Notes

On the number of nonnegative sums

CrossMark

Peter Frankl ${ }^{1}$

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary

A R T I C L E I N F O

Article history:

Received 26 June 2012
Available online 22 August 2013

Keywords:

Subset sums
Hypergraphs

A B S TRACT

A short proof is presented for the following statement. If X is a set of n real numbers summing up to 0 and $n \geqslant(3 / 2) k^{3}$ then at least $\binom{n-1}{k-1}$ of the subset sums involving k numbers are nonnegative.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $X:=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of not necessarily distinct real numbers listed in decreasing order and satisfying $x_{1}+\cdots+x_{n}=0$. Let $[n]:=\{1,2, \ldots, n\}$. For a set $S \subset[n]$ we define

$$
x(S):=\sum_{i \in S} x_{i}
$$

For $1 \leqslant k \leqslant n$, define the family of nonnegative k-sums

$$
\mathcal{P}(X, k):=\{S \subset[n]:|S|=k, x(S) \geqslant 0\}
$$

A longstanding conjecture of Manickam, Miklós and Singhi is as follows.

Conjecture 1.1. (Cf. [4,5].)

$$
\begin{equation*}
|\mathcal{P}(X, k)| \geqslant\binom{ n-1}{k-1} \tag{1}
\end{equation*}
$$

holds for all X and $n \geqslant 4 k$.

[^0]Manickam and Singhi [5] proved (1) for all n that are divisible by k. However, the general case proved unexpectedly difficult and only limited progress was made (cf. [1] for detailed reference). In a recent paper Alon, Huang and Sudakov [1] made a breakthrough by establishing the validity of the conjecture for $n \geqslant 33 k^{2}$ thus significantly improving the previous superexponential lower bound. The aim of the present note is to provide a short proof of a somewhat weaker result still giving a polynomial lower bound for n.

Theorem 1.2. Let $n \geqslant(3 / 2) k^{3}$. Then one of the following must hold.
(i) All k-subsets of [n] containing 1 are in $\mathcal{P}(X, k)$, or
(ii) $|\mathcal{P}(X, k)| \geqslant 2\binom{n-k^{2}}{k-1}>\binom{n-1}{k-1}$.

2. Proof of the theorem

Let us define the following k pairwise disjoint $(k-1)$-element sets $S_{i}:=\{n-i(k-1)+1, \ldots$, $n-(i-1)(k-1)\}$ for $i=1, \ldots, k$. By monotonicity of the x_{j} 's the sum $x\left(S_{1}\right)$ is the smallest among all sums involving $k-1$ elements of X. Consequently, if $x_{1}+x\left(S_{1}\right) \geqslant 0$ holds then the case (i) follows.

Suppose that $x_{r}+x\left(S_{r}\right) \geqslant 0$ holds for some $k \geqslant r>1$. Define

$$
R:=[n]-\left([r] \cup S_{1} \cup \cdots \cup S_{r-1}\right)
$$

By the monotonicity of x_{i} 's, for all $(k-1)$-element sets $Q \subset R$ and all $1 \leqslant j \leqslant r$ the sum $x_{j}+x(Q)$ is nonnegative. Thus

$$
|\mathcal{P}(X, k)| \geqslant|\mathcal{P}([r] \cup R, k)| \geqslant r\binom{n-r-(r-1)(k-1)}{k-1} \geqslant 2\binom{n-k^{2}}{k-1}
$$

yielding case (ii).
From now on, we can assume that $x_{r}+x\left(S_{r}\right)<0$ holds for each $r=1, \ldots, k$. We prove that case (ii) holds again. Let $T=S_{1} \cup \cdots \cup S_{k}$. We have

$$
\begin{equation*}
x([k])+x(T) \leqslant 0 \quad \text { with } T \subset[n]-[k],|T|=k^{2}-k \tag{2}
\end{equation*}
$$

Define $t:=\lfloor(n-|T|) / k\rfloor$. Let Y consist of the first $k t$ elements of X and note that Y is disjoint from $\widetilde{T}=\left\{x_{i}: \quad i \in T\right\}$. We have $|Y|=k t \geqslant n-|T|-k+1=n-k^{2}+1$. If all the elements of Y are nonnegative, then using $n \geqslant(3 / 2) n^{3}$, we obtain

$$
|\mathcal{P}(X, k)| \geqslant|\mathcal{P}(Y, k)| \geqslant\binom{ n-k^{2}+1}{k} \geqslant 2\binom{n-k^{2}}{k-1} .
$$

If there are negative elements in Y then the monotonicity of the x_{i} 's implies that every $x_{j} \in X-Y-\widetilde{T}$ is negative. Also, (2) gives that $x(T) \leqslant 0$, so $x(X)=0$ implies $x(Y) \geqslant 0$.

Now we are ready to apply a simple but very useful averaging argument due to Katona [3]. Let $Y^{\prime}=[k t]$, so that $Y=\left\{x_{i}: i \in Y^{\prime}\right\}$. Let $Y^{\prime}=P_{1} \cup \cdots \cup P_{t}$ be an arbitrary partition of Y^{\prime} into k-element sets. We claim that at least two of the P_{i} 's are in $\mathcal{P}(Y, k)$. Indeed, $x(Y) \geqslant 0$ gives that there exists a P_{j} with $x\left(P_{j}\right) \geqslant 0$. Using (2) and $x\left(P_{j}\right) \leqslant x([k])$ we obtain

$$
x([n])=0 \geqslant x([k])+x(T) \geqslant x\left(P_{j}\right)+x(T) \geqslant x\left(P_{j}\right)+x\left([n]-Y^{\prime}\right)
$$

This gives $x\left(Y^{\prime}-P_{j}\right) \geqslant 0$, so there must be another $P_{i} \in \mathcal{P}(Y, k)$.
Thus we have shown that, in an arbitrary partition of Y into $t k$-sets, at least 2 members of the partition have nonnegative sum. By Katona's argument this implies

$$
|\mathcal{P}(Y, k)| \geqslant \frac{2}{t}\binom{|Y|}{k}=2\binom{|Y|-1}{k-1}
$$

leading to

$$
|\mathcal{P}(X, k)| \geqslant|\mathcal{P}(Y, k)| \geqslant 2\binom{|Y|-1}{k-1}=2\binom{t k-1}{k-1} \geqslant 2\binom{n-k^{2}}{k-1} .
$$

An easy calculation shows that

$$
2\binom{n-k^{2}}{k-1}>\binom{n-1}{k-1}
$$

holds for $n \geqslant(3 / 2) k^{3}$, completing the proof of the theorem.

3. Some remarks

Although our results are somewhat weaker than those of Alon, Huang and Sudakov [1], the proof is considerably simpler. In [1] instead of conclusion (ii) an exact result is proven. Let us mention that their proof is basically the same as the new proof given for the Hilton-Milner Theorem in [2]. To keep the paper short, we contented ourselves with the slightly weaker assertion (ii). Note that the core of our proof is the following fact.

Fact 3.1. Suppose that T is a subset of $[n]-[k],|T|<n-3 k$, satisfying

$$
x([k])+x(T) \leqslant 0 .
$$

Then $|\mathcal{P}(X-T)| \geqslant 2\binom{n-|T|-k}{k-1}$ holds.
To obtain a quadratic bound-matching that of [1], one would need the size of T from (2) to be linear in k, which does not seem to be easy to obtain. However, we hope to return to this problem with some new bounds characterizing sequences with $|\mathcal{P}(X, k)|=O\left(n^{k-1}\right)$.

References

[1] N. Alon, H. Huang, B. Sudakov, Nonnegative k-sums, fractional covers, and probability of small deviations, J. Combin. Theory Ser. B 102 (2012) 784-796.
[2] P. Frankl, N. Tokushige, Some best possible inequalities concerning cross-intersecting families, J. Combin. Theory Ser. A 61 (1992) 87-97.
[3] G.O.H. Katona, Extremal problems for hypergraphs, in: M. Hall Jr., J.H. van Lint (Eds.), Combinatorics, D. Reidel, Dordrecht/Boston, 1975, pp. 215-244;
G.O.H. Katona, Extremal problems for hypergraphs, vol. 2, in: Math. Centre Tracts, vol. 56, 1974, pp. 13-42.
[4] N. Manickam, D. Miklós, On the number of non-negative partial sums of a non-negative sum, Colloq. Math. Soc. János Bolyai 52 (1987) 385-392.
[5] N. Manickam, N.M. Singhi, First distribution invariants and EKR theorems, J. Combin. Theory Ser. A 48 (1988) 91-103.

[^0]: E-mail address: peter.frankl@gmail.com.
 1 Mailing address: Peter Frankl Office, Shibuya-ku, Shibuya 3-12-25, Tokyo, Japan.
 0095-8956/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jctb.2013.07.002

