Improved bounds for Erdős’ Matching Conjecture

Peter Frankl

Rényi Institute of Mathematics, Budapest, Hungary

A R T I C L E I N F O

Article history:

Received 7 June 2012
Available online 24 February 2013

Keywords:

Hypergraphs
Matching number
Erdős Conjecture
Katona's Theorem on shadows of intersecting hypergraphs

Abstract

The main result is the following. Let \mathcal{F} be a family of k-subsets of an n-set, containing no $s+1$ pairwise disjoint edges. Then for $n \geqslant(2 s+1) k-s$ one has $|\mathcal{F}| \leqslant\binom{ n}{k}-\binom{n-s}{k}$. This upper bound is the best possible and confirms a conjecture of Erdős dating back to 1965. The proof is surprisingly compact. It applies a generalization of Katona's Intersection Shadow Theorem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and notation

Let $[n]:=\{1,2, \ldots, n\}$ and let $\mathcal{F} \subset\binom{[n]}{k}, n \geqslant k \geqslant 1$. The matching number $v(\mathcal{F})$ is the maximum number of pairwise disjoint members (edges) of \mathcal{F}. One of the classical problems of extremal set theory is to determine $\max |\mathcal{F}|$, for $v(\mathcal{F})$ fixed. Here are two easy constructions.

$$
\begin{aligned}
& \mathcal{A}(k, s):=\binom{[k(s+1)-1]}{k}, \quad|\mathcal{A}(k, s)|=\binom{k(s+1)-1}{k}, \\
& \mathcal{A}(n, 1, s):=\left\{A \in\binom{[n]}{k}: A \cap[s] \neq \emptyset\right\}, \quad|\mathcal{A}(n, 1, s)|=\binom{n}{k}-\binom{n-s}{k} .
\end{aligned}
$$

The Matching Conjecture. (See Erdős [4] (1965).) If $\mathcal{F} \subset\binom{[n]}{k}, v(\mathcal{F})=s$ and n is at least $k(s+1)-1$ then

$$
\begin{equation*}
|\mathcal{F}| \leqslant \max \left\{\binom{k(s+1)-1}{k},\binom{n}{k}-\binom{n-s}{k}\right\} \tag{1}
\end{equation*}
$$

holds.

[^0]The case $s=1$ is the classical Erdős-Ko-Rado Theorem [6]. For $k=1$ the conjecture holds trivially and for $k=2$ it was proved by Erdős and Gallai [5]. Erdős [4] proved (1) for $n>n_{0}(k, s)$. In [3] the bound on $n_{0}(k, s)$ was lowered to $2 s k^{3}$. Recently, Huang, Loh and Sudakov [12] improved it to $3 s k^{2}$, which was slightly improved in [9]. On the other hand Füredi and the author proved $n_{0}(k, s) \leqslant c k s^{2}$, however their result was never published. The aim of the present paper is to provide a completely new argument proving a bound simultaneously improving all known bounds.

Theorem 1.1. Let $\mathcal{F} \subset\binom{[n]}{k}, v(\mathcal{F})=s$ and $n \geqslant(2 s+1) k-s$ then

$$
\begin{equation*}
|\mathcal{F}| \leqslant\binom{ n}{k}-\binom{n-s}{k} \tag{2}
\end{equation*}
$$

with equality if and only if \mathcal{F} is isomorphic to $\mathcal{A}(n, 1, s)$.
One of the principal tools in proving (2) is an extension of Katona's Intersection Shadow Theorem [13]. For a family $\mathcal{F} \subset\binom{[n]}{k}$ let us define its shadow $\partial \mathcal{F}$ by

$$
\partial \mathcal{F}:=\left\{G \in\binom{[n]}{k-1}: \exists F \in \mathcal{F}, G \subset F\right\} .
$$

Theorem 1.2. Let $\mathcal{F} \subset\binom{[n]}{k}, v(\mathcal{F})=s$, then

$$
\begin{equation*}
s|\partial \mathcal{F}| \geqslant|\mathcal{F}| \tag{3}
\end{equation*}
$$

holds.
Let us note that for $s=1$ the inequality (3) is a special case of Katona's Intersection Theorem. The proof of Theorem 1.2 is by double induction on n and k-just imitating the original proof of Katona [13]. The starting case is $\mathcal{A}(k, s)$, that is all k-subsets of an n-set where $n=k(s+1)-1$. For $\mathcal{A}(k, s)$ one has $\partial \mathcal{A}(k, s)=\binom{[k(s+1)-1]}{k-1}$ and $s\binom{k(s+1)-1}{k-1}=\binom{k(s+1)-1}{k}$ showing that the factor s is the best possible. On the other hand it follows from the proof that (3) is strict unless \mathcal{F} is isomorphic to $\mathcal{A}(k, s)$.

It is well known (cf. for example [7]) that in proving both theorems one can assume that \mathcal{F} is stable. That is, for all $1 \leqslant i<j \leqslant n$ and $F \in \mathcal{F}$, the conditions $i \notin F, j \in F$ imply that $F \cup\{i\}-\{j\}$ is in \mathcal{F} as well. The only other ingredient of the proof is the following version of the König-Hall Theorem.

König-Hall Theorem. (Cf. [14].) Let \mathcal{G} be a bipartite graph with $\nu(\mathcal{G})=s$. Then there exists a subset T of the vertices with $|T|=s$, such that all edges of \mathcal{G} are incident to at least one vertex of T.

2. Proof of Theorem 1.2

Assume that $\mathcal{F} \subset\binom{[n]}{k}$ is a stable family with $v(\mathcal{F}) \leqslant s$. Let us first prove the statement for all k and s with $(s+1) k-1 \geqslant n$. Let us construct a bipartite graph with partite sets \mathcal{F} and $\partial \mathcal{F}$ where we put an edge connecting F and G if and only if G is a subset of F. It is immediate that each $F \in \mathcal{F}$ has degree k, and each $G \in \partial \mathcal{F}$ has degree at most $n-|G|=n-k+1$. Since $s k \geqslant n-k+1$ for $n \leqslant(s+1) k-1$, (3) holds in the above range. Moreover, equality can hold only if $n=(s+1) k-1$ and each $G \in \partial \mathcal{F}$ has degree $k s$, so $G \cup\{y\} \in \mathcal{F}$ for $y \notin G \in \partial \mathcal{F}$. It follows that $G-\{x\}+\{y\}$ also should be a member of $\partial \mathcal{F}$ (for $x \in G, y \notin G$) so $\partial \mathcal{F}$ is the complete ($k-1$)-uniform hypergraph on $[(s+1) k-1]$ and $\mathcal{F}=\left({ }_{k}^{[(s+1) k-1]}\right)$ follows.

From now on, we suppose that $n \geqslant(s+1) k, k \geqslant 2$ and (3) holds for $n-1$ for both k and $k-1$. Let us use the usual notation $\mathcal{F}(\bar{n}):=\{F \in \mathcal{F}: n \notin F\}, \mathcal{F}(n):=\{F-\{n\}: F \in \mathcal{F}, n \in F\}$. These are the two families for which we want to use the induction hypothesis. Here $v(\mathcal{F}(\bar{n})) \leqslant s$ is obvious. The inequality $v((\mathcal{F}(n))) \leqslant s$ follows from stability using the following standard argument (cf. [7]). If one
has $s+1$ disjoint sets $F_{i}-\{n\} \in \mathcal{F}(n)$ (where $F_{i} \in \mathcal{F}, 1 \leqslant i \leqslant s+1$), then $n-1 \geqslant(s+1)(k-1)+s$ implies that there are elements $1 \leqslant x_{1}<\cdots<x_{s} \leqslant n-1$ disjoint to each F_{i}. Then stability implies that the sets $F_{i}-\{n\} \cup\left\{x_{i}\right\} \in \mathcal{F}$ (here $1 \leqslant i \leqslant s$) together with F_{s+1} form a matching of size $s+1$ in \mathcal{F}, a contradiction.

Note that $\partial \mathcal{F}(\bar{n})$ provides us with sets in $\partial \mathcal{F}$ which do not contain n. At the same time, adjoining n to any member of $\partial \mathcal{F}(n)$ provides us with a member of $\partial \mathcal{F}$ which contains n. This proves $|\partial \mathcal{F}| \geqslant$ $|\partial \mathcal{F}(\bar{n})|+|\partial \mathcal{F}(n)|$. Using the induction hypothesis yields

$$
s|\partial \mathcal{F}| \geqslant s|\partial \mathcal{F}(\bar{n})|+s|\partial \mathcal{F}(n)| \geqslant|\mathcal{F}(\bar{n})|+|\mathcal{F}(n)|=|\mathcal{F}|
$$

as desired.

3. A general inequality

The families $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}$ are called nested if $\mathcal{F}_{s+1} \subset \mathcal{F}_{s} \subset \cdots \subset \mathcal{F}_{1}$ holds. The families \mathcal{F}_{1}, $\mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}$ are called cross-dependent if there is no choice of $F_{i} \in \mathcal{F}_{i}$ such that F_{1}, \ldots, F_{S+1} are pairwise disjoint.

Theorem 3.1. Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1} \subset\binom{Y}{\ell}$, be nested, cross-dependent families, $|Y| \geqslant$ t . Suppose further $t \geqslant 2 s+1$, then

$$
\begin{equation*}
\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|+\cdots+\left|\mathcal{F}_{s}\right|+(s+1)\left|\mathcal{F}_{s+1}\right| \leqslant s\binom{|Y|}{\ell} \tag{4}
\end{equation*}
$$

Proof. Let us choose randomly (according to uniform distribution) t pairwise disjoint sets $B_{1}, \ldots, B_{t} \in$ $\binom{Y}{\ell}$ and define $\mathcal{B}=\left\{B_{1}, \ldots, B_{t}\right\}$. Since the probability $p\left(B_{j} \in \mathcal{F}_{i}\right)=\left|\mathcal{F}_{i}\right| /\binom{|Y|}{\ell}$, the expected size $M\left(\left|\mathcal{B} \cap \mathcal{F}_{i}\right|\right)$ is $t\left|\mathcal{F}_{i}\right| /\binom{|Y|}{\ell}$. Let us prove a lemma.

Lemma 3.2. For every choice of \mathcal{B} one has

$$
\begin{equation*}
\left|\mathcal{B} \cap \mathcal{F}_{1}\right|+\cdots+\left|\mathcal{B} \cap \mathcal{F}_{s}\right|+(s+1)\left|\mathcal{B} \cap \mathcal{F}_{s+1}\right| \leqslant s t \tag{5}
\end{equation*}
$$

Proof. Define a bipartite graph \mathcal{G} with partite sets \mathcal{B} and $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}\right\}$ where we join B_{j} and \mathcal{F}_{i} by an edge if and only if $B_{j} \in \mathcal{F}_{i}$. The fact that $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}$ are cross-dependent translates to $v(\mathcal{G}) \leqslant s$. Applying the König-Hall Theorem we can find a subset T of the vertices, $|T|=s$ such that all edges are incident to some element of T.

Let T have x elements in \mathcal{B} and $s-x$ elements in $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}\right\}$. Let us estimate the total number of edges incident to T. For \mathcal{F}_{i} there can be at most t incident edges. This gives an upper bound $(s-x) t$ for the $s-x$ vertices from $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}\right\}$. The x vertices in \mathcal{B} can be adjacent to $(s+1)-(s-x)=x+1$ additional vertices each. This gives the upper bound

$$
\begin{equation*}
(s-x) t+x(x+1)=x^{2}-(t-1) x+s t \tag{6}
\end{equation*}
$$

So far we have not used that $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{s+1}$ are nested. If $B_{j} \in \mathcal{F}_{s+1}$ then $B_{j} \in \mathcal{F}_{i}$ follows for all $1 \leqslant i \leqslant s$ as well. That is, B_{j} has degree $s+1$ in \mathcal{G}. Consequently, $B_{j} \in T$.

Thus setting $b:=\left|\mathcal{B} \cap \mathcal{F}_{s+1}\right|$, we infer $x \geqslant b$. Now (6) is a quadratic polynomial in x with main term x^{2}. Therefore the maximum of (6) in the range $b \leqslant x \leqslant s$ is attained either for $x=b$ or $x=s$. We infer

$$
|\mathcal{G}|=\left|\mathcal{B} \cap \mathcal{F}_{1}\right|+\cdots+\left|\mathcal{B} \cap \mathcal{F}_{s+1}\right| \leqslant \max \left\{b^{2}-(t-1) b+s t, s^{2}-(t-1) s+s t\right\}
$$

To prove (5) we need to show that here the right hand side is at most $s t-s b$. Let us check it separately for both terms. The inequality $b^{2}-(t-1) b+s t \leqslant s t-s b$ is equivalent to $b(t-1-s-b) \geqslant 0$ which is true because of $b \leqslant s, t \geqslant 2 s+1$. The inequality $s^{2}-(t-1) s+s t \leqslant s t-s b$ is equivalent to $s(t-1-s-b) \geqslant 0$ which is true for the same reason.

Let us return to the proof of the Theorem 3.1. Since the lemma holds for all choices of \mathcal{B}, the same inequality must hold for the expected values as well, yielding

$$
\frac{t\left|\mathcal{F}_{1}\right|}{\binom{|Y|}{\ell}}+\cdots+\frac{t\left|\mathcal{F}_{s}\right|}{\binom{|Y|}{\ell}}+(s+1) \frac{t\left|\mathcal{F}_{s+1}\right|}{\binom{|Y|}{\ell}} \leqslant t s,
$$

or equivalently

$$
\left|\mathcal{F}_{1}\right|+\cdots+\left|\mathcal{F}_{s}\right|+(s+1)\left|\mathcal{F}_{s+1}\right| \leqslant s\binom{|Y|}{\ell}
$$

as desired.
Remark. Changing the requirement $t \geqslant 2 s+1$ one can prove similar inequalities where the coefficient of $\left|\mathcal{F}_{s+1}\right|$ is changing in function of t and s.

4. The proof of Theorem 1.1

Let $\mathcal{F} \subset\binom{[n]}{k}$ be a stable family with $\nu(\mathcal{F})=s, n \geqslant(2 s+1) k-s$. We want to prove $|\mathcal{F}| \leqslant$ $|\mathcal{A}(n, 1, s)|$. Let us write \mathcal{A} for short instead of $\mathcal{A}(n, 1, s)$ throughout the proof. Let us partition both families according to the intersection of their edges with [$s+1$]: For a subset $Q \subset[s+1]$ define

$$
\begin{aligned}
& \mathcal{F}(Q):=\{F \in \mathcal{F}: F \cap[s+1]=Q\}, \\
& \mathcal{A}(Q):=\{A \in \mathcal{A}: A \cap[s+1]=Q\} .
\end{aligned}
$$

Note that for $|Q| \geqslant 2,|\mathcal{A}(Q)|=\binom{n-s-1}{k-|Q|}$ implying $|\mathcal{F}(Q)| \leqslant|\mathcal{A}(Q)|$. For $1 \leqslant i \leqslant s,|\mathcal{A}(\{i\})|=\binom{n-s-1}{k-1}$ and $\mathcal{A}(\{s+1\})=\mathcal{A}(\emptyset)=\emptyset$. Thus all we need is to show

$$
\begin{equation*}
|\mathcal{F}(\emptyset)|+\sum_{1 \leqslant 1 \leqslant s+1}|\mathcal{F}(\{i\})| \leqslant s\binom{n-s-1}{k-1} . \tag{7}
\end{equation*}
$$

We prove (7) in two steps. First we prove

$$
\begin{equation*}
|\mathcal{F}(\emptyset)| \leqslant s|\mathcal{F}(\{s+1\})| . \tag{8}
\end{equation*}
$$

As a matter of fact, for every $H \in \partial \mathcal{F}(\emptyset)$ stability of \mathcal{F} implies $(H \cup\{s+1\}) \in \mathcal{F}(\{s+1\})$. Now (8) is a direct consequence of Theorem 1.2. Plugging (8) into (7) we see that the inequality to prove is

$$
\begin{equation*}
|\mathcal{F}(\{1\})|+\cdots+|\mathcal{F}(\{s\})|+(s+1)|\mathcal{F}(\{s+1\})| \leqslant s\binom{n-s-1}{k-1} . \tag{9}
\end{equation*}
$$

To apply Theorem 3.1 set $\mathcal{F}_{i}:=\{F-\{i\}: F \in \mathcal{F}(\{i\})\}$. Since \mathcal{F} is stable, $\mathcal{F}_{1}, \ldots, \mathcal{F}_{s+1}$ are nested. Also, since $\nu(\mathcal{F})=s, \mathcal{F}_{1}, \ldots, \mathcal{F}_{s+1}$ are cross-dependent. Setting $\ell=k-1, Y=[s+2, n],|Y|=n-s-1 \geqslant$ $(2 s+1)(k-1)$, all conditions of Theorem 3.1 are satisfied for $t=2 s+1$. Thus (9) follows from (4), completing the proof.

In case of equality $\mathcal{F}(\emptyset)=\emptyset$ is immediate through Theorem 1.2 . Then $\mathcal{F}(\{s+1\})=\emptyset$ follows, leading to $\mathcal{F} \subset \mathcal{A}$.

5. Concluding remarks

The situation with Erdős' Matching Conjecture was dormant for two decades. There was a sudden increase of interest during the last two years. It was mainly caused by the fact that through the works of Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [2] and Alon, Huang and Sudakov [1] it was shown that the Matching Conjecture is relevant in the proof of some seemingly unrelated problems. This motivated the research of Huang, Loh and Sudakov [12] and Frankl, Rödl and Ruciński [10] improving the old bounds of Erdős [4] and Bollobás, Daykin and Erdős [3]. Also it led to the complete solution
of the Matching Conjecture for 3-uniform hypergraphs (Łuczak and Mieczkowska [15] for large s, Frankl [8] for all s).

The present proof comes within a factor of two to of covering the full range, i.e., $n \leqslant(s+1) k-1$. However, a full solution does not seem possible along these lines. On the other hand some improvements are possible. Let us mention just two of them.

If $k \leqslant s+1$ then $[k] \subset[s+1]$ implies that $v(\mathcal{F}(\emptyset)) \leqslant s-1$. Using this fact the same proof yields that the Matching Conjecture is true already for $n \geqslant 2 s k-s$ and even earlier for the case that k is substantially smaller than s.

For $\mathcal{F}(\emptyset)$ we used that its matching number is at most s. However, the much stronger statement $\nu(\partial \mathcal{F}(\emptyset)) \leqslant s$ follows from the stability of \mathcal{F}. Using this property and the same inductive argument, the factor $1 / s$ can be replaced by the larger $\binom{k}{(k-1) s-1}$. The only reason that we did not prove and use this version is that for fixed s and k large, the ratio is approaching $1 / s$ which does not permit an improvement of our bounds in general.

Let us conclude this paper by mentioning a Hilton-Milner-type extension of Erdős' Theorem. Hilton and Milner [11] determined the size of the largest intersecting subfamily $\mathcal{F} \subset\binom{[n]}{k}$ with the property $\bigcap \mathcal{F}=\emptyset$. We generalize their construction for all $s \geqslant 1$ by defining a family \mathcal{H} with $\nu(\mathcal{H})=s$ with the property that for every element $x \in[n]$ one still has $v(\mathcal{H}\{\bar{x}\})=s$ (i.e., \mathcal{H} is v-stable). Let x_{0}, \ldots, x_{s-1} be elements and T_{1}, \ldots, T_{s} be disjoint k-subsets of [n] such that $x_{i} \in T_{i}, i=1, \ldots, s-1$ but x_{0} is not contained in any of $T_{i}, i=1, \ldots, s$. Define the family

$$
\begin{aligned}
\mathcal{H}(n, s, k):= & \left\{H \in\binom{[n]}{k}: \text { there is an } i, 0 \leqslant i \leqslant s-1, x_{i} \in H\right. \\
& \text { and then } \left.H \cap\left(T_{i+1} \cup \cdots \cup T_{s}\right) \neq \emptyset\right\} \cup\left\{T_{1}, \ldots, T_{s}\right\} .
\end{aligned}
$$

Theorem 5.1. If $\mathcal{F} \subset\binom{[n]}{k}$ satisfies $v(\mathcal{F})=s, v(\mathcal{F}(\bar{x}))=s$ for every $x \in[n], k \geqslant 4$ and $n \geqslant n_{1}(s, k)$ then $|\mathcal{F}| \leqslant|\mathcal{H}(n, s, k)|$ holds with equality if and only if \mathcal{F} is isomorphic to $\mathcal{H}(n, s, k)$.

The proof of this theorem together with a similar result for $k=3$ will appear in a forthcoming paper.

References

[1] N. Alon, H. Huang, B. Sudakov, Nonnegative k-sums, fractional covers, and probability of small deviations, J. Combin. Theory Ser. B 102 (2012) 784-796.
[2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, B. Sudakov, Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels, J. Combin. Theory Ser. A 119 (2012) 1200-1215.
[3] B. Bollobás, D.E. Daykin, P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. (2) 27 (1976) 25-32.
[4] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. 8 (1965) 93-95.
[5] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.
[6] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
[7] P. Frankl, Extremal set systems, in: Handbook of Combinatorics, Elsevier, Amsterdam, 1995, pp. 1293-1329.
[8] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, arXiv:1205.6847, May 30, 2012, 26 pp.
[9] P. Frankl, T. Łuczak, K. Mieczkowska, On matchings in hypergraphs, Electron. J. Combin. 19 (2012), Paper 42 , 5 pp.
[10] P. Frankl, V. Rödl, A. Ruciński, On the maximum number of edges in a triple system not containing a disjoint family of a given size, Combin. Probab. Comput. 21 (2012) 141-148.
[11] A.J. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967) 369-384.
[12] H. Huang, P. Loh, B. Sudakov, The size of a hypergraph and its matching number, Combin. Probab. Comput. 21 (2012) 442-450.
[13] G. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329-337.
[14] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó/North-Holland, Budapest/Amsterdam, 1979.
[15] T. Łuczak, K. Mieczkowska, On Erdős' extremal problem on matchings in hypergraphs, arXiv:1202.4196, February 19, 2012, 16 pp .

[^0]: E-mail address: peter.frankl@gmail.com.

