On matchings in hypergraphs

Peter Frankl

Tokyo, Japan

peter.frankl@gmail.com

Tomasz Łuczak*

Katarzyna Mieczkowska

Adam Mickiewicz University Faculty of Mathematics and CS Poznań, Poland

Adam Mickiewicz University Faculty of Mathematics and CS Poznań, Poland kaska@amu.edu.pl

and

Emory University Department of Mathematics and CS Atlanta, USA

tomasz@amu.edu.pl

Submitted: Mar 30, 2012; Accepted: Jun 3, 2012; Published: Jun 13, 2012 Mathematics Subject Classifications: 05C35, 05C65, 05C70.

Abstract

We show that if the largest matching in a k-uniform hypergraph G on n vertices has precisely s edges, and $n > 3k^2s/2\log k$, then H has at most $\binom{n}{k} - \binom{n-s}{k}$ edges and this upper bound is achieved only for hypergraphs in which the set of edges consists of all k-subsets which intersect a given set of s vertices.

A k-uniform hypergraph G = (V, E) is a set of vertices $V \subseteq \mathbb{N}$ together with a family E of k-element subsets of V, which are called edges. In this note by v(G) = |V| and e(G) = |E| we denote the number of vertices and edges of G = (V, E), respectively. By a matching we mean any family of disjoint edges of G, and we denote by $\mu(G)$ the size of the largest matching contained in E. Moreover, by $\nu_k(n, s)$ we mean the largest possible number of edges in a k-uniform hypergraph G with v(G) = n and $\mu(G) = s$, and by $\mathcal{M}_k(n, s)$ we denote the family of the extremal hypergraphs for this problems, i.e. $H \in \mathcal{M}_k(n, s)$ if v(H) = n, $\mu(H) = s$, and $e(H) = \nu_k(n, s)$. In 1965 Erdős [2] conjectured that, unless n = 2k and s = 1, all graphs from $\mathcal{M}_k(n, s)$ are either cliques, or belong to the family $\operatorname{Cov}_k(n, s)$ of hypergraphs on n vertices in which the set of edges consists of

^{*}Partially supported by the Foundation for Polish Science and NSF grant DMS-1102086.

all k-subsets which intersect a given subset $S \subseteq V$, with |S| = s. This conjecture, which is a natural generalization of Erdős-Gallai result [3] for graphs, has been verified only for k = 3 (see [5] and [8]). For general k there have been series of results which state that

$$\mathcal{M}_k(n,s) = \operatorname{Cov}_k(n,s) \quad \text{for} \quad n \ge g(k)s, \tag{1}$$

where g(k) is some function of k. The existence of such g(k) was shown by Erdős [2], then Bollobás, Daykin and Erdős [1] proved that (1) holds whenever $g(k) \ge 2k^3$; Frankl and Füredi [6] showed that (1) is true for $g(k) \ge 100k^2$ and recently, Huang, Loh, and Sudakov [7] verified (1) for $g(k) \ge 3k^2$. The main result of this note slightly improves these bounds and confirms (1) for $g(k) \ge 2k^2/\log k$.

Theorem 1. If $k \ge 3$ and

$$n > \frac{2k^2s}{\log k},\tag{2}$$

then $\mathcal{M}_k(n,s) = Cov_k(n,s).$

In the proof we use the technique of shifting (for details see [4]). Let G = (V, E) be a hypergraph with vertex set $V = \{1, 2, ..., n\}$, and let $1 \leq i < j \leq n$. The hypergraph $\mathbf{sh}_{i,j}(G)$ is obtained from G by replacing each edge $e \in E$ such that $j \in e, i \notin e$ and $e_{ij} = e \setminus \{j\} \cup \{i\} \notin E$, by e_{ij} . Let $\mathbf{Sh}(G)$ denote the hypergraph obtained from G by the maximum sequence of shifts, such that for all possible i, j we have $\mathbf{sh}_{ij}(\mathbf{Sh}(G)) = \mathbf{Sh}(G)$. It is well known and not hard to prove that the following holds (e.g. see [4] or [8]).

Lemma 2. $G \in \mathcal{M}_k(n, s)$ if and only if $Sh(G) \in \mathcal{M}_k(n, s)$.

Lemma 3. Let $G \in \mathcal{M}_k(n,s)$ and $n \ge 2k+1$. Then $G \in Cov_k(n,s)$ if and only if $Sh(G) \in Cov_k(n,s)$.

Thus, it is enough to show Theorem 1 for hypergraphs G for which $\mathbf{Sh}(G) = G$. Let us start with the following observation.

Lemma 4. If G is a hypergraph on vertex set [n] such that Sh(G) = G and $\mu(G) = s$, then

$$G \subseteq \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_k,$$

where

$$\mathcal{A}_i = \{ A \subseteq [n] : |A| = k, |A \cap \{1, 2, \dots, i(s+1) - 1)\} | \ge i \},\$$

for i = 1, 2, ..., k.

Proof. Note that the set $e_0 = \{s + 1, 2s + 2, ..., ks + k\}$ is not an edge of G. Indeed, in such a case each of the edges $\{i, i + s + 1, ..., i + (k - 1)(s + 1)\}, i = 1, 2, ..., s + 1$, belongs to G due to the fact that $G = \mathbf{Sh}(G)$ and, clearly, they form a matching of size s + 1. Now it is enough to observe that all sets which do not dominate e_0 must belong to $\bigcup_{i=1}^k \mathcal{A}_i$.

The following numerical consequence of the above result is crucial for our argument.

Lemma 5. Let G be a hypergraph with vertex set $\{1, 2, ..., n\}$ such that Sh(G) = G and $\mu(G) = s$, where $n \ge k(s+1)-1$. Then all except at most $\frac{s(s+1)}{2} \binom{n-1}{k-2}$ edges of G intersect $\{1, 2, ..., s\}$.

Proof. Let $\mathcal{A} = \bigcup_{i=1}^{k} \mathcal{A}_i$. Observe first that $|\mathcal{A}| = s\binom{n}{k-1}$, for $n \ge k(s+1) - 1$. Indeed, it follows from an easy induction on k, and then on n. For k = 1 it is obvious. For $k \ge 1$ and n = k(s+1) - 1 we have clearly $|\mathcal{A}| = \binom{n}{k} = s\binom{n}{k-1}$. Now let $k \ge 2$, $n \ge k(s+1)$ and split all the sets of \mathcal{A} into those which contain n and those which do not. Then, the inductional hypothesis gives

$$|\mathcal{A}| = s\binom{n-1}{k-2} + s\binom{n-1}{k-1} = s\binom{n}{k-1}.$$

Observe also that $\binom{n}{k} = \sum_{i=1}^{s} \binom{n-i}{k-1} + \binom{n-s}{k}$, which is a direct consequence of the identity $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Thus, using Lemma 4 and the above observation, the number of edges of G which do not intersect $\{1, 2, \ldots, s\}$ can be bounded in the following way.

$$|G| - |G \cap \mathcal{A}_{1}| \leq |\mathcal{A}| - |\mathcal{A}_{1}| = s \binom{n}{k-1} - \left[\binom{n}{k} - \binom{n-s}{k}\right]$$
$$= s \left[\sum_{i=1}^{s} \binom{n-i}{k-2} + \binom{n-s}{k-1}\right] - \sum_{i=1}^{s} \binom{n-i}{k-1}$$
$$= s \sum_{i=1}^{s} \binom{n-i}{k-2} - \sum_{i=1}^{s} \sum_{j=1}^{s-i} \binom{n-i-j}{k-2}$$
$$= s \sum_{i=1}^{s} \binom{n-i}{k-2} - \sum_{i=2}^{s} (i-1)\binom{n-i}{k-2}$$
$$= \sum_{i=1}^{s} (s-i+1)\binom{n-i}{k-2} \leq \sum_{i=1}^{s} i\binom{n-1}{k-2}$$
$$= \frac{s(s+1)}{2}\binom{n-1}{k-2}.$$

Proof of Theorem 1. Let us assume that (2) holds for $G \in \mathcal{M}_k(n, s)$. Then, by Lemma 2, the hypergraph $H = \mathbf{Sh}(G)$ belongs to $\mathcal{M}_k(n, s)$. We shall show that $H \in \operatorname{Cov}_k(n, s)$ which, due to Lemma 3, would imply that $G \in \operatorname{Cov}_k(n, s)$. Our argument is based on the following two observations. Here and below by the degree deg(i) of a vertex i we mean the number of edges containing i, and by V and E we denote the sets of vertices and edges of H respectively.

Claim 6. If $s \ge 2$, then $\{1, ks + 2, ks + 3, \dots, ks + k\} \in E$.

Proof. Let us assume that the assertion does not hold. We shall show that then H has fewer edges than the graph H' = (V, E') whose edge set consists of all k-subsets intersecting $\{1, 2, \ldots, s\}$. Let $E_i = \{\{i\} \cup e' : e' \subset \{ks + 2, \ldots, n\}, |e'| = k - 1\}, i \in [s]$ and observe that the sets E_i are pairwise disjoint and $|E_i| = \binom{n-ks-1}{k-1}$ for every $i \in [s]$. Moreover, since $H = \mathbf{Sh}(H)$ and $\{1, ks + 2, ks + 3, \ldots, ks + k\} \notin E, E_1 \cap E = \emptyset$, and so $E_i \cap E = \emptyset$ for every $i \in [s]$. Thus,

$$|E' \setminus E| \ge s \binom{n-ks-1}{k-1} \\ \ge \frac{s(n-1)_{k-1}}{(k-1)!} \left(1 - \frac{ks}{n-k+1}\right)^{k-1},$$

$$(3)$$

while from Lemma 5 we get

$$|E \setminus E'| \leq \frac{s(s+1)}{2} \binom{n-1}{k-2} = \frac{s(n-1)_{k-1}}{(k-1)!} \frac{(s+1)(k-1)}{2(n-k+1)} \leq \frac{s(n-1)_{k-1}}{(k-1)!} \frac{ks}{n-k+1}.$$
(4)

Thus,

$$e(H') - e(H) \ge \frac{s(n-1)_{k-1}}{(k-1)!} \left(\left(1 - \frac{ks}{n-k+1}\right)^{k-1} - \frac{ks}{n-k+1} \right).$$

Let x = ks/(n - k + 1). It is easy to check that for all $k \ge 3$ and $x \in (0, 0.7 \log k/k)$ we have

$$(1-x)^{k-1} > x$$
.

Thus, e(H') - e(H) > 0 provided $k^2 s < 0.7 \log k(n - k + 1)$, which holds whenever $n \ge 2sk^2/\log k$. Thus, since clearly $\mu(H') = s$, we arrive at contradiction with the assumption that $H \in \mathcal{M}_k(n, s)$.

Claim 7. If $s \ge 2$ then $\deg(1) = \binom{n-1}{k-1}$. In particular, the hypergraph H^- , obtained from H by deleting the vertex 1 together with all edges it is contained in, belongs to $\mathcal{M}_k(n-1,s-1)$.

Proof. Let us assume that there is a k-subset of V, which contains 1 and is not an edge in H. Then, in particular, $e = \{1, n - k + 2, ..., n\} \notin E$. Let us consider hypergraph \overline{H} obtained from H by adding e to its edge set. Since $H \in \mathcal{M}_k(n, s)$, there is a matching of size s + 1 in \overline{H} containing e. Hence, as $H = \mathbf{Sh}(H)$, there exists a matching M in H such that $M \subset \{2, ..., ks + 1\}$. Note however that, by Claim 6, $f = \{1, ks + 2, ks + 3, ..., ks + k\} \in E$. But then $M' = M \cup \{f\}$ is a matching of size s + 1 in H, contradicting the fact that $H \in \mathcal{M}_k(n, s)$. Hence, we must have $\deg(1) = \binom{n-1}{k-1}$. Since $n \ge ks$, the second part of the assertion is obvious.

Now Theorem 1 follows easily from Claim 7 and the observation that, since $\frac{s-1}{n-1} \leq \frac{s}{n}$, if (2) holds then it holds also when n is replaced by n-1 and s is replaced by s-1. Thus, we can reduce the problem to the case when s = 1 and use Erdős-Ko-Rado theorem (note that then $n > 2k^2/\log k > 2k+1$).

References

- B. Bollobás, E. Daykin, and P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. (2), 27:25–32, 1976.
- [2] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8:93–95, 1965.
- [3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10:337–356, 1959.
- [4] P. Frankl, The shifting technique in extremal set theory. In *Surveys in Combinatorics*, volume 123 of *Lond. Math. Soc. Lect. Note Ser.*, pages 81–110. Cambridge, 1987.
- [5] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, arXiv:1205.6847.
- [6] P. Frankl and Z. Füredi, unpublished.
- [7] H. Huang, P. Loh, and B. Sudakov, The size of a hypergraph and its matching number, *Combinatorics, Probability & Computing*, 21:442-450, 2012.
- [8] T. Luczak, K. Mieczkowska, On Erdős' extremal problem on matchings in hypergraphs, arXiv:1202.4196.