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Abstract

We show that if the largest matching in a k-uniform hypergraph G on n vertices
has precisely s edges, and n > 3k2s/2 log k, then H has at most

(
n
k

)
−
(
n−s
k

)
edges

and this upper bound is achieved only for hypergraphs in which the set of edges
consists of all k-subsets which intersect a given set of s vertices.

A k-uniform hypergraph G = (V,E) is a set of vertices V ⊆ N together with a family
E of k-element subsets of V , which are called edges. In this note by v(G) = |V | and
e(G) = |E| we denote the number of vertices and edges of G = (V,E), respectively.
By a matching we mean any family of disjoint edges of G, and we denote by µ(G) the
size of the largest matching contained in E. Moreover, by νk(n, s) we mean the largest
possible number of edges in a k-uniform hypergraph G with v(G) = n and µ(G) = s,
and byMk(n, s) we denote the family of the extremal hypergraphs for this problems, i.e.
H ∈Mk(n, s) if v(H) = n, µ(H) = s, and e(H) = νk(n, s). In 1965 Erdős [2] conjectured
that, unless n = 2k and s = 1, all graphs from Mk(n, s) are either cliques, or belong to
the family Covk(n, s) of hypergraphs on n vertices in which the set of edges consists of
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all k-subsets which intersect a given subset S ⊆ V , with |S| = s. This conjecture, which
is a natural generalization of Erdős-Gallai result [3] for graphs, has been verified only for
k = 3 (see [5] and [8]). For general k there have been series of results which state that

Mk(n, s) = Covk(n, s) for n > g(k)s, (1)

where g(k) is some function of k. The existence of such g(k) was shown by Erdős [2], then
Bollobás, Daykin and Erdős [1] proved that (1) holds whenever g(k) > 2k3; Frankl and
Füredi [6] showed that (1) is true for g(k) > 100k2 and recently, Huang, Loh, and Su-
dakov [7] verified (1) for g(k) > 3k2. The main result of this note slightly improves these
bounds and confirms (1) for g(k) > 2k2/log k.

Theorem 1. If k > 3 and

n >
2k2s

log k
, (2)

thenMk(n, s) = Covk(n, s).

In the proof we use the technique of shifting (for details see [4]). Let G = (V,E) be
a hypergraph with vertex set V = {1, 2, . . . , n}, and let 1 6 i < j 6 n. The hypergraph
shi,j(G) is obtained from G by replacing each edge e ∈ E such that j ∈ e, i /∈ e and
eij = e \ {j}∪ {i} /∈ E, by eij. Let Sh(G) denote the hypergraph obtained from G by the
maximum sequence of shifts, such that for all possible i, j we have shij(Sh(G)) = Sh(G).
It is well known and not hard to prove that the following holds (e.g. see [4] or [8]).

Lemma 2. G ∈Mk(n, s) if and only if Sh(G) ∈Mk(n, s).

Lemma 3. Let G ∈ Mk(n, s) and n > 2k + 1. Then G ∈ Covk(n, s) if and only if
Sh(G) ∈ Covk(n, s).

Thus, it is enough to show Theorem 1 for hypergraphs G for which Sh(G) = G. Let
us start with the following observation.

Lemma 4. If G is a hypergraph on vertex set [n] such that Sh(G) = G and µ(G) = s,
then

G ⊆ A1 ∪ A2 ∪ · · · ∪ Ak ,

where
Ai = {A ⊆ [n] : |A| = k, |A ∩ {1, 2, . . . , i(s+ 1)− 1)}| > i},

for i = 1, 2, . . . , k.

Proof. Note that the set e0 = {s + 1, 2s + 2, . . . , ks + k} is not an edge of G. Indeed,
in such a case each of the edges {i, i + s + 1, . . . , i + (k − 1)(s + 1)}, i = 1, 2, . . . , s + 1,
belongs to G due to the fact that G = Sh(G) and, clearly, they form a matching of size
s+ 1. Now it is enough to observe that all sets which do not dominate e0 must belong to⋃k

i=1Ai.

The following numerical consequence of the above result is crucial for our argument.
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Lemma 5. Let G be a hypergraph with vertex set {1, 2, . . . , n} such that Sh(G) = G and

µ(G) = s, where n > k(s+1)−1. Then all except at most s(s+1)
2

(
n−1
k−2

)
edges of G intersect

{1, 2, . . . , s}.

Proof. Let A =
⋃k

i=1Ai. Observe first that |A| = s
(

n
k−1

)
, for n > k(s+ 1)− 1. Indeed, it

follows from an easy induction on k, and then on n. For k = 1 it is obvious. For k > 1
and n = k(s + 1) − 1 we have clearly |A| =

(
n
k

)
= s
(

n
k−1

)
. Now let k > 2, n > k(s + 1)

and split all the sets of A into those which contain n and those which do not. Then, the
inductional hypothesis gives

|A| = s

(
n− 1

k − 2

)
+ s

(
n− 1

k − 1

)
= s

(
n

k − 1

)
.

Observe also that
(
n
k

)
=
∑s

i=1

(
n−i
k−1

)
+
(
n−s
k

)
, which is a direct consequence of the

identity
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
. Thus, using Lemma 4 and the above observation, the

number of edges of G which do not intersect {1, 2, . . . , s} can be bounded in the following
way.

|G| − |G ∩ A1| 6 |A| − |A1| = s

(
n

k − 1

)
−
[(
n

k

)
−
(
n− s
k

)]
= s

[
s∑

i=1

(
n− i
k − 2

)
+

(
n− s
k − 1

)]
−

s∑
i=1

(
n− i
k − 1

)

= s
s∑

i=1

(
n− i
k − 2

)
−

s∑
i=1

s−i∑
j=1

(
n− i− j
k − 2

)

= s
s∑

i=1

(
n− i
k − 2

)
−

s∑
i=2

(i− 1)

(
n− i
k − 2

)
=

s∑
i=1

(s− i+ 1)

(
n− i
k − 2

)
6

s∑
i=1

i

(
n− 1

k − 2

)
=
s(s+ 1)

2

(
n− 1

k − 2

)
.

Proof of Theorem 1. Let us assume that (2) holds for G ∈Mk(n, s). Then, by Lemma 2,
the hypergraph H = Sh(G) belongs to Mk(n, s). We shall show that H ∈ Covk(n, s)
which, due to Lemma 3, would imply that G ∈ Covk(n, s). Our argument is based on the
following two observations. Here and below by the degree deg(i) of a vertex i we mean
the number of edges containing i, and by V and E we denote the sets of vertices and
edges of H respectively.

Claim 6. If s > 2, then {1, ks+ 2, ks+ 3, . . . , ks+ k} ∈ E.
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Proof. Let us assume that the assertion does not hold. We shall show that then H
has fewer edges than the graph H ′ = (V,E ′) whose edge set consists of all k-subsets
intersecting {1, 2, . . . , s}. Let Ei = {{i} ∪ e′ : e′ ⊂ {ks + 2, . . . , n}, |e′| = k − 1}, i ∈ [s]
and observe that the sets Ei are pairwise disjoint and |Ei| =

(
n−ks−1
k−1

)
for every i ∈ [s].

Moreover, since H = Sh(H) and {1, ks+ 2, ks+ 3, . . . , ks+ k} /∈ E, E1 ∩ E = ∅, and so
Ei ∩ E = ∅ for every i ∈ [s]. Thus,

|E ′ \ E| > s

(
n− ks− 1

k − 1

)
>
s(n− 1)k−1

(k − 1)!

(
1− ks

n− k + 1

)k−1
,

(3)

while from Lemma 5 we get

|E \ E ′| 6 s(s+ 1)

2

(
n− 1

k − 2

)
=
s(n− 1)k−1

(k − 1)!

(s+ 1)(k − 1)

2(n− k + 1)

6
s(n− 1)k−1

(k − 1)!

ks

n− k + 1
.

(4)

Thus,

e(H ′)− e(H) >
s(n− 1)k−1

(k − 1)!

((
1− ks

n− k + 1

)k−1
− ks

n− k + 1

)
.

Let x = ks/(n− k + 1). It is easy to check that for all k > 3 and x ∈ (0, 0.7 log k/k) we
have

(1− x)k−1 > x .

Thus, e(H ′) − e(H) > 0 provided k2s < 0.7 log k(n − k + 1), which holds whenever
n > 2sk2/ log k. Thus, since clearly µ(H ′) = s, we arrive at contradiction with the
assumption that H ∈Mk(n, s).

Claim 7. If s > 2 then deg(1) =
(
n−1
k−1

)
. In particular, the hypergraph H−, obtained

from H by deleting the vertex 1 together with all edges it is contained in, belongs to
Mk(n− 1, s− 1).

Proof. Let us assume that there is a k-subset of V , which contains 1 and is not an edge
in H. Then, in particular, e = {1, n− k + 2, . . . , n} /∈ E. Let us consider hypergraph H̄
obtained from H by adding e to its edge set. Since H ∈Mk(n, s), there is a matching of
size s+ 1 in H̄ containing e. Hence, as H = Sh(H), there exists a matching M in H such
that M ⊂ {2, . . . , ks+ 1}. Note however that, by Claim 6, f = {1, ks+ 2, ks+ 3, . . . , ks+
k} ∈ E. But then M ′ = M ∪ {f} is a matching of size s+ 1 in H, contradicting the fact
that H ∈ Mk(n, s). Hence, we must have deg(1) =

(
n−1
k−1

)
. Since n > ks, the second part

of the assertion is obvious.

Now Theorem 1 follows easily from Claim 7 and the observation that, since s−1
n−1 6 s

n
,

if (2) holds then it holds also when n is replaced by n−1 and s is replaced by s−1. Thus,
we can reduce the problem to the case when s = 1 and use Erdős-Ko-Rado theorem (note
that then n > 2k2/ log k > 2k + 1).
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