On matchings in hypergraphs

Peter Frankl
Tokyo, Japan
peter.frankl@gmail.com
Tomasz Łuczak*
Adam Mickiewicz University
Faculty of Mathematics and CS
Poznań, Poland
and
Katarzyna Mieczkowska
Adam Mickiewicz University
Faculty of Mathematics and CS
Poznań, Poland
kaska@amu.edu.pl
Emory University
Department of Mathematics and CS
Atlanta, USA
tomasz@amu.edu.pl

Submitted: Mar 30, 2012; Accepted: Jun 3, 2012; Published: Jun 13, 2012 Mathematics Subject Classifications: 05C35, 05C65, 05C70.

Abstract

We show that if the largest matching in a k-uniform hypergraph G on n vertices has precisely s edges, and $n>3 k^{2} s / 2 \log k$, then H has at most $\binom{n}{k}-\binom{n-s}{k}$ edges and this upper bound is achieved only for hypergraphs in which the set of edges consists of all k-subsets which intersect a given set of s vertices.

A k-uniform hypergraph $G=(V, E)$ is a set of vertices $V \subseteq \mathbb{N}$ together with a family E of k-element subsets of V, which are called edges. In this note by $v(G)=|V|$ and $e(G)=|E|$ we denote the number of vertices and edges of $G=(V, E)$, respectively. By a matching we mean any family of disjoint edges of G, and we denote by $\mu(G)$ the size of the largest matching contained in E. Moreover, by $\nu_{k}(n, s)$ we mean the largest possible number of edges in a k-uniform hypergraph G with $v(G)=n$ and $\mu(G)=s$, and by $\mathcal{M}_{k}(n, s)$ we denote the family of the extremal hypergraphs for this problems, i.e. $H \in \mathcal{M}_{k}(n, s)$ if $v(H)=n, \mu(H)=s$, and $e(H)=\nu_{k}(n, s)$. In 1965 Erdős [2] conjectured that, unless $n=2 k$ and $s=1$, all graphs from $\mathcal{M}_{k}(n, s)$ are either cliques, or belong to the family $\operatorname{Cov}_{k}(n, s)$ of hypergraphs on n vertices in which the set of edges consists of

[^0]all k-subsets which intersect a given subset $S \subseteq V$, with $|S|=s$. This conjecture, which is a natural generalization of Erdős-Gallai result [3] for graphs, has been verified only for $k=3$ (see [5] and [8]). For general k there have been series of results which state that
\[

$$
\begin{equation*}
\mathcal{M}_{k}(n, s)=\operatorname{Cov}_{k}(n, s) \quad \text { for } \quad n \geqslant g(k) s \tag{1}
\end{equation*}
$$

\]

where $g(k)$ is some function of k. The existence of such $g(k)$ was shown by Erdős [2], then Bollobás, Daykin and Erdős [1] proved that (1) holds whenever $g(k) \geqslant 2 k^{3}$; Frankl and Füredi [6] showed that (1) is true for $g(k) \geqslant 100 k^{2}$ and recently, Huang, Loh, and Sudakov [7] verified (1) for $g(k) \geqslant 3 k^{2}$. The main result of this note slightly improves these bounds and confirms (1) for $g(k) \geqslant 2 k^{2} / \log k$.

Theorem 1. If $k \geqslant 3$ and

$$
\begin{equation*}
n>\frac{2 k^{2} s}{\log k} \tag{2}
\end{equation*}
$$

then $\mathcal{M}_{k}(n, s)=\operatorname{Cov}_{k}(n, s)$.
In the proof we use the technique of shifting (for details see [4]). Let $G=(V, E)$ be a hypergraph with vertex set $V=\{1,2, \ldots, n\}$, and let $1 \leqslant i<j \leqslant n$. The hypergraph $\operatorname{sh}_{i, j}(G)$ is obtained from G by replacing each edge $e \in E$ such that $j \in e, i \notin e$ and $e_{i j}=e \backslash\{j\} \cup\{i\} \notin E$, by $e_{i j}$. Let $\mathbf{S h}(G)$ denote the hypergraph obtained from G by the maximum sequence of shifts, such that for all possible i, j we have $\operatorname{sh}_{i j}(\mathbf{S h}(G))=\mathbf{S h}(G)$. It is well known and not hard to prove that the following holds (e.g. see [4] or [8]).

Lemma 2. $G \in \mathcal{M}_{k}(n, s)$ if and only if $\boldsymbol{S h}(G) \in \mathcal{M}_{k}(n, s)$.
Lemma 3. Let $G \in \mathcal{M}_{k}(n, s)$ and $n \geqslant 2 k+1$. Then $G \in \operatorname{Cov}_{k}(n, s)$ if and only if $\boldsymbol{S h}(G) \in \operatorname{Cov}_{k}(n, s)$.

Thus, it is enough to show Theorem 1 for hypergraphs G for which $\operatorname{Sh}(G)=G$. Let us start with the following observation.

Lemma 4. If G is a hypergraph on vertex set $[n]$ such that $\boldsymbol{S h}(G)=G$ and $\mu(G)=s$, then

$$
G \subseteq \mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots \cup A_{k}
$$

where

$$
\left.\mathcal{A}_{i}=\{A \subseteq[n]:|A|=k, \mid A \cap\{1,2, \ldots, i(s+1)-1)\} \mid \geqslant i\right\}
$$

for $i=1,2, \ldots, k$.
Proof. Note that the set $e_{0}=\{s+1,2 s+2, \ldots, k s+k\}$ is not an edge of G. Indeed, in such a case each of the edges $\{i, i+s+1, \ldots, i+(k-1)(s+1)\}, i=1,2, \ldots, s+1$, belongs to G due to the fact that $G=\operatorname{Sh}(G)$ and, clearly, they form a matching of size $s+1$. Now it is enough to observe that all sets which do not dominate e_{0} must belong to $\bigcup_{i=1}^{k} \mathcal{A}_{i}$.

The following numerical consequence of the above result is crucial for our argument.

Lemma 5. Let G be a hypergraph with vertex set $\{1,2, \ldots, n\}$ such that $\boldsymbol{S h}(G)=G$ and $\mu(G)=s$, where $n \geqslant k(s+1)-1$. Then all except at most $\frac{s(s+1)}{2}\binom{n-1}{k-2}$ edges of G intersect $\{1,2, \ldots, s\}$.

Proof. Let $\mathcal{A}=\bigcup_{i=1}^{k} \mathcal{A}_{i}$. Observe first that $|\mathcal{A}|=s\binom{n}{k-1}$, for $n \geqslant k(s+1)-1$. Indeed, it follows from an easy induction on k, and then on n. For $k=1$ it is obvious. For $k \geqslant 1$ and $n=k(s+1)-1$ we have clearly $|\mathcal{A}|=\binom{n}{k}=s\binom{n}{k-1}$. Now let $k \geqslant 2, n \geqslant k(s+1)$ and split all the sets of \mathcal{A} into those which contain n and those which do not. Then, the inductional hypothesis gives

$$
|\mathcal{A}|=s\binom{n-1}{k-2}+s\binom{n-1}{k-1}=s\binom{n}{k-1} .
$$

Observe also that $\binom{n}{k}=\sum_{i=1}^{s}\binom{n-i}{k-1}+\binom{n-s}{k}$, which is a direct consequence of the identity $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$. Thus, using Lemma 4 and the above observation, the number of edges of G which do not intersect $\{1,2, \ldots, s\}$ can be bounded in the following way.

$$
\begin{aligned}
|G|-\left|G \cap \mathcal{A}_{1}\right| & \leqslant|\mathcal{A}|-\left|\mathcal{A}_{1}\right|=s\binom{n}{k-1}-\left[\binom{n}{k}-\binom{n-s}{k}\right] \\
& =s\left[\sum_{i=1}^{s}\binom{n-i}{k-2}+\binom{n-s}{k-1}\right]-\sum_{i=1}^{s}\binom{n-i}{k-1} \\
& =s \sum_{i=1}^{s}\binom{n-i}{k-2}-\sum_{i=1}^{s} \sum_{j=1}^{s-i}\binom{n-i-j}{k-2} \\
& =s \sum_{i=1}^{s}\binom{n-i}{k-2}-\sum_{i=2}^{s}(i-1)\binom{n-i}{k-2} \\
& =\sum_{i=1}^{s}(s-i+1)\binom{n-i}{k-2} \leqslant \sum_{i=1}^{s} i\binom{n-1}{k-2} \\
& =\frac{s(s+1)}{2}\binom{n-1}{k-2} .
\end{aligned}
$$

Proof of Theorem 1. Let us assume that (2) holds for $G \in \mathcal{M}_{k}(n, s)$. Then, by Lemma 2, the hypergraph $H=\mathbf{S h}(G)$ belongs to $\mathcal{M}_{k}(n, s)$. We shall show that $H \in \operatorname{Cov}_{k}(n, s)$ which, due to Lemma 3, would imply that $G \in \operatorname{Cov}_{k}(n, s)$. Our argument is based on the following two observations. Here and below by the degree $\operatorname{deg}(i)$ of a vertex i we mean the number of edges containing i, and by V and E we denote the sets of vertices and edges of H respectively.
Claim 6. If $s \geqslant 2$, then $\{1, k s+2, k s+3, \ldots, k s+k\} \in E$.

Proof. Let us assume that the assertion does not hold. We shall show that then H has fewer edges than the graph $H^{\prime}=\left(V, E^{\prime}\right)$ whose edge set consists of all k-subsets intersecting $\{1,2, \ldots, s\}$. Let $E_{i}=\left\{\{i\} \cup e^{\prime}: e^{\prime} \subset\{k s+2, \ldots, n\},\left|e^{\prime}\right|=k-1\right\}, i \in[s]$ and observe that the sets E_{i} are pairwise disjoint and $\left|E_{i}\right|=\binom{n-k s-1}{k-1}$ for every $i \in[s]$. Moreover, since $H=\mathbf{S h}(H)$ and $\{1, k s+2, k s+3, \ldots, k s+k\} \notin E, E_{1} \cap E=\emptyset$, and so $E_{i} \cap E=\emptyset$ for every $i \in[s]$. Thus,

$$
\begin{align*}
\left|E^{\prime} \backslash E\right| & \geqslant s\binom{n-k s-1}{k-1} \tag{3}\\
& \geqslant \frac{s(n-1)_{k-1}}{(k-1)!}\left(1-\frac{k s}{n-k+1}\right)^{k-1}
\end{align*}
$$

while from Lemma 5 we get

$$
\begin{align*}
\left|E \backslash E^{\prime}\right| & \leqslant \frac{s(s+1)}{2}\binom{n-1}{k-2}=\frac{s(n-1)_{k-1}}{(k-1)!} \frac{(s+1)(k-1)}{2(n-k+1)} \tag{4}\\
& \leqslant \frac{s(n-1)_{k-1}}{(k-1)!} \frac{k s}{n-k+1}
\end{align*}
$$

Thus,

$$
e\left(H^{\prime}\right)-e(H) \geqslant \frac{s(n-1)_{k-1}}{(k-1)!}\left(\left(1-\frac{k s}{n-k+1}\right)^{k-1}-\frac{k s}{n-k+1}\right)
$$

Let $x=k s /(n-k+1)$. It is easy to check that for all $k \geqslant 3$ and $x \in(0,0.7 \log k / k)$ we have

$$
(1-x)^{k-1}>x
$$

Thus, $e\left(H^{\prime}\right)-e(H)>0$ provided $k^{2} s<0.7 \log k(n-k+1)$, which holds whenever $n \geqslant 2 s k^{2} / \log k$. Thus, since clearly $\mu\left(H^{\prime}\right)=s$, we arrive at contradiction with the assumption that $H \in \mathcal{M}_{k}(n, s)$.

Claim 7. If $s \geqslant 2$ then $\operatorname{deg}(1)=\binom{n-1}{k-1}$. In particular, the hypergraph H^{-}, obtained from H by deleting the vertex 1 together with all edges it is contained in, belongs to $\mathcal{M}_{k}(n-1, s-1)$.

Proof. Let us assume that there is a k-subset of V, which contains 1 and is not an edge in H. Then, in particular, $e=\{1, n-k+2, \ldots, n\} \notin E$. Let us consider hypergraph \bar{H} obtained from H by adding e to its edge set. Since $H \in \mathcal{M}_{k}(n, s)$, there is a matching of size $s+1$ in \bar{H} containing e. Hence, as $H=\mathbf{S h}(H)$, there exists a matching M in H such that $M \subset\{2, \ldots, k s+1\}$. Note however that, by Claim $6, f=\{1, k s+2, k s+3, \ldots, k s+$ $k\} \in E$. But then $M^{\prime}=M \cup\{f\}$ is a matching of size $s+1$ in H, contradicting the fact that $H \in \mathcal{M}_{k}(n, s)$. Hence, we must have $\operatorname{deg}(1)=\binom{n-1}{k-1}$. Since $n \geqslant k s$, the second part of the assertion is obvious.

Now Theorem 1 follows easily from Claim 7 and the observation that, since $\frac{s-1}{n-1} \leqslant \frac{s}{n}$, if (2) holds then it holds also when n is replaced by $n-1$ and s is replaced by $s-1$. Thus, we can reduce the problem to the case when $s=1$ and use Erdős-Ko-Rado theorem (note that then $n>2 k^{2} / \log k>2 k+1$).

References

[1] B. Bollobás, E. Daykin, and P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. (2), 27:25-32, 1976.
[2] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8:93-95, 1965.
[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10:337-356, 1959.
[4] P. Frankl, The shifting technique in extremal set theory. In Surveys in Combinatorics, volume 123 of Lond. Math. Soc. Lect. Note Ser., pages 81-110. Cambridge, 1987.
[5] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, arXiv:1205.6847.
[6] P. Frankl and Z. Füredi, unpublished.
[7] H. Huang, P. Loh, and B. Sudakov, The size of a hypergraph and its matching number, Combinatorics, Probability \& Computing, 21:442-450, 2012.
[8] T. Łuczak, K. Mieczkowska, On Erdős' extremal problem on matchings in hypergraphs, arXiv:1202.4196.

[^0]: *Partially supported by the Foundation for Polish Science and NSF grant DMS-1102086.

