On the Trace of Finite Sets

PETER FRANKL*

CNRS, Paris, France and TATA Institute, Bombay, India Communicated by the Managing Editors

Received January 25, 1981

For a family \mathscr{F} of subsets of an *n*-set X we define the trace of it on a subset Y of X by $T_{\mathscr{F}}(Y) = \{F \cap Y : F \in \mathscr{F}\}$. We say that $(m, n) \to (r, s)$ if for every \mathscr{F} with $|\mathscr{F}| \ge m$ we can find a $Y \subset X | Y| = s$ such that $|T_{\mathscr{F}}(Y)| \ge r$. We give a unified proof for results of Bollobàs, Bondy, and Sauer concerning this arrow function, and we prove a conjecture of Bondy and Lovász saying $(\lfloor n^2/4 \rfloor + n + 2, n) \to (3, 7)$, which generalizes Turán's theorem on the maximum number of edges in a graph not containing a triangle.

1. INTRODUCTION

Let \mathscr{F} be a family of subsets of $X = \{1, 2, ..., n\}$. For a subset Y of X we set $T_{\mathscr{F}}(Y) = \{F \cap Y : F \in \mathscr{F}\}$. Note that in $T_{\mathscr{F}}(Y)$ we take every set only once. We call $T_{\mathscr{F}}(Y)$ the trace of \mathscr{F} on Y.

DEFINITION. The arrow relation $(m, n) \rightarrow (r, s)$ means that whenever $|\mathcal{F}| \ge m$, we can find $Y \subset X$, |Y| = s such that $|T_{\mathcal{F}}(Y)| \ge r$.

Bondy [1] proved that

$$(m, n) \rightarrow (m, n-1)$$
 if $m \leq n$. (1)

Bollobás (see [6]) proved that

$$(m,n) \rightarrow (m-1,n-1)$$
 if $m \leq \left\lceil \frac{3}{2}n \right\rceil$. (2)

Sauer [8] proved that

$$(m,n) \rightarrow (2^s,s)$$
 if $m > \sum_{i=0}^{s-1} {n \choose i}$. (3)

Let us remark that these bounds are easily seen to be best possible.

* Present address: U.E.R. Math. Université Paris VII, 45-55 Place Jussieu, 75005 Paris.

PETER FRANKL

2. Results

Recall that a family, \mathscr{F} of sets is *hereditary* if $G \subset F \in \mathscr{F}$ implies $G \in \mathscr{F}$. Our main result is the following:

THEOREM 1. $(m, n) \rightarrow (r, s)$ holds if, whenever \mathscr{F} is a hereditary family of subsets of $X = \{1, ..., n\}$ and $|\mathscr{F}| = m$, there exists a set $Y \subset X$, |Y| = ssuch that $|T_{\mathscr{F}}(Y)| \ge r$.

To show the effectiveness of this theorem we now deduce from it the three results mentioned in the Introduction.

For (3) just note that a hereditary family \mathscr{F} with $|\mathscr{F}| > \sum_{i=0}^{s-1} {n \choose i}$ necessarily contains a set Y with |Y| = s and then $|T_{\mathscr{F}}(Y)| = 2^s$. As every nonempty hereditary family contains the empty set, $|\mathscr{F}| \le n$ implies that for some $x \in X$ the singleton $\{x\}$ is not in \mathscr{F} , i.e., $|T_{\mathscr{F}}(X - \{x\})| = |\mathscr{F}|$ proving (1).

If $|\mathscr{F}| \leq [\frac{3}{2}n]$, and $\{x\} \notin \mathscr{F}$ for some x, then again $T_{\mathscr{F}}(X - \{x\}) = \mathscr{F}$. But if \mathscr{F} contains the empty set and all the singletons, then there must be an $x \in X$ which is not covered by any two-element set in \mathscr{F} (otherwise, $|\mathscr{F}| \geq 1 + n + \lfloor n/2 \rfloor > \lfloor \frac{3}{2}n \rfloor$), thus by the hereditary property $\{x\}$ is the only member of \mathscr{F} containing x, i.e., $|T_{\mathscr{F}}(X - \{x\})| = |\mathscr{F}| - 1$, yielding (2).

Let us recall Turan's theorem for graphs without triangles:

THEOREM 2 (Turàn [9]). If G is a simple graph on n vertices and without a triangle (i.e., 3 edges $\{x, y\}, \{y, z\}, and \{x, z\}$), then G has at most $\lfloor n^2/4 \rfloor$ edges.

Bondy and Lovàsz conjectured that the following generalization of Turàn's theorem is true:

THEOREM 3. If $m > \lfloor n^2/4 \rfloor + n + 1$, then $(m, n) \to (3, 7)$.

To see that (4) generalizes Theorem 2 define for the simple graph G the family $\mathscr{F}(G)$ consisting of its edges, vertices, and the empty set. Now $|G| > \lfloor n^2/4 \rfloor$ yields $|\mathscr{F}(G)| > \lfloor n^2/4 \rfloor + n + 1$. Thus (4) guarantees the existence of 3 vertices x, y, z such that $|T_{\mathscr{F}(G)}(\{x, y, z\})| \ge 7$. As $\mathscr{F}(G)$ contains only sets of cardinality 2 or less, these 7 sets are \emptyset , $\{x\}, \{y\}, \{z\}$, and the triangle $\{x, y\}, \{x, z\}, \{y, z\}$.

On the other hand, Theorem 3 is an immediate consequence of Theorem 1: we may assume \mathscr{F} is hereditary. If it contains only sets of cardinality not exceeding 2, then (4) is just equivalent to Turàn's theorem. If $F \in \mathscr{F}$, |F| = 3, however, then $|T_{\mathscr{F}}(F)| = 8 > 7$. Q.E.D.

We shall apply Theorem 1 to prove the following:

THEOREM 4. Let t be a positive integer. If $m \leq \lfloor n(2^t - 1)/t \rfloor$, then

$$(m, n) \rightarrow (m - 2^{t-1} + 1, n - 1).$$
 (5)

Note that for t = 1, 2, (5) yields (1) and (2), respectively.

To prove (5) we need the Kruskal-Katona theorem. Define the antilexicographic ordering of subsets of $\{1, 2, ..., n\}$ by

$$A < B$$
 iff $A \subset B$ or $\max_{i \in A - B} i < \max_{i \in B - A} i$.

For integers k, m let $\mathscr{F}(m, n)$, $(\mathscr{F}(m, k, n))$ denote the first m sets (k-subsets) in the antilexicographic ordering, respectively.

THEOREM 5 (Kruskal [5], Katona [4], for a simple proof see Daykin [2]). Let \mathscr{F} be a family of m sets each of cardinality k. Then for 0 < l < k the number of l-sets contained in some member of \mathscr{F} is at least as much as that for $\mathscr{F}(m, k, n)$.

We shall use the following easy corollary (cf. [3]).

COROLLARY. Let \mathcal{F} be a hereditary family, $|\mathcal{F}| = m$. Then for every monotone nonincreasing function f(x) we have

$$\sum_{F \in \mathscr{F}} f(|F|) \ge \sum_{F \in \mathscr{F}(m,n)} f(|F|).$$
(6)

3. The Proof of Theorem 1

Let us suppose the arrow relation $(m, n) \rightarrow (r, s)$ is false. Let \mathscr{F} be a counterexample for which $\sum_{F \in \mathscr{F}} |F|$ is minimal.

Suppose \mathscr{F} is not hereditary. Then we can find $F_0 \in \mathscr{F}$ and $i \in X$ such that $i \in F_0$, but $(F_0 - \{i\}) \notin \mathscr{F}$. Let us define the following transformation:

$$H(E) = E - \{i\}, \quad \text{if} \quad i \in E, \quad (E - \{i\}) \notin \mathscr{F},$$
$$= E, \quad \text{otherwise,}$$
$$H(\mathscr{F}) = \{H(F): F \in \mathscr{F}\}.$$

Obviously, $|\mathcal{F}| = |H(\mathcal{F})|$ and the sets of the two families differ only in the element *i*. Moreover, $H(F_0) = F_0 - \{i\}$ yielding

$$\sum_{F \in \mathscr{F}} |F| > \sum_{G \in H(\mathscr{F})} |G|.$$

The minimal choice of \mathscr{F} implies the existence of $Y \subset X$ with |Y| = s, $|T_{H(\mathscr{F})}(Y)| \ge r$. We want to prove the theorem by establishing the contradiction $|T_{\mathscr{F}}(Y)| \ge r$. As for $i \notin Y$, we have $T_{\mathscr{F}}(Y) = T_{H(\mathscr{F})}(Y)$, we assume $i \in Y$. We divide the 2^s subsets of Y into 2^{s-1} pairs $(Z, Z \cup \{i\})$, where $Z \subseteq Y - \{i\}$. We state

$$|\mathsf{T}_{H(\mathscr{F})}(Y) \cap \{Z, Z \cup \{i\}\}| \leq |\mathsf{T}_{\mathscr{F}}(Y) \cap \{Z, Z \cup \{i\}\}|.$$

$$\tag{7}$$

If the left-hand side is zero, (7) is trivial. If it is 1, then (7) follows from: $(H(F) \cap Y) \in \{Z, Z \cup \{i\}\}$ for every $F \subset X$, iff $F \cap Y \in \{Z, Z \cup \{i\}\}$. Thus we may assume $(Z \cup \{i\}) \in T_{H(\mathscr{F})}(Y)$, i.e., for some F we have $H(F) \cap Y = Z \cup \{i\}$. In particular, $i \in H(F)$ which means F = H(F) and $(F - \{i\}) \in \mathscr{F}$, by the definition of the operation H. We infer that $F \cap Y = Z \cup \{i\}$ and $(F - \{i\}) \cap Y = Z$ are both in $T_{\mathscr{F}}(Y)$, proving (7).

Now summing up (7) for all $Z \subseteq (Y - \{i\})$ gives

$$\begin{aligned} |\mathbf{T}_{H(\mathscr{F})}(Y)| &= \sum_{Z \subseteq Y - \{i\}} |\mathbf{T}_{H(\mathscr{F})}(Y) \cap \{Z, Z \cup \{i\}\}| \\ &\leq \sum_{Z \subseteq Y - \{i\}} |\mathbf{T}_{\mathscr{F}}(Y) \cap \{Z, Z \cup \{i\}\}| \approx |\mathbf{T}_{\mathscr{F}}(Y)|. \end{aligned}$$

i.e., $|T_{\mathscr{F}}(Y)| \ge |T_{H(\mathscr{F})}(Y)| \ge s$, the desired contradiction.

4. The Proof of Theorem 4

By Theorem 1, we may assume indirectly that we have a hereditary counterexample \mathscr{F} , which means that every element of X is contained in at least 2^{t-1} members of \mathscr{F} but $|\mathscr{F}| \leq [n(2^t-1)/t]$. Let L(i) be the link of $i \in X$, that is to say, $L(i) = \{E \subseteq (X - \{i\}): (E \cup \{i\}) \in \mathscr{F}\}$. Now L(i) is a hereditary family with $|L(i)| \geq 2^{t-1}$. We want to apply the corollary of Section 2 with f(x) = 1/(x+1) as a nonincreasing function. Note that the first 2^{t-1} sets in the antilexicographic order are just all the subsets of $\{1, 2, ..., t-1\}$. We infer

$$\sum_{A \in L(i)} \frac{1}{|A|+1} \ge \sum_{F \in \mathscr{F}(|L(i)|,n)} \frac{1}{|F|+1} \ge \sum_{F \in \mathscr{F}(2^{t-1},n)} \frac{1}{|F|+1}$$
$$= \sum_{i=0}^{t-1} \binom{t-1}{i} / (i+1) = \sum_{j=1}^{t} \frac{1}{t} \binom{t}{j} = (2^t-1)/t.$$

Using this inequality and $\emptyset \in \mathscr{F}$, we deduce

$$|\mathcal{F}| = 1 + \sum_{F \in \mathcal{F}} \sum_{i \in F} 1/|F| = 1 + \sum_{i \in X} \sum_{i \in F \in \mathcal{F}} 1/|F|$$
$$= 1 + \sum_{i \in X} \sum_{A \in L(i)} 1/(|A| + 1) \ge 1 + n \frac{2^t - 1}{t}$$

which gives the result.

Remark. If t divides n, then Theorem 4 is best possible. To see this, let $X = Y_1 \cup Y_2 \cup \cdots \cup Y_{n/t}$ with $|Y_i| = t$ and define $\mathscr{F} = \{F \subset X: \exists i, 1 \leq i \leq n/t, F \subseteq Y_i\}$.

References

- 1. J. A. BONDY, Induced subsets, J. Combin. Theory Ser. B 12 (1972), 201-202.
- 2. D. E. DAYKIN, A simple proof of the Kruskal-Katona theorem, J. Combin. Theory Ser. A 17 (1974), 252-253.
- 3. G. O. H. KATONA, Optimization for order ideals under a weight assignment, *in* "Problèmes Comb. et Théorie des Graphes," pp. 257–8, Colloque Int., CNRS, Paris, 1978.
- 4. GY. KATONA, A theorem of finite sets, in "Theory of Graphs," pp. 187–207. Proc. Coll., Tihany, Hungary 1966.
- 5. J. B. KRUSKAL, The number of simplices in a complex, in "Math. Opt. Techn.," pp. 251-278, Univ. of Californiaat Berkeley and Los Angeles, 1963.
- L. Lovász, "Combinatorial Problems and Exercises," North-Holland, Amsterdam, 1979 (Problem 13/10).
- 7. L. Lovász, Personal communication, 1975.
- 8. N. SAUER, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972), 145-147.
- 9. P. TURÁN, Eine Extremalaufgabe aus der Graphentheorie, Mat. Lapok 48 (1941), 436–452 (in Hungarian).