, whenever # is a hereditary family
of subsets of X = {l,..,n} and | F|=m, there exists a set YC X, |Y|=s
such that |[TAY)| > r.

To show the effectiveness of this theorem we now deduce from it the three
results mentioned in the Introduction.

For (3) just note that a hereditary family # with |#|> 3320 (7)
necessarily contains a set ¥ with |Y|=s and then |T AY) = 2°. As every
nonempty hereditary family contains the empty set, | # | < n implies that for
some x € X the singleton {x} is not in .#, i.e, | T X — {x})| =|F | proving
(1)

If |#|<[3n], and {x} & # for some x, then again T X — {x})=#
But if # contains the empty set and all the singletons, then there must be an
x € X which is not covered by any two-element set in .# (otherwise, | # | >
1+n+[n/2] > [3n]), thus by the hereditary property {x} is the only
member of # containing x, i.e., | T (X — {x})| = |F | — I, yielding (2).

Let us recall Turan’s theorem for graphs without triangles:

THEOREM 2 (Turan [9]). If G is a simple graph on n vertices and
without a triangle (i.e., 3 edges {x, y}, { y,z}, and {x, z}), then G has at most
|n*/4| edges.

Bondy and Lovasz conjectured that the following generalization of
Turan’s theorem is true:

THEOREM 3. Ifm> |n*/4|+n+ 1, then (m,n)— (3, 7).

To see that (4) generalizes Theorem 2 define for the simple graph G the
family .# (G) consisting of its edges, vertices, and the empty set. Now
|G| > |n*/4| yields |#(G) > |n*/4|+n+ 1. Thus (4) guarantees the
existence of 3 vertices x, y, z such that | Tz, ({x, y,2})|> 7. As F(G)
contains only sets of cardinality 2 or less, these 7 sets are @, {x}, {y}, {z},
and the triangle {x, y}, {x, z}, {y, z}.

On the other hand, Theorem 3 is an immediate consequence of Theorem 1:
we may assume # is hereditary. If it contains only sets of cardinality not
exceeding 2, then (4) is just equivalent to Turan’s theorem. If FE.#,
|F'| =3, however, then [T (F) =8 > 7. Q.E.D.

We shall apply Theorem 1 to prove the following:
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THEOREM 4. Let t be a positive integer. If m < [n(2' — 1)/t], then
(mn)» (m—-2"'+1,n—1). (5)

Note that for = 1,2, (5) yields (1) and (2), respectively.
To prove (5) we need the Kruskal-Katona theorem. Define the antilex-
icographic ordering of subsets of {1, 2,..., n} by
A<B iff AcB or max i< max i
ied-B i€eB—4

For integers k, m let ¥ (m,n), (F (m,k,n)) denote the first m sets
(k-subsets) in the antilexicographic ordering, respectively.

THEOREM 5 (Kruskal [5], Katona [4], for a simple proof see Daykin
[2]). Let # be a family of m sets each of cardinality k. Then for 0 <[ < k
the number of l-sets contained in some member of F is at least as much as
that for F (m, k, n).

We shall use the following easy corollary (cf. [3]).

COROLLARY. Let F be a hereditary family, | # |=m. Then for every
monotone nonincreasing function f(x) we have

S SUFD> Y S(F)D. (6)
Fe#F FeF(m.n)

3. THE PRrROOF OF THEOREM 1

Let us suppose the arrow relation (m, n) - (r, §) is false. Let # be a coun-
terexample for which ) ;.. »|F| is minimal.
Suppose # is not hereditary. Then we can find F, € # and i € X such
that i € F, but (F, — {i}) € #. Let us define the following transformation:
HE)=E—{i}, if i€E, (E-{(i)¢&.7,
=E, otherwise,
H(#)=|H(F): F€ 7).

Obviously, |# | = |H(#)| and the sets of the two families differ only in the
element /. Moreover, H(F,) = F, — {i} yielding

2 IF> X Gl
Fe# GeH(F)
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The minimal choice of # implies the existence of Yo X with |Y|=s5,
[Ty (Y)2r. We want to prove the theorem by establishing the
contradiction |T(Y) >r. As for i€ Y, we have THY)=T,#(Y), we
assume i € Y. We divide the 2° subsets of ¥ into 2°~' pairs (Z, Z U {i}),
where Z< Y — {i}. We state

T (Y)NZ, ZO (i} K ITAY) N IZ, ZU i}, (M

If the left-hand side is zero, (7) is trivial. If it is 1, then (7) follows from:
(HFYNY)E {Z,Z U {i}} for every Fc X, iff FNYE {Z,Z VU {i}}. Thus
we may assume (Z U {i}) € Ty #(Y), ie., for some F we have HF)NY =
Z U {i}. In particular, { € H(F) which means F = H(F) and (F — {i}) € .#,
by the definition of the operation H. We infer that FNY=2ZU {i} and
(F —{i}) Y= Z are both in T (Y), proving (7).

Now summing up (7) for all Z < (Y — {i}) gives

ITymnNl= Y |Tumn(NNIZ,ZU (i}

zZ<Y—[i}

< Y TANNIZ ZUi) = TAY),

ZzZsY-—ii

ie, |T{Y) > |Tym(Y) > s, the desired contradiction.

4, THE PROOF OF THEOREM 4

By Theorem 1, we may assume indirectly that we have a hereditary coun-
terexample #, which means that every element of X is contained in at least
27" members of # but | F | [n(2° — 1)/t]. Let L(i) be the link of i € X,
that is to say, L= {Ec{X—{{}): (FU{})eF}). Now L() is a
hereditary family with [L({){>2'"'. We want to apply the corollary of
Section 2 with f(x)=1/(x + 1) as a nonincreasing function. Note that the
first 27! sets in the antilexicographic order are just all the subsets of
{1,2,..,¢t— 1}. We infer

o4+ n= Y YQFI+ D> 3 Y(FI+ D
AEL() FeF(ILOI,m) Fes(i-tn

=3 (t: l)/(z‘+ 1)=§};1 %- (;) =@~ 1)L

=1
i=0
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Using this inequality and @ € #, we deduce
=1+ Z S UYIFl=1+ Y X 1/|F|
Fes#

ieF ieX ieFed
t

=1+ N 1/(4|+D)>1+n

ieX AeL()
which gives the result.

Remark. 1f ¢t divides n, then Theorem 4 is best possible. To see this, let
X=Y,UY,U... VY, with |Y,|=¢ and define # ={FcX: 3
Iig<n/t, FS Y
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