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We present a vector space version of Katona’s t-intersection
theorem (Katona, 1964 [12]). Let V be the n-dimensional vector
space over a finite field, and let F be a family of subspaces of V .
Suppose that dim(F ∩ F ′)� t holds for all F , F ′ ∈F . Then we show
that |F | � ∑n

k=d

[n
k

]
for n + t = 2d, and |F | � ∑n

k=d+1

[n
k

] + [n−1
d

]
for n + t = 2d + 1. We also consider the case when the condition
dim(F ∩ F ′) � t is replaced with dim(F ∩ F ′) �= t − 1.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In 1964, Katona published his t-intersection theorem [12], which is one of the most basic results
in extremal set theory. It has been extended in many ways, one of them being a result concerning a
set-system avoiding just one intersection due to Frankl and Füredi [6]. In this article, we show vector
space versions of these results using the linear algebra method.

We begin by recalling Katona’s original theorem. Let X = {1,2, . . . ,n} and let
(X

k

)
denote the set of

all k-element subsets of X . Let

P(X) =
n⋃

k=0

(
X

k

)

be the power set of X . We say that a family of subsets F ⊂P(X) is t-intersecting if |F ∩ F ′| � t holds
for all F , F ′ ∈ F . Let us define a t-intersecting family K(n, t) of subsets as follows. For n + t = 2d,
let K(n, t) = ⋃n

k=d

(X
k

)
. For n + t = 2d + 1, choose an (n − 1)-element subset Y ⊂ X , and set K(n, t) =(⋃n

k=d+1

(X
k

)) ∪ (Y
d

)
. Then Katona’s t-intersection theorem states the following.
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Theorem 1. (See [12].) Let 1 � t � n and let F ⊂ P(X) be t-intersecting. Then |F | � |K(n, t)|. Moreover if
t > 1 then equality holds iff F is isomorphic to K(n, t).

For a family of subsets F of X and 0 � u � n we define the u-th shadow �u(F) of F by

�u(F) =
{

G ∈
(

X

u

)
: G ⊂ F for some F ∈ F

}
.

The following result is a key tool for the original proof of Theorem 1.

Theorem 2. (See [12].) Let 1 � t � k � n and let F ⊂ (X
k

)
be t-intersecting. Then, for k − t � u � k, we have

∣∣�u(F)
∣∣/|F |�

(
2k − t

u

)/(
2k − t

k

)
.

Now we present vector space versions of the above theorems. Fix the q-element field Fq and
let V be the n-dimensional vector space over this field. Let

[V
k

]
denote the set of all k-dimensional

subspaces of V , let
[n

k

] = ∣∣[V
k

]∣∣ = ∏k−1
i=0

qn−i−1
qk−i−1

, and let

L(V ) =
n⋃

k=0

[
V

k

]

be the lattice of subspaces of V with respect to inclusion. We say that a family of subspaces F ⊂L(V )

is t-intersecting if dim(F ∩ F ′) � t holds for all F , F ′ ∈ F . For 0 � u � n we define the u-th shadow
�u[F ] of F by

�u[F] =
{

G ∈
[

V

u

]
: G ⊂ F for some F ∈ F

}
.

Then the corresponding result to Theorem 2 is as follows.

Theorem 3. Let 1 � t � k � n and let F ⊂ [V
k

]
be t-intersecting. Then, for k − t � u � k, we have

∣∣�u[F]∣∣/|F |�
[

2k − t

u

]/[
2k − t

k

]
.

Let us define a t-intersecting family K[n, t] of subspaces as follows. For n + t = 2d, let K[n, t] =⋃n
k=d

[V
k

]
. For n + t = 2d + 1, choose an (n − 1)-dimensional subspace W ⊂ V , and set K[n, t] =(⋃n

k=d+1

[V
k

]) ∪ [W
d

]
. Using Theorem 3 we will obtain the following vector space version of Katona’s

theorem.

Theorem 4. Let 1 � t � n and let F ⊂ L(V ) be t-intersecting. Then |F | � |K[n, t]|. Moreover if t > 1 then
equality holds iff F is isomorphic to K[n, t].

We say that a family of subsets F ⊂ P(X) is (t − 1)-avoiding if |F ∩ F ′| �= t − 1 holds for all
distinct F , F ′ ∈F . Notice that if F is t-intersecting then it is (t − 1)-avoiding. In 1975, Erdős [4] asked
what happens if in Theorem 1 we weaken the condition “t-intersecting” to “(t −1)-avoiding.” Define a
(t −1)-avoiding family K∗(n, t −1) of subsets of X by K∗(n, t −1) =K(n, t)∪⋃

k<t−1

(X
k

)
. In [5], Frankl

conjectured that this construction gives the maximum possible size for n > n0(t), and he proved this
for the case t = 2 (1-avoiding families) for all n. This conjecture was solved by Frankl and Füredi
in 1984 [6] using the so-called “linear algebra method.” We present the corresponding vector space
version. To state our result, we need some definitions. We say that a family of subspaces F ⊂L(V ) is
(t − 1)-avoiding if dim(F ∩ F ′) �= t − 1 holds for all distinct F , F ′ ∈F . Define a (t − 1)-avoiding family
K∗[n, t − 1] of subspaces of V by K∗[n, t − 1] =K[n, t] ∪ ⋃

k<t−1

[V
k

]
.
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Theorem 5. Let t � 1, n > n0(t), and let F ⊂L(V ) be (t − 1)-avoiding. Then |F |� |K∗[n, t − 1]|. Moreover
if t > 1 then equality holds iff F is isomorphic to K∗[n, t − 1].

Since a t-intersecting family is always a (t − 1)-avoiding family, the following result is an obvious
extension of Theorem 3 (for the case k � 2t − 1), which will be used to prove Theorem 5.

Theorem 6. Let t � 1, n � k � 2t − 1, and let F ⊂ [V
k

]
be (t − 1)-avoiding. Then, for k − t � u � k, we have

∣∣�u[F]∣∣/|F |�
[

2k − t

u

]/[
2k − t

k

]
.

In [6] the corresponding set-system version of Theorem 6 is conjectured to be true but it is proved
only under the assumption of k > k0(t). This is because the proof relies on a result of Frankl and
Singhi [10] stating that every k-uniform, (t − 1)-avoiding family of subsets is (k − t)-independent,
provided k > k0(t). (We will define “(k − t)-independence” in Section 2.) This proof, in turn, uses
a divisibility property of integers which requires k > k0(t). On the other hand, we will use some
basic properties of the cyclotomic polynomials to show that every k-uniform, (t − 1)-avoiding family
of subspaces is (k − t)-independent provided k � 2t − 1 (Lemma 5). In this sense, Theorem 6 is an
example where a vector space version of a theorem has a stronger result than a set-system version,
with a simpler proof.

Finally we mention the maximum size of k-uniform, (t − 1)-avoiding families. As for the case
k � 2t − 1, we only have the following weaker bound, which is stated in [8] without a proof. (In [8]
they claimed that Theorem 7 follows from their Theorem 1.1, but this is true only for t-intersecting
families.)

Theorem 7. Let t � 1, n � k � 2t − 1, and let F ⊂ [V
k

]
be (t − 1)-avoiding. Then |F |� [ n

k−t

]
.

Frankl and Graham [8] conjecture that if k � 2t then the upper bound can be improved to
[n−t

k−t

]
.

(Theorem 7 for the case k = 2t − 1 is almost sharp as described below.) On the other hand, Frankl and
Füredi [7] obtained the sharp upper bound

(n−t
k−t

)
for the corresponding set-system version, provided

k � 2t and n > n0(k). The proof technique used in [7] is more combinatorial, and different from that
in [6].

For the case k � 2t − 1 we will derive the following result from Theorem 7.

Theorem 8. Let t � 1, 2t − 1 � k > t − 1, n � k, and let F ⊂ [V
k

]
be (t − 1)-avoiding. Then |F | �[ n

t−1

][2k−t
k

]
/
[2k−t

t−1

]
.

Theorem 8 is asymptotically tight as n → ∞ for fixed t,k. We show the tightness (Theorem 9 in
Section 4) using a packing result of Rödl [14].

We will use the linear algebra method to prove our results. The proofs are similar to those in [6],
but we will follow the formulation in the Babai–Frankl book [2]. The key idea is an independence of
row vectors of the inclusion matrix. This idea was already used by Frankl and Graham in [8], and we
could use their results but we choose to give direct and elementary proofs for self-completeness.

This paper is organized as follows. In Section 2 we prepare some basic tools for the linear algebra
method, and prove Theorem 3 and Theorem 4 (the Katona theorem for vector spaces). Then in Sec-
tion 3 we consider families avoiding just one intersection, and prove Theorem 5 and Theorem 6. In
Section 4 we focus on uniform families and prove Theorem 7 and Theorem 8.

2. The Katona theorem for vector spaces

In this section, we prepare some basic tools for the linear algebra method, and prove Theorem 3
and Theorem 4.



P. Frankl, N. Tokushige / Journal of Combinatorial Theory, Series A 120 (2013) 1578–1589 1581
Let V be the n-dimensional vector space over Fq . For 0 � i � k � n, F ⊂ [V
k

]
, and G ⊂ [V

i

]
, define

the inclusion matrix M(F ,G) as follows. This is an |F | × |G| matrix whose (F , G)-entry m(F , G),
where F ∈F and G ∈ G , is defined by

m(F , G) =
{

1 if F ⊃ G,

0 if F �⊃ G.

For F ⊂ [V
k

]
and 0 � j � i � k, simple counting yields

M

(
F,

[
V

i

])
M

([
V

i

]
,

[
V

j

])
=

[
k − j

i − j

]
M

(
F,

[
V

j

])
. (1)

In fact, the (F , J )-entry of (1), where F ∈F and J ∈ [V
j

]
, counts

#

{
I ∈

[
V

i

]
: J ⊂ I ⊂ F

}
.

In particular, (1) shows the following.

Lemma 1. Let 0 � j � i � k and F ⊂ [V
k

]
. Then colsp M

(
F ,

[V
j

])
is contained in colsp M

(
F ,

[V
i

])
, where

colsp M denotes the column space of M over Q.

We say that F ⊂ [V
k

]
is s-independent if the rows of M

(
F ,

[V
s

])
are linearly independent over Q,

that is, the inclusion matrix has full row-rank. In this case, |F |� [n
s

]
immediately follows.

Lemma 2. (See [8].) Let 0 � s � u � k and let F ⊂ [V
k

]
be s-independent. Then

∣∣�u[F]∣∣/|F |�
[

k + s

u

]/[
k + s

k

]
. (2)

Proof. Let A ⊕ B = V denote the direct sum, that is, A ∩ B = {0} and span{A, B} = V . For each line
x ∈ [V

1

]
choose W = W x ∈ [ V

n−1

]
so that x ⊕ W = V . Let

Fx =
{

G ∈
[

W

k − 1

]
: x ⊕ G ∈ F

}
⊂

[
W

k − 1

]
.

Claim 1. Fx ⊂ [ W
k−1

]
is s-independent, that is, rank M

(
Fx,

[W
s

]) = |Fx|.

We postpone the proof of Claim 1, and we first prove the lemma by induction on k assuming
Claim 1. Inequality (2) trivially holds for the following three cases: s = 0, u = s, and u = k. So let
1 � s < u < k and assume that (2) is true for k − 1. By Claim 1 we can apply the induction hypothesis
to Fx ⊂ [ W

k−1

]
, and we get

∣∣�u−1[Fx]
∣∣ � |Fx|

[
(k−1)+s

u−1

]
[
(k−1)+s
(k−1)

] . (3)

By counting #
{
(x, F ) ∈ [V

1

]×F : x ⊂ F
}

in two ways, namely, by counting the number of edges in the
corresponding bipartite graph from each side, we have

∑
x∈[V ] |Fx| =

[
k

1

]
|F |. (4)
1
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Similarly by counting #
{
(x, G) ∈ [V

1

] × �u[F ]: x ⊂ G
}

, we have

∑
x∈[V

1

]
∣∣�u−1[Fx]

∣∣ =
[

u

1

]∣∣�u[F]∣∣. (5)

Using (5), (3), and (4), we get

∣∣�u[F]∣∣ (5)= 1[u
1

] ∑
x

∣∣�u−1[Fx]
∣∣ (3)
� 1[u

1

] ∑
x

|Fx|
[k−1+s

u−1

]
[k−1+s

k−1

]
(4)= 1[u

1

] ·
[

k

1

]
|F | ·

[k−1+s
u−1

]
[k−1+s

k−1

] = |F |
[k+s

u

]
[k+s

k

] .

This shows that (2) is true for k as well, and completes the induction.
So all we need is to prove Claim 1. Fix x ∈ [V

1

]
and let W ∈ [ V

n−1

]
be such that x ⊕ W = V . Divide[V

s

]
into two parts

[V
s

] = C ∪D, where C is the set of s-dimensional subspaces of V not containing x,

and the remaining part is D = {
x ⊕ T : T ∈ [ W

s−1

]}
. (Then |C| = qs

[n−1
s

]
and |D| = [n−1

s−1

]
.) Let

F x = {F ∈ F : x ⊂ F } ⊂
[

V

k

]
.

We divide the columns of M
(
F x,

[V
s

])
into two blocks:

M

(
F x,

[
V

s

])
= (

M
(
F x,C

)∣∣M
(
F x,D

))
. (6)

A subspace S ∈ [V
s

]
can be represented by an s × n matrix in reduced echelon form with no zero

rows (see, e.g., [3]), and let ref(S) denote the matrix. We can associate D with matrices for which
leading 1 in the last row occurs in the last column. Then there is a natural bijection from D to

[ W
s−1

]
by taking the (s − 1) × (n − 1) principal minor of ref(S). Thus we may assume that

M
(
F x,D

) = M

(
F x,

[
W

s − 1

])
.

This together with Lemma 1 gives

colsp M
(
F x,D

) = colsp M

(
F x,

[
W

s − 1

])
⊂ colsp M

(
F x,

[
W

s

])
. (7)

If S ∈ C then the s × (n − 1) principal minor of ref(S) determines a subspace in
[W

s

]
. This gives a

map ϕ : C → [W
s

]
, and for each S ∈ [W

s

]
we have |ϕ−1(S)| = qs because ϕ(S) = ϕ(S ′) iff ref(S) and

ref(S ′) differ only in the last column. Thus columns corresponding to S and S ′ in M(F x,C) are the
same iff ϕ(S) = ϕ(S ′), and M(F x,C) can be viewed as qs copies of M

(
F x,

[W
s

])
. Hence we have

colsp M
(
F x,C

) = colsp M

(
F x,

[
W

s

])
. (8)

By (7) and (8) with (6), it follows colsp M
(
F x,

[V
s

]) ⊂ colsp M
(
F x,

[W
s

])
, and

rank M

(
F x,

[
V

s

])
� rank M

(
F x,

[
W

s

])
. (9)

The opposite inequality is trivial, thus we have equality in (9). On the other hand, since F is
s-independent, F x is also s-independent and rank M

(
F x,

[V
s

]) = |F x|. Thus equality in (9) yields

that rank M
(
F x,

[W
s

]) = |F x|. Finally, noting that |F x| = |Fx| and M
(
F x,

[W
s

]) = M
(
Fx,

[W
s

])
, we have

rank M
(
Fx,

[W
s

]) = |Fx| as needed. This completes the proof of Claim 1 and Lemma 2. �
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Lemma 3. (See [8].) Let 1 � t � k and let F ⊂ [V
k

]
be t-intersecting. Then F is (k − t)-independent.

Proof. Let

f (x) =
∏

t�i<k

[
x − i

1

]
=

∏
t�i<k

qx−i − 1

q − 1
. (10)

By setting y = qx , we can rewrite f (x) as a polynomial g(y) of degree k − t in Q[y], that is,

f (x) = g(y) =
∏

t�i<k

q−i y − 1

q − 1
.

Let φs(y) = ∏s−1
i=0

q−i y−1
qs−i−1

. Then φ0(y), . . . , φk−t(y) form a basis of the vector space (over Q) of poly-

nomials of degree k − t with variable y. Thus we can determine a0,a1, . . . ,ak−t ∈Q uniquely so that

g(y) =
k−t∑
s=0

asφs(y).

In other words, noting that φs(y) = ∏s−1
i=0

qx−i−1
qs−i−1

= [x
s

]
, we can determine a0, . . . ,ak−t so that

f (x) =
k−t∑
s=0

as

[
x

s

]
. (11)

Now define an |F | × |F | matrix A by

A =
k−t∑
s=0

as M

(
F,

[
V

s

])
M

(
F,

[
V

s

])T

.

For F , F ′ ∈F , the (F , F ′)-entry of A is

k−t∑
s=0

as#

{
W ∈

[
V

s

]
: W ⊂ F ∩ F ′

}
=

k−t∑
s=0

as

[
dim

(
F ∩ F ′)
s

]
.

This equals f (dim(F ∩ F ′)) by (11). Moreover, using the t-intersecting property with (10), we have

f
(
dim

(
F ∩ F ′)) =

{
0 if F �= F ′,
f (k) �= 0 if F = F ′.

Thus A is a diagonal matrix with no zero diagonal entries, and rank A = |F |.
On the other hand, it follows from Lemma 1 that the colsp M

(
F ,

[V
s

])
is contained in

colsp M
(
F ,

[ V
k−t

])
for 0 � s < k − t , and so colsp A is contained in colsp M

(
F ,

[ V
k−t

])
. This gives

rank M
(
F ,

[ V
k−t

])
� rank A = |F |. Thus M

(
F ,

[ V
k−t

])
has full row-rank, namely, F is (k − t)-indep-

endent. �
Proof of Theorem 3. By Lemma 3, F is (k − t)-independent. So letting s = k − t in Lemma 2, we get
the desired inequality. �
Proof of Theorem 4. We start with the following simple counting fact.

Claim 2. Let A ∈ [V
a

]
. Then #

{
B ∈ [ V

n−a

]
: A ⊕ B = V

} = qa(n−a) .
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Proof. We may assume that ref(A) = ( O Ia ). Then A ⊕ B = V gives ref(B) = ( In−a ∗ ), and there
are qa(n−a) ways for choosing the ∗ part. �

Let G = G(a,n − a) be a bipartite graph with the vertex partition V (G) = [V
a

] ∪ [ V
n−a

]
and the edge

set E(G) = {(A, B): A ⊕ B = V }. Then, by Claim 2, this is a qa(n−a)-regular graph. For a vertex subset
Å ⊂ [V

a

]
, let

NG(Å) =
{

B ∈
[

V

n − a

]
: (A, B) ∈ E(G) for some A ∈ Å

}

denote the neighborhood of Å. We count the number of edges between Å and NG(Å) in two ways.
Then this number is exactly qa(n−a)|Å| on one hand, and at most qa(n−a)|NG(Å)| on the other hand.
Namely, we have the Hall condition:

|Å|� ∣∣NG(Å)
∣∣.

Thus the bipartite graph has a perfect matching, which can be stated as follows.

Lemma 4. There is a bijection ψ : [V
a

] → [ V
n−a

]
such that A ⊕ ψ(A) = V holds for all A ∈ [V

a

]
.

We will use ψ(A) as a “complement” of A here, and also in the proof of Theorem 8 later. (Notice
that the orthogonal space A⊥ does not necessarily satisfy A ⊕ A⊥ = V . The authors thank one of the
referees for notifying this fact.)

Let Fk =F ∩ [V
k

]
, fk = |Fk|, d = �(n + t)/2�, and a = k − t + 1.

Claim 3. |�a[Fk]| + |Fn−a| �
[ n

n−a

]
for t � k � d.

Proof. Let G ∈ �a[Fk] and G ⊂ F ∈ Fk . Using Lemma 4 let H = ψ(G) ∈ [ V
n−a

]
. Since V = G ⊕ H ⊂

F + H ⊂ V we have n = dim(F + H) and

dim(F ∩ H) = dim F + dim H − dim(F + H) = k + (n − a) − n = t − 1.

Then it follows from the t-intersecting property of F that H = ψ(G) /∈ Fn−a . This gives ψ(�a[Fk]) ∩
Fn−a = ∅, and

∣∣�a[Fk]
∣∣ + |Fn−a| =

∣∣ψ(
�a[Fk]

)∣∣ + |Fn−a|�
[

n

n − a

]

as desired. �
We notice for later use in the proof of Theorem 5 in Section 3 that the proof above did not use

the full t-intersecting property, but only the (t − 1)-avoiding property.
Let t � k < d. Applying Theorem 3 with u = a = k − t + 1, we have

∣∣�a[Fk]
∣∣ � |Fk|

[
2k − t

a

]/[
2k − t

k

]
= qk − 1

qa − 1
fk.

Since qk−1
qa−1 � 1 iff a � k, that is, t � 1, it follows that |�a[Fk]| � fk with equality holding iff Fk = ∅

or t = 1. Then we can infer from Claim 3 that

fk + fn−a �
∣∣�a[Fk]

∣∣ + |Fn−a|�
[

n

n − a

]
. (12)

(This is true for k = d as well but we will not use this case.) Moreover if t > 1 then fk + fn−a = [ n
n−a

]
iff fk = 0 and fn−a = [ n

n−a

]
where t � k < d.

First consider the case n + t = 2d. Applying (12) for k = t, t + 1, . . . ,d − 1 we have
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|F | =
n∑

k=0

fk = fn +
n−1∑
k=t

fk

= fn + (
( ft + fn−1) + ( ft+1 + fn−2) + · · · + ( fd−1 + fd)

)
�

[
n

n

]
+

([
n

n − 1

]
+

[
n

n − 2

]
+ · · · +

[
n

d

])
= ∣∣K[n, t]∣∣.

If t > 1 then equality holds iff fk = 0 for 0 � k < d and fk = [n
k

]
for d � k � n, namely, F is isomorphic

to K[n, t].
Next consider the case n+t −1 = 2d. Since Fd ⊂ [V

d

]
is a t-intersecting family with 2d−t < n < 2d,

we can use a result in [11] to get

fd = |Fd| �
[

2d − t

d

]
=

[
n − 1

d

]
. (13)

Moreover if t > 1 then equality holds iff Fd = [W
d

]
for some (n − 1)-dimensional subspace W ⊂ V .

Using (12) for k = t, t + 1, . . . ,d − 1 and using (13) for k = d, we have

|F | =
n∑

k=0

fk = fn +
n−1∑
k=t

fk + fd

= fn + (
( ft + fn−1) + ( ft+1 + fn−2) + · · · + ( fd−1 + fd+1)

) + fd

�
[

n

n

]
+

([
n

n − 1

]
+

[
n

n − 2

]
+ · · · +

[
n

d + 1

])
+

[
n − 1

d

]
= ∣∣K[n, t]∣∣.

If t > 1 then equality holds iff fk = 0 for 0 � k < d, fk = [n
k

]
for d + 1 � k � n, and Fd = [W

d

]
for

some (n − 1)-dimensional subspace W , namely, F is isomorphic to K[n, t]. This completes the proof
of Theorem 4. �
3. Avoiding just one intersection

In this section we prove Theorem 5 and Theorem 6.

Lemma 5. Let t � 1, k � 2t − 1, and let F ⊂ [V
k

]
be (t − 1)-avoiding. Then F is (k − t)-independent.

Proof. We proceed as in Lemma 3 but using a different f (x), that is,

f (x) = (qk−1 − qx)(qk−2 − qx) · · · (qt − qx)

(qk−t − 1)(qk−t−1 − 1) · · · (q − 1)
. (14)

As we did in the proof of Lemma 3 we can write f (x) = ∑k−t
s=0 as

[x
s

]
for some a0, . . . ,ak−t ∈ Q. Define

an |F | × |F | matrix A by

A =
k−t∑
s=0

as M

(
F,

[
V

s

])
M

(
F,

[
V

s

])T

.

Then, for F , F ′ ∈F , the (F , F ′)-entry of A is
∑k−t

s=0 as
[dim(F∩F ′)

s

] = f (dim(F ∩ F ′)).
By (14), we have f (x) = 0 for x = t, t + 1, . . . ,k − 1, and

f (k) =
k−t∏
j=1

qk− j − qk

q j − 1
=

k−t∏
j=1

qk− j(1 − q j)

q j − 1

= (−1)k−tq(k−1)+(k−2)+···+t = (−1)k−tq(k−t)(k−t+1)/2. (15)
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For the remaining values except t − 1, namely, for x = 0,1, . . . , t − 2, we have f (x) = qx(k−t)
[k−x−1

k−t

]
and [

k − x − 1

k − t

]
=

[
k − x − 1

t − x − 1

]
= (qk−x−1 − 1) · · · (qk−t+1 − 1)

(qt−x−1 − 1) · · · (q − 1)
∈ Z[q]. (16)

Recall that qn − 1 = ∏
j|n Φ j(q), where Φ j(q) ∈ Z[q] is the j-th cyclotomic polynomial. Let us look

at the RHS of (16). The numerator contains Φk−t+1(q) as a factor coming from qk−t+1 − 1. On the
other hand, j = t − x − 1 is the maximum j such that Φ j(q) appears in the denominator as a factor.
Using x � 0 and k � 2t − 1 we have t − x − 1 � t − 1 < k − t + 1. So Φk−t+1(q) does not appear in
the denominator. Since cyclotomic polynomials are pairwise relatively prime, it follows from (16) that
Φk−t+1(q) divides

[k−x−1
k−t

]
, namely,

Φk−t+1(q) | f (x) for x = 0,1, . . . , t − 2.

But Φk−t+1(q) does not divide f (k) in Z[q] by (15). Note also that f (t −1) never appears in A because
of the (t − 1)-avoiding property. Consequently it follows that f (dim(F ∩ F ′)) ∈ Z[q] and{

Φk−t+1(q) | f
(
dim

(
F ∩ F ′)) if F �= F ′,

Φk−t+1(q) � f
(
dim

(
F ∩ F ′)) if F = F ′.

This means that A is a diagonal matrix with no zero diagonal entries in the residue ring
Z[q]/(Φk−t+1(q)), and thus rank A = |F |. On the other hand, it follows from (1) and the definition
of A that colsp A ⊂ colsp M

(
F ,

[ V
k−t

])
. Therefore we have

|F | = rank A � rank M

(
F,

[
V

k − t

])
� |F |.

Thus rank M
(
F ,

[ V
k−t

]) = |F |, namely, F is (k − t)-independent. �
Proof of Theorem 6. This follows from Lemma 2 and Lemma 5. �
Proof of Theorem 5. Let Fk = F ∩ [V

k

]
, fk = |Fk|, d = �(n + t)/2�, and a = k − t + 1. Let t � k < d. By

Theorem 6, we have

∣∣�a[Fk]
∣∣ � |Fk|

[
2k − t

a

]/[
2k − t

k

]
= qk − 1

qa − 1
fk,

and so |�a[Fk]| � fk with equality holding iff Fk = ∅ or t = 1. Then we can infer from Claim 3 (see
the notice right after the proof of Claim 3) that

fk + fn−a �
qk − 1

qa − 1
fk + fn−a �

[
n

n − a

]
. (17)

Moreover if t > 1 then fk + fn−a = [ n
n−a

]
iff fk = 0 and fn−a = [ n

n−a

]
where t � k < d. For k < t we

will use a trivial upper bound fk �
[n

k

]
.

Case 1. n + t = 2d.
We have

|F | =
n∑

k=0

fk = fn +
n−1∑
k=t

fk +
t−1∑
k=0

fk

= fn + (
( ft + fn−1) + ( ft+1 + fn−2) + · · · + ( fd−1 + fd)

) +
t−1∑

fk. (18)

k=0
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First suppose that ft−1 = 0. Then applying (17) for k = t, t + 1, . . . ,d − 1 we have

|F |�
[

n

n

]
+

([
n

n − 1

]
+

[
n

n − 2

]
+ · · · +

[
n

d

])
+

t−2∑
k=0

[
n

k

]
= ∣∣K∗[n, t − 1]∣∣.

If t > 1 then equality holds iff fk = [n
k

]
for 0 � k < t − 1, fk = 0 for t − 1 � k < d and fk = [n

k

]
for

d � k � n, namely, F is isomorphic to K∗[n, t − 1].
Next suppose that ft−1 �= 0, that is, there is an F0 ∈Ft−1. Since F is (t − 1)-avoiding, no subspace

containing F0 can be a member of F , which implies that

fk �
[

n

k

]
−

[
n − (t − 1)

k − (t − 1)

]

for k � t . In particular we have

fd � N − M,

where N = [n
d

]
, M = [n−(t−1)

d−(t−1)

]
. Setting k = d − 1 in (17) we have

α fd−1 + fd � N,

where α = qd−1−1
qd−t−1

� 1. So fd−1 � 1
α (N − fd). Thus we have

fd−1 + fd �
1

α
(N − fd) + fd = 1

α
N +

(
1 − 1

α

)
fd

� 1

α
N +

(
1 − 1

α

)
(N − M) = N −

(
1 − 1

α

)
M.

Hence we have

ft−1 + fd−1 + fd �
[

n

t − 1

]
+

[
n

d

]
− qd−1 − qd−t

qd−1 − 1

[
n − (t − 1)

d − (t − 1)

]
.

The RHS is less than
[n

d

]
for n > n0(t). Using this with (17) for k = t, t + 1, . . . ,d − 2 we can infer

from (18) that |F | < |K∗[n, t − 1]|.

Case 2. n + t − 1 = 2d.
If F , F ′ ∈ [V

d

]
then dim(F ∩ F ′) � t − 1. Since F is (t − 1)-avoiding, Fd ⊂ [V

d

]
is actually

t-intersecting. So we can use a result in [11] to get

fd = |Fd| �
[

n − 1

d

]
. (19)

Moreover if t > 1 then equality holds iff Fd = [W
d

]
for some (n − 1)-dimensional subspace W ⊂ V .

Write |F | as follows:

|F | =
n∑

k=0

fk = fn +
n−1∑
k=t

fk +
t−1∑
k=0

fk

= fn + (
( ft + fn−1) + ( ft+1 + fn−2) + · · · + ( fd−1 + fd+1)

) + fd + ft−1 +
t−2∑
k=0

fk.

First suppose that ft−1 = 0. We use (17) for k = t, t + 1, . . . ,d − 1, (19) for k = d, and fk �
[n

k

]
for the remaining k. In this way we get |F | � |K∗[n, t − 1]|. Moreover if t > 1 then equality holds iff
fk = [n

k

]
for 0 � k < t − 1, fk = 0 for t − 1 � k < d, fk = [n

k

]
for d + 1 � k � n, and Fd = [W

d

]
for some

(n − 1)-dimensional subspace W , namely, F is isomorphic to K∗[n, t − 1].
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Next suppose that ft−1 �= 0. Then we can argue as in Case 1 to conclude that ft−1 + fd−1 + fd+1 <[ n
d+1

]
for n > n0(t), which gives |F | < |K∗[n, t − 1]|. This completes the proof of Theorem 5. �

If we change the definition of a (t − 1)-avoiding family F so that dim(F ∩ F ′) �= t − 1 is required
for all F , F ′ ∈ F , then ft−1 = 0 follows from this new definition. In this case the above proof shows
that Theorem 5 holds without assuming n > n0(t).

4. Uniform families

In this section we prove Theorem 7 and Theorem 8. Then we will show that Theorem 8 is asymp-
totically sharp using a packing result of Rödl.

Proof of Theorem 7. This is a direct consequence of Lemma 5. �
In the rest of this section we follow the proof in [7]. Recall the bijection ψ from Lemma 4.

Proof of Theorem 8. Let b = 2t − k − 1. For B ∈ [V
b

]
let

F(B) :=
{

C ∈
[
ψ(B)

k − b

]
: B ⊕ C ∈ F

}
.

Then we have∑
B∈[V

b

]
∣∣F(B)

∣∣ =
[

k

b

]
|F |. (20)

Let k̃ = k − b = 2k − 2t + 1 and t̃ − 1 = (t − 1) − b = k − t . Then F(B) is a k̃-uniform, (t̃ − 1)-avoiding
family with k̃ = 2t̃ − 1. (In fact if there are C1, C2 ∈ F(B) such that dim(C1 ∩ C2) = t̃ − 1, then Fi =
B ⊕ Ci ∈ F (i = 1,2) but dim(F1 ∩ F2) = b + (t̃ − 1) = t − 1, a contradiction.) Thus, by Theorem 7, we
have ∣∣F(B)

∣∣ � [
n − b

k̃ − t̃

]
=

[
n − b

k − t

]
. (21)

Now it follows from (20) and (21) that

|F |�
[

n

b

][
n − b

k − t

]/[
k

b

]
=

[
n

t − 1

][
2k − t

k

]/[
2k − t

t − 1

]
as needed. �

The bound in Theorem 8 is asymptotically sharp. Namely, we have the following.

Theorem 9. Let t � 1 and k > t − 1 be fixed. Then for every ε > 0 there is an n0 such that for all n > n0 and
V = Fn

q there is a (t − 1)-avoiding family F ⊂ [V
k

]
with |F | > (1 − ε)

[ n
t−1

][2k−t
k

]
/
[2k−t

t−1

]
.

To prove Theorem 9 we need the following variant of the packing theorem of Rödl [14].

Theorem 10. Let r and s be fixed. Then for every ε > 0 there is an n0 such that for all n > n0 and V = Fn
q there

is a family H ⊂ [V
r

]
which satisfies dim(H ∩ H ′) < s for all H, H ′ ∈H and |H| > (1 − ε)

[n
s

]
/
[r

s

]
.

Proof of Theorem 9. By Theorem 10 we can take a family S S ⊂ [ V
2k−t

]
with dim(S ∩ S ′) < t − 1 for

all S, S ′ ∈ S S and |S S| ∼ [ n
t−1

]
/
[2k−t

t−1

]
as n → ∞. Let F = �k(S S). Then F is (t − 1)-avoiding and

|F | = [2k−t
k

]|S S| because k > t − 1. Thus F satisfies the desired properties. �
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Finally we remark that Theorem 10 is derived from the following result stating that almost regular
hypergraphs have almost perfect matchings. This result was originally obtained by Frankl and Rödl [9]
and we use a stronger version given by Pippenger (see [1] or [13]).

Theorem 11. (See [9,1,13].) Let F ⊂ (X
k

)
satisfy the following.

(1) There is D such that #{F ∈F : x ∈ F } = D for all x ∈ X.
(2) For all {x, y} ∈ (X

2

)
, #{F ∈F : {x, y} ⊂ F } = o(D) as D → ∞.

Then there exist pairwise disjoint F1, . . . , Fm ∈F with m ∼ |X |/k (as D → ∞ and hence |X | → ∞).

Proof of Theorem 10. Let X = [V
s

]
and k = [r

s

]
. Define F := {[R

s

]
: R ∈ [V

r

]} ⊂ (X
k

)
. Then F is D-regular,

where D = [n−s
r−s

]
. Moreover, for a pair {x, y} ⊂ X , we have

#
{

F ∈ F : {x, y} ⊂ F
}
�

[
n − s − 1

r − s − 1

]
= o(D).

In fact if n → ∞ for fixed r and s, then D → ∞ and
[n−s−1

r−s−1

]
/D = qr−s−1

qn−s−1 → 0, namely,
[n−s−1

r−s−1

] = o(D).

Thus, by Theorem 11, we have a matching F1, . . . , Fm ∈ F with m ∼ [n
s

]
/
[r

s

]
. For 1 � i � m we can

write Fi = [Ri
s

]
. Then H := {R1, . . . , Rm} ⊂ [V

r

]
satisfies the desired properties of Theorem 10. �
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[11] P. Frankl, R.M. Wilson, The Erdős–Ko–Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986) 228–236.
[12] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329–337.
[13] N. Pippenger, J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, J. Combin. Theory Ser. A 51 (1989)

24–42.
[14] V. Rödl, On a packing and covering problem, European J. Combin. 6 (1985) 69–78.

http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4153s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4246s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4246s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib43616D65726F6Es1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib45s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib45s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib463737s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4646s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4646s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib464632s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4647s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4652s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4653s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4657s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib4Bs1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib5053s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib5053s1
http://refhub.elsevier.com/S0097-3165(13)00088-5/bib52s1

	The Katona theorem for vector spaces
	1 Introduction
	2 The Katona theorem for vector spaces
	3 Avoiding just one intersection
	4 Uniform families
	Acknowledgments
	References


