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The main result is the following. Let F be a family of k-subsets
of an n-set, containing no s + 1 pairwise disjoint edges. Then for
n � (2s + 1)k − s one has |F | � (n

k

) − (n−s
k

)
. This upper bound is

the best possible and confirms a conjecture of Erdős dating back to
1965. The proof is surprisingly compact. It applies a generalization
of Katona’s Intersection Shadow Theorem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and notation

Let [n] := {1,2, . . . ,n} and let F ⊂ ([n]
k

)
, n � k � 1. The matching number ν(F) is the maximum

number of pairwise disjoint members (edges) of F . One of the classical problems of extremal set
theory is to determine max |F |, for ν(F) fixed. Here are two easy constructions.

A(k, s) :=
([k(s + 1) − 1]

k

)
,

∣∣A(k, s)
∣∣ =

(
k(s + 1) − 1

k

)
,

A(n,1, s) :=
{

A ∈
([n]

k

)
: A ∩ [s] �= ∅

}
,

∣∣A(n,1, s)
∣∣ =

(
n

k

)
−

(
n − s

k

)
.

The Matching Conjecture. (See Erdős [4] (1965).) If F ⊂ ([n]
k

)
, ν(F) = s and n is at least k(s + 1) − 1 then

|F |� max

{(
k(s + 1) − 1

k

)
,

(
n

k

)
−

(
n − s

k

)}
(1)

holds.
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The case s = 1 is the classical Erdős–Ko–Rado Theorem [6]. For k = 1 the conjecture holds trivially
and for k = 2 it was proved by Erdős and Gallai [5]. Erdős [4] proved (1) for n > n0(k, s). In [3] the
bound on n0(k, s) was lowered to 2sk3. Recently, Huang, Loh and Sudakov [12] improved it to 3sk2,
which was slightly improved in [9]. On the other hand Füredi and the author proved n0(k, s) � cks2,
however their result was never published. The aim of the present paper is to provide a completely
new argument proving a bound simultaneously improving all known bounds.

Theorem 1.1. Let F ⊂ ([n]
k

)
, ν(F) = s and n � (2s + 1)k − s then

|F |�
(

n

k

)
−

(
n − s

k

)
(2)

with equality if and only if F is isomorphic to A(n,1, s).

One of the principal tools in proving (2) is an extension of Katona’s Intersection Shadow Theo-
rem [13]. For a family F ⊂ ([n]

k

)
let us define its shadow ∂F by

∂F :=
{

G ∈
( [n]

k − 1

)
: ∃F ∈ F, G ⊂ F

}
.

Theorem 1.2. Let F ⊂ ([n]
k

)
, ν(F) = s, then

s|∂F | � |F | (3)

holds.

Let us note that for s = 1 the inequality (3) is a special case of Katona’s Intersection Theorem.
The proof of Theorem 1.2 is by double induction on n and k—just imitating the original proof of
Katona [13]. The starting case is A(k, s), that is all k-subsets of an n-set where n = k(s + 1) − 1. For

A(k, s) one has ∂A(k, s) = ([k(s+1)−1]
k−1

)
and s

(k(s+1)−1
k−1

) = (k(s+1)−1
k

)
showing that the factor s is the

best possible. On the other hand it follows from the proof that (3) is strict unless F is isomorphic to
A(k, s).

It is well known (cf. for example [7]) that in proving both theorems one can assume that F is
stable. That is, for all 1 � i < j � n and F ∈ F , the conditions i /∈ F , j ∈ F imply that F ∪ {i} − { j}
is in F as well. The only other ingredient of the proof is the following version of the König–Hall
Theorem.

König–Hall Theorem. (Cf. [14].) Let G be a bipartite graph with ν(G) = s. Then there exists a subset T of the
vertices with |T | = s, such that all edges of G are incident to at least one vertex of T .

2. Proof of Theorem 1.2

Assume that F ⊂ ([n]
k

)
is a stable family with ν(F) � s. Let us first prove the statement for all k

and s with (s + 1)k − 1 � n. Let us construct a bipartite graph with partite sets F and ∂F where
we put an edge connecting F and G if and only if G is a subset of F . It is immediate that each
F ∈ F has degree k, and each G ∈ ∂F has degree at most n − |G| = n − k + 1. Since sk � n − k + 1
for n � (s + 1)k − 1, (3) holds in the above range. Moreover, equality can hold only if n = (s + 1)k − 1
and each G ∈ ∂F has degree ks, so G ∪ {y} ∈ F for y /∈ G ∈ ∂F . It follows that G − {x} + {y} also
should be a member of ∂F (for x ∈ G , y /∈ G) so ∂F is the complete (k − 1)-uniform hypergraph on
[(s + 1)k − 1] and F = ([(s+1)k−1]

k

)
follows.

From now on, we suppose that n � (s + 1)k, k � 2 and (3) holds for n − 1 for both k and k − 1.
Let us use the usual notation F(n) := {F ∈ F : n /∈ F }, F(n) := {F − {n}: F ∈ F , n ∈ F }. These are the
two families for which we want to use the induction hypothesis. Here ν(F(n)) � s is obvious. The
inequality ν((F(n))) � s follows from stability using the following standard argument (cf. [7]). If one
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has s + 1 disjoint sets Fi − {n} ∈ F(n) (where Fi ∈ F , 1 � i � s + 1), then n − 1 � (s + 1)(k − 1) + s
implies that there are elements 1 � x1 < · · · < xs � n − 1 disjoint to each Fi . Then stability implies
that the sets Fi − {n} ∪ {xi} ∈ F (here 1 � i � s) together with Fs+1 form a matching of size s + 1
in F , a contradiction.

Note that ∂F(n) provides us with sets in ∂F which do not contain n. At the same time, adjoining n
to any member of ∂F(n) provides us with a member of ∂F which contains n. This proves |∂F | �
|∂F(n)| + |∂F(n)|. Using the induction hypothesis yields

s|∂F |� s
∣∣∂F(n)

∣∣ + s
∣∣∂F(n)

∣∣ � ∣∣F(n)
∣∣ + ∣∣F(n)

∣∣ = |F |
as desired. �
3. A general inequality

The families F1,F2, . . . ,Fs+1 are called nested if Fs+1 ⊂ Fs ⊂ · · · ⊂ F1 holds. The families F1,

F2, . . . ,Fs+1 are called cross-dependent if there is no choice of Fi ∈ Fi such that F1, . . . , Fs+1 are
pairwise disjoint.

Theorem 3.1. Let F1,F2, . . . ,Fs+1 ⊂ (Y
�

)
, be nested, cross-dependent families, |Y | � t�. Suppose further

t � 2s + 1, then

|F1| + |F2| + · · · + |Fs| + (s + 1)|Fs+1|� s

(|Y |
�

)
. (4)

Proof. Let us choose randomly (according to uniform distribution) t pairwise disjoint sets B1, . . . , Bt ∈(Y
�

)
and define B = {B1, . . . , Bt}. Since the probability p(B j ∈ Fi) = |Fi |/

(|Y |
�

)
, the expected size

M(|B ∩Fi |) is t|Fi |/
(|Y |

�

)
. Let us prove a lemma.

Lemma 3.2. For every choice of B one has

|B ∩F1| + · · · + |B ∩Fs| + (s + 1)|B ∩Fs+1|� st. (5)

Proof. Define a bipartite graph G with partite sets B and {F1,F2, . . . ,Fs+1} where we join B j and
Fi by an edge if and only if B j ∈Fi . The fact that F1,F2, . . . ,Fs+1 are cross-dependent translates to
ν(G) � s. Applying the König–Hall Theorem we can find a subset T of the vertices, |T | = s such that
all edges are incident to some element of T .

Let T have x elements in B and s − x elements in {F1,F2, . . . ,Fs+1}. Let us estimate the total
number of edges incident to T . For Fi there can be at most t incident edges. This gives an upper
bound (s − x)t for the s − x vertices from {F1,F2, . . . ,Fs+1}. The x vertices in B can be adjacent to
(s + 1) − (s − x) = x + 1 additional vertices each. This gives the upper bound

(s − x)t + x(x + 1) = x2 − (t − 1)x + st. (6)

So far we have not used that F1,F2, . . . ,Fs+1 are nested. If B j ∈Fs+1 then B j ∈Fi follows for all
1 � i � s as well. That is, B j has degree s + 1 in G . Consequently, B j ∈ T .

Thus setting b := |B ∩ Fs+1|, we infer x � b. Now (6) is a quadratic polynomial in x with main
term x2. Therefore the maximum of (6) in the range b � x � s is attained either for x = b or x = s. We
infer

|G| = |B ∩F1| + · · · + |B ∩Fs+1|� max
{

b2 − (t − 1)b + st, s2 − (t − 1)s + st
}
.

To prove (5) we need to show that here the right hand side is at most st − sb. Let us check it
separately for both terms. The inequality b2 − (t −1)b + st � st − sb is equivalent to b(t −1− s −b) � 0
which is true because of b � s, t � 2s + 1. The inequality s2 − (t − 1)s + st � st − sb is equivalent to
s(t − 1 − s − b) � 0 which is true for the same reason. �
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Let us return to the proof of the Theorem 3.1. Since the lemma holds for all choices of B, the same
inequality must hold for the expected values as well, yielding

t|F1|(|Y |
�

) + · · · + t|Fs|(|Y |
�

) + (s + 1)
t|Fs+1|(|Y |

�

) � ts,

or equivalently

|F1| + · · · + |Fs| + (s + 1)|Fs+1|� s

(|Y |
�

)

as desired. �
Remark. Changing the requirement t � 2s + 1 one can prove similar inequalities where the coefficient
of |Fs+1| is changing in function of t and s.

4. The proof of Theorem 1.1

Let F ⊂ ([n]
k

)
be a stable family with ν(F) = s, n � (2s + 1)k − s. We want to prove |F | �

|A(n,1, s)|. Let us write A for short instead of A(n,1, s) throughout the proof. Let us partition both
families according to the intersection of their edges with [s + 1]: For a subset Q ⊂ [s + 1] define

F(Q ) := {
F ∈ F : F ∩ [s + 1] = Q

}
,

A(Q ) := {
A ∈ A: A ∩ [s + 1] = Q

}
.

Note that for |Q | � 2, |A(Q )| = (n−s−1
k−|Q |

)
implying |F(Q )| � |A(Q )|. For 1 � i � s, |A({i})| = (n−s−1

k−1

)
and A({s + 1}) =A(∅) = ∅. Thus all we need is to show

∣∣F(∅)
∣∣ +

∑
1�1�s+1

∣∣F({i})∣∣ � s

(
n − s − 1

k − 1

)
. (7)

We prove (7) in two steps. First we prove
∣∣F(∅)

∣∣� s
∣∣F({s + 1})∣∣. (8)

As a matter of fact, for every H ∈ ∂F(∅) stability of F implies (H ∪ {s + 1}) ∈ F({s + 1}). Now (8) is
a direct consequence of Theorem 1.2. Plugging (8) into (7) we see that the inequality to prove is

∣∣F({1})∣∣ + · · · + ∣∣F({s})∣∣ + (s + 1)
∣∣F({s + 1})∣∣ � s

(
n − s − 1

k − 1

)
. (9)

To apply Theorem 3.1 set Fi := {F − {i}: F ∈F({i})}. Since F is stable, F1, . . . ,Fs+1 are nested. Also,
since ν(F) = s, F1, . . . ,Fs+1 are cross-dependent. Setting � = k − 1, Y = [s + 2,n], |Y | = n − s − 1 �
(2s + 1)(k − 1), all conditions of Theorem 3.1 are satisfied for t = 2s + 1. Thus (9) follows from (4),
completing the proof.

In case of equality F(∅) = ∅ is immediate through Theorem 1.2. Then F({s + 1}) = ∅ follows,
leading to F ⊂A. �
5. Concluding remarks

The situation with Erdős’ Matching Conjecture was dormant for two decades. There was a sudden
increase of interest during the last two years. It was mainly caused by the fact that through the works
of Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [2] and Alon, Huang and Sudakov [1] it was shown
that the Matching Conjecture is relevant in the proof of some seemingly unrelated problems. This
motivated the research of Huang, Loh and Sudakov [12] and Frankl, Rödl and Ruciński [10] improving
the old bounds of Erdős [4] and Bollobás, Daykin and Erdős [3]. Also it led to the complete solution
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of the Matching Conjecture for 3-uniform hypergraphs (Łuczak and Mieczkowska [15] for large s,
Frankl [8] for all s).

The present proof comes within a factor of two to of covering the full range, i.e., n � (s + 1)k − 1.
However, a full solution does not seem possible along these lines. On the other hand some improve-
ments are possible. Let us mention just two of them.

If k � s + 1 then [k] ⊂ [s + 1] implies that ν(F(∅)) � s − 1. Using this fact the same proof yields
that the Matching Conjecture is true already for n � 2sk − s and even earlier for the case that k is
substantially smaller than s.

For F(∅) we used that its matching number is at most s. However, the much stronger statement
ν(∂F(∅)) � s follows from the stability of F . Using this property and the same inductive argument,
the factor 1/s can be replaced by the larger

( k
(k−1)s−1

)
. The only reason that we did not prove and

use this version is that for fixed s and k large, the ratio is approaching 1/s which does not permit an
improvement of our bounds in general.

Let us conclude this paper by mentioning a Hilton–Milner-type extension of Erdős’ Theorem. Hilton
and Milner [11] determined the size of the largest intersecting subfamily F ⊂ ([n]

k

)
with the property⋂

F = ∅. We generalize their construction for all s � 1 by defining a family H with ν(H) = s with the
property that for every element x ∈ [n] one still has ν(H{x}) = s (i.e., H is ν-stable). Let x0, . . . , xs−1
be elements and T1, . . . , Ts be disjoint k-subsets of [n] such that xi ∈ Ti , i = 1, . . . , s − 1 but x0 is not
contained in any of Ti , i = 1, . . . , s. Define the family

H(n, s,k) :=
{

H ∈
([n]

k

)
: there is an i, 0 � i � s − 1, xi ∈ H

and then H ∩ (Ti+1 ∪ · · · ∪ Ts) �= ∅
}

∪ {T1, . . . , Ts}.

Theorem 5.1. If F ⊂ ([n]
k

)
satisfies ν(F) = s, ν(F(x)) = s for every x ∈ [n], k � 4 and n � n1(s,k) then

|F |� |H(n, s,k)| holds with equality if and only if F is isomorphic to H(n, s,k).

The proof of this theorem together with a similar result for k = 3 will appear in a forthcoming
paper.
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