On the Trace of Finite Sets

Peter Frankl*
CNRS, Paris, France and TATA Institute, Bombay, India
Communicated by the Managing Editors
Received January 25, 1981

For a family F of subsets of an n-set X we define the trace of it on a subset Y of X by $\mathrm{T}_{\mathscr{F}}(Y)=\{F \cap Y: F \in \mathscr{F}\}$. We say that $(m, n) \rightarrow(r, s)$ if for every \mathscr{F} with $|\mathcal{F}| \geqslant m$ we can find a $Y \subset X|Y|=s$ such that $|\mathrm{T} F(Y)| \geqslant r$. We give a unified proof for results of Bollobàs, Bondy, and Sauer concerning this arrow function, and we prove a conjecture of Bondy and Lovász saying $\left(\left|n^{2} / 4\right|+n+2, n\right) \rightarrow(3,7)$, which generalizes Turan's theorem on the maximum number of edges in a graph not containing a triangle.

1. Introduction

Let \mathscr{F} be a family of subsets of $X=\{1,2, \ldots, n\}$. For a subset Y of X we set $\mathrm{T}_{\mathscr{F}}(Y)=\{F \cap Y: F \in \mathscr{F}\}$. Note that in $\mathrm{T}_{\mathscr{F}}(Y)$ we take every set only once. We call $\mathrm{T}_{\mathscr{F}}(Y)$ the trace of \mathscr{F} on Y.

DEFINITION. The arrow relation $(m, n) \rightarrow(r, s)$ means that whenever $|\mathscr{F}| \geqslant m$, we can find $Y \subset X,|Y|=s$ such that $\left|T_{\mathcal{F}}(Y)\right| \geqslant r$.

Bondy [1] proved that

$$
\begin{equation*}
(m, n) \rightarrow(m, n-1) \quad \text { if } \quad m \leqslant n . \tag{1}
\end{equation*}
$$

Bollobás (see [6]) proved that

$$
\begin{equation*}
(m, n) \rightarrow(m-1, n-1) \quad \text { if } \quad m \leqslant\left\lceil\frac{3}{2} n\right\rceil . \tag{2}
\end{equation*}
$$

Sauer [8] proved that

$$
\begin{equation*}
(m, n) \rightarrow\left(2^{s}, s\right) \quad \text { if } \quad m>\sum_{i=0}^{s-1}\binom{n}{i} \tag{3}
\end{equation*}
$$

Let us remark that these bounds are easily seen to be best possible.

[^0]
2. Results

Recall that a family, \mathcal{F} of sets is hereditary if $G \subset F \in \mathscr{F}$ implies $G \in \mathscr{F}$. Our main result is the following:

Theorem 1. $(m, n) \rightarrow(r, s)$ holds if, whenever \mathscr{F} is a hereditary family of subsets of $X=\{1, \ldots, n\}$ and $|\mathscr{F}|=m$, there exists a set $Y \subset X,|Y|=s$ such that $\left|\mathrm{T}_{\mathcal{F}}(Y)\right| \geqslant r$.

To show the effectiveness of this theorem we now deduce from it the three results mentioned in the Introduction.

For (3) just note that a hereditary family \mathscr{F} with $\left.|\mathscr{F}|>\sum_{i=0}^{\substack{s-1 \\ i=1}} \begin{array}{c}n \\ i\end{array}\right)$ necessarily contains a set Y with $|Y|=s$ and then $\left|\mathrm{T}_{\mathscr{F}}(Y)\right|=2^{s}$. As every nonempty hereditary family contains the empty set, $|\mathscr{F}| \leqslant n$ implies that for some $x \in X$ the singleton $\{x\}$ is not in \mathscr{F}, i.e., $\left|\mathrm{T}_{\mathscr{F}}(X-\{x\})\right|=|\mathscr{F}|$ proving (1).

If $|\mathscr{F}| \leqslant\left\lceil\frac{3}{2} n\right\rceil$, and $\{x\} \notin \mathscr{F}$ for some x, then again $\mathrm{T} \mathscr{F}(X-\{x\})=\mathscr{F}$. But if \mathscr{F} contains the empty set and all the singletons, then there must be an $x \in X$ which is not covered by any two-element set in \mathcal{F} (otherwise, $|\mathscr{F}| \geqslant$ $1+n+\lceil n / 2\rceil>\left\lceil\frac{3}{2} n\right\rceil$), thus by the hereditary property $\{x\}$ is the only member of \mathscr{F} containing x, i.e., $\left|\mathrm{T}_{\mathscr{F}}(X-\{x\})\right|=|\mathscr{F}|-1$, yielding (2).

Let us recall Turàn's theorem for graphs without triangles:

Theorem 2 (Turàn [9]). If G is a simple graph on n vertices and without a triangle (i.e., 3 edges $\{x, y\},\{y, z\}$, and $\{x, z\}$), then G has at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

Bondy and Lovàsz conjectured that the following generalization of Turàn's theorem is true:

Theorem 3. If $m>\left|n^{2} / 4\right|+n+1$, then $(m, n) \rightarrow(3,7)$.
To see that (4) generalizes Theorem 2 define for the simple graph G the family $\mathscr{F}(G)$ consisting of its edges, vertices, and the empty set. Now $\left.|G|>\mid n^{2} / 4\right\}$ yields $\left.|\mathscr{F}(G)|>\mid n^{2} / 4\right\rfloor+n+1$. Thus (4) guarantees the existence of 3 vertices x, y, z such that $\left|\mathrm{T}_{\mathscr{F}_{(G)}}(\{x, y, z\})\right| \geqslant 7$. As $\mathscr{F}(G)$ contains only sets of cardinality 2 or less, these 7 sets are $\varnothing,\{x\},\{y\},\{z\}$, and the triangle $\{x, y\},\{x, z\},\{y, z\}$.

On the other hand, Theorem 3 is an immediate consequence of Theorem 1: we may assume \mathscr{F} is hereditary. If it contains only sets of cardinality not exceeding 2, then (4) is just equivalent to Turàn's theorem. If $F \in \mathcal{F}$, $|F|=3$, however, then $\left|\mathrm{T}_{\mathscr{F}}(F)\right|=8>7$.
Q.E.D.

We shall apply Theorem 1 to prove the following:

Theorem 4. Let t be a positive integer. If $m \leqslant\left\lceil n\left(2^{t}-1\right) / t\right\rceil$, then

$$
\begin{equation*}
(m, n) \rightarrow\left(m-2^{i-1}+1, n-1\right) \tag{5}
\end{equation*}
$$

Note that for $t=1,2$, (5) yields (1) and (2), respectively.
To prove (5) we need the Kruskal-Katona theorem. Define the antilexicographic ordering of subsets of $\{1,2, \ldots, n\}$ by

$$
A<B \quad \text { iff } \quad A \subset B \quad \text { or } \quad \max _{i \in A-B} i<\max _{i \in B-A} i
$$

For integers k, m let $\mathscr{F}(m, n),(\mathscr{F}(m, k, n))$ denote the first m sets (k-subsets) in the antilexicographic ordering, respectively.

Theorem 5 (Kruskal [5], Katona [4], for a simple proof see Daykin [2]). Let \mathcal{F}^{F} be a family of m sets each of cardinality. k. Then for $0<l<k$ the number of l-sets contained in some member of \mathscr{F} is at least as much as that for $\mathscr{F}(m, k, n)$.

We shall use the following easy corollary (cf. [3]).

Corollary. Let \mathcal{F} be a hereditary family, $|\mathcal{F}|=m$. Then for every monotone nonincreasing function $f(x)$ we have

$$
\begin{equation*}
\bigcup_{F \in \mathscr{F}} f(|F|) \geqslant \sum_{F \in \mathscr{F}(m, n)} f(|F|) . \tag{6}
\end{equation*}
$$

3. The Proof of Theorem 1

Let us suppose the arrow relation $(m, n) \rightarrow(r, s)$ is false. Let \mathscr{F} be a counterexample for which $\sum_{F \in \mathscr{F}}|F|$ is minimal.

Suppose \mathscr{F} is not hereditary. Then we can find $F_{0} \in \mathscr{F}$ and $i \in X$ such that $i \in F_{0}$, but $\left(F_{0}-\{i\}\right) \notin \mathscr{F}$. Let us define the following transformation:

$$
\begin{aligned}
H(E) & =E-\{i\}, \quad \text { if } \quad i \in E, \quad(E-\{i\}) \notin \mathscr{F}, \\
& =E, \quad \text { otherwise, } \\
H(\mathscr{F}) & =\{H(F): F \in \mathscr{F}\} .
\end{aligned}
$$

Obviously, $|\mathscr{F}|=|H(\mathcal{F})|$ and the sets of the two families differ only in the element i. Moreover, $H\left(F_{0}\right)=F_{0}-\{i\}$ yielding

$$
\sum_{F \in \mathscr{F}}|F|>\sum_{G \in H(\mathcal{F})}|G| .
$$

The minimal choice of \mathscr{F} implies the existence of $Y \subset X$ with $|Y|=s$, $\left|\mathrm{T}_{H(F)}(Y)\right| \geqslant r$. We want to prove the theorem by establishing the contradiction $\left|\mathrm{T}_{\mathscr{F}}(Y)\right| \geqslant r$. As for $i \notin Y$, we have $\mathrm{T}_{\mathscr{F}}(Y)=\mathrm{T}_{H(\mathscr{F})}(Y)$, we assume $i \in Y$. We divide the 2^{s} subsets of Y into 2^{s-1} pairs $(Z, Z \cup\{i\})$, where $Z \subseteq Y-\{i\}$. We state

$$
\begin{equation*}
\left|\mathrm{T}_{H(\mathscr{F})}(Y) \cap\{Z, Z \cup\{i\}\}\right| \leqslant\left|\mathrm{T}_{\mathscr{F}}(Y) \cap\{Z, Z \cup\{i\}\}\right| . \tag{7}
\end{equation*}
$$

If the left-hand side is zero, (7) is trivial. If it is 1 , then (7) follows from: $(H(F) \cap Y) \in\{Z, Z \cup\{i\}\}$ for every $F \subset X$, iff $F \cap Y \in\{Z, Z \cup\{i\}\}$. Thus we may assume $(Z \cup\{i\}) \in \mathrm{T}_{H(\mathscr{F})}(Y)$, i.e., for some F we have $H(F) \cap Y=$ $Z \cup\{i\}$. In particular, $i \in H(F)$ which means $F=H(F)$ and $(F-\{i\}) \in \mathscr{F}$, by the definition of the operation H. We infer that $F \cap Y=Z \cup\{i\}$ and $(F-\{i\}) \cap Y=Z$ are both in $\mathrm{T}_{\mathscr{F}}(Y)$, proving (7).

Now summing up (7) for all $Z \subseteq(Y-\{i\})$ gives

$$
\begin{aligned}
\left|\mathrm{T}_{H(\mathscr{F}}(Y)\right| & =\sum_{Z \subseteq \sum_{Y-\{i\}}}\left|\mathrm{T}_{H(\mathscr{F})}(Y) \cap\{Z, Z \cup\{i\}\}\right| \\
& \leqslant \sum_{Z \subseteq Y-\{i)} \mid \mathrm{T}_{\mathscr{F}}(Y) \cap\left\{Z, Z \cup\{i\}| |=\left|\mathrm{T}_{\mathscr{F}}(Y)\right|,\right.
\end{aligned}
$$

i.e., $\left|\mathrm{T}_{\mathscr{F}}(Y)\right| \geqslant\left|\mathrm{T}_{\left.H_{(\mathcal{F}}\right)}(Y)\right| \geqslant s$, the desired contradiction.

4. The Proof of Theorem 4

By Theorem 1, we may assume indirectly that we have a hereditary counterexample \mathscr{F}, which means that every element of X is contained in at least 2^{t-1} members of \mathscr{F} but $\left.|\mathscr{F}| \leqslant \mid n\left(2^{t}-1\right) / t\right]$. Let $\mathrm{L}(i)$ be the link of $i \in X$, that is to say, $\mathrm{L}(i)=\{E \subseteq\{X-\{i\}):(E \cup\{i\}) \in \mathscr{F}\}$. Now $\mathrm{L}(i)$ is a hereditary family with $\left\{L(i) \mid \geqslant 2^{i-1}\right.$. We want to apply the corollary of Section 2 with $f(x)=1 /(x+1)$ as a nonincreasing function. Note that the first 2^{t-1} sets in the antilexicographic order are just all the subsets of $\{1,2, \ldots, t-1\}$. We infer

$$
\begin{aligned}
\sum_{A \in \mathrm{~L}(i)} 1 /(|A|+1) & \geqslant \sum_{F \in \mathscr{F}(|\mathrm{~L}(i)|, n)} 1 /(|F|+1) \geqslant \sum_{F \in \mathcal{F}\left(2^{t-1, n)}\right.} 1 /(|F|+1) \\
& =\sum_{i=0}^{t-1}\binom{t-1}{i} /(i+1)=\sum_{j=1}^{t} \frac{1}{t}\binom{t}{j}=\left(2^{i}-1\right) / t
\end{aligned}
$$

Using this inequality and $\varnothing \in \mathscr{F}$, we deduce

$$
\begin{aligned}
|\mathcal{F}| & =1+\sum_{F \in \mathscr{F}} \sum_{i \in F} 1 /|F|=1+\sum_{i \in X} \sum_{i \in F \in \mathscr{F}} 1 /|F| \\
& =1+\sum_{i \in X} \sum_{A \in L} 1 /(|A|+1) \geqslant 1+n \frac{2^{t}-1}{t}
\end{aligned}
$$

which gives the result.
Remark. If t divides n, then Theorem 4 is best possible. To see this, let $X=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{n / t}$ with $\left|Y_{i}\right|=t$ and define $\mathscr{F}=\{F \subset X: \exists i$, $\left.1 \leqslant i \leqslant n / t, F \subseteq Y_{i}\right\}$.

References

1. J. A. Bondy, Induced subsets, J. Combin. Theory Ser. B 12 (1972), 201-202.
2. D. E. Daykin, A simple proof of the Kruskal-Katona theorem, J. Combin. Theory Ser. A 17 (1974), 252-253.
3. G. O. H. Katona, Optimization for order ideals under a weight assignment, in "Problèmes Comb. et Théorie des Graphes," pp. 257-8, Colloque Int., CNRS, Paris, 1978.
4. Gy. Katona, A theorem of finite sets, in "Theory of Graphs," pp. 187-207. Proc. Coll., Tihany, Hungary 1966.
5. J. B. Kruskal, The number of simplices in a complex, in "Math. Opt. Techn.," pp. 251-278, Univ. of Californiaat Berkeley and Los Angeles, 1963.
6. L. Lovász, "Combinatorial Problems and Exercises," North-Holland, Amsterdam, 1979 (Problem 13/10).
7. L. Lovász, Personal communication, 1975.
8. N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972), 145-147.
9. P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Lapok 48 (1941), 436-452 (in Hungarian).

[^0]: * Present address: U.E.R. Math. Université Paris VII, 45-55 Place Jussieu, 75005 Paris.

