Combinatorics, Probability and Computing

http://journals.cambridge.org/CPC
Combinatorics, Probability \mathcal{E} Computing
Additional services for Combinatorics, Probability and
Computing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

On the Maximum Number of Edges in a Triple System Not Containing a Disjoint Family of a Given Size

PETER FRANKL, VOJTECH RÖDL and ANDRZEJ RUCIŃSKI

Combinatorics, Probability and Computing / Volume 21 / Special Issue 1-2 / March 2012, pp 141-148
DOI: 10.1017/S0963548311000496, Published online: 02 February 2012
Link to this article: http://journals.cambridge.org/abstract S0963548311000496
How to cite this article:
PETER FRANKL, VOJTECH RÖDL and ANDRZEJ RUCIŃSKI (2012). On the Maximum Number of Edges in a Triple System Not Containing a Disjoint Family of a Given Size. Combinatorics, Probability and Computing, 21, pp 141-148 doi:10.1017/S0963548311000496

Request Permissions: Click here

On the Maximum Number of Edges in a Triple System Not Containing a Disjoint Family of a Given Size

PETER FRANKL ${ }^{1}$, VOJTECH RÖDL ${ }^{2 \dagger}$ and ANDRZEJ RUCIŃSKI ${ }^{3 \ddagger}$
${ }^{1}$ 3-12-25 Shibuya, Shibuya-ku, Tokyo 150-0002, Japan
(e-mail: peter.frankl@gmail.com)
${ }^{2}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
(e-mail: rodl@mathcs.emory.edu)
${ }^{3}$ Department of Discrete Mathematics, Adam Mickiewicz University, Poznań, Poland 61-614
(e-mail: rucinski@amu.edu.pl)

Received 15 April 2011; revised 18 July 2011; first published online 2 February 2012

In 1965 Erdős conjectured a formula for the maximum number of edges in a k-uniform n-vertex hypergraph without a matching of size s. We prove this conjecture for $k=3$ and all $s \geqslant 1$ and $n \geqslant 4 s$.

1. Introduction

A k-uniform hypergraph, or k-graph for short, is a pair $H=(V, E)$, where $V:=V(H)$ is a finite set of vertices and $E:=E(H) \subseteq\binom{V}{k}$ is a family of k-element subsets of V. Whenever convenient we will identify H with $E(H)$. A matching in H is a set of disjoint edges of H. The number of edges in a matching is called the size of the matching. The size of the largest matching in a k-graph H is denoted by $v(H)$. A matching is perfect if its size equals $|V| / k$.

In this paper we study the relation between $|E(H)|$ and $v(H)$.

Definition. Let integers k, s, and n be such that $k \geqslant 2$ and $0 \leqslant s \leqslant n / k$. Define $m^{s}(k, n)$ to be the smallest integer m such that every n-vertex k-graph H with $|E(H)| \geqslant m$ contains a matching of size s. In other words,

$$
m^{s}(k, n)=\min \{m:|E(H)| \geqslant m \Longrightarrow v(H) \geqslant s\} .
$$

[^0]It is quite easy to see that, for graphs, $m^{n / 2}(2, n)=\binom{n-1}{2}+1$. For k-graphs an analogous result is true: $m^{n / k}(k, n)=\binom{n-1}{k}+1$. Indeed, the example of the clique on $n-1$ vertices plus an isolated vertex yields the lower bound. For the upper bound, let k divide n, and let H be an arbitrary n-vertex k-graph with at least $\binom{n-1}{k}+1$ edges. Then, the complement H^{c} of H has fewer than $\binom{n-1}{k-1}$ edges, and therefore has to miss at least one perfect matching of $K_{n}^{(k)}$. (This can be seen by considering the expected number of edges in common with a random perfect matching.)

Erdős and Gallai [4] proved that, for all $1 \leqslant s \leqslant n / 2$,

$$
\begin{equation*}
m^{s}(2, n)=\max \left\{\binom{2 s-1}{2},\binom{n}{2}-\binom{n-s+1}{2}\right\}+1 \tag{1.1}
\end{equation*}
$$

A few years later Erdős [3] conjectured a generalization to all $k \geqslant 2$ and $1 \leqslant s \leqslant n / k$:

$$
\begin{equation*}
m^{s}(k, n)=\max \left\{\binom{k s-1}{k},\binom{n}{k}-\binom{n-s+1}{k}\right\}+1 \tag{1.2}
\end{equation*}
$$

The two competing k-graphs yielding the lower bound are $K_{k s-1}^{(k)} \cup(n-k s+1) K_{1}$, that is, the clique on $k s-1$ vertices appended by $n-k s+1$ isolated vertices, and $K_{n}^{(k)}-K_{n-s+1}^{(k)}$, a k-graph obtained from the complete k-graph on n vertices by deleting all edges of a fixed clique of order $n-s+1$. Equivalently, $K_{n}^{(k)}-K_{n-s+1}^{(k)}$ is the k-graph consisting of all k-element sets intersecting a given subset of vertices of size $s-1$.

Trivially, the conjecture is true for $s=1$, but already for $s=2$ it is equivalent to the celebrated Erdős-Ko-Rado theorem. For larger s, the conjecture has been confirmed by Erdős himself [3], but only for n sufficiently large with respect to k and s. Later, Bollobás, Daykin and Erdős [2], and Frankl and Füredi [6] improved the lower bound on n, to $2 k^{3} s$ and $100 k s^{2}$, respectively. Recently, Huang, Loh, and Sudakov [7] improved this bound further to $3 k^{2} s$. We refer the reader to the survey paper [5]. Here we prove the Erdős conjecture for $k=3$ and all $s \geqslant 1$ and $n \geqslant 4 s$.

Theorem 1.1. For all $s \geqslant 1$ and $n \geqslant 4 s$, if H is a 3-uniform hypergraph with $|V(H)|=n$ and $v(H) \leqslant s-1$, then $|H| \leqslant\binom{ n}{3}-\binom{n-s+1}{3}$. In other words,

$$
m^{s}(3, n)=\binom{n}{3}-\binom{n-s+1}{3}+1
$$

Note that for $k=3$ and $n \geqslant 4 s$ the maximum in (1.2) is achieved by the second term. The actual transition point is around (3.486)s, so the question remains whether Theorem 1.1 can be extended to all n for which $\binom{3 s-1}{3} \leqslant\binom{ n}{3}-\binom{n-s+1}{3}$.

The proof of Theorem 1.1 relies on the technique of shifting and is presented in Section 2.

1.1. Minimum degree versus perfect matching

There are several results relating the minimum degree of a k-uniform hypergraph to the existence of a perfect matching (see, e.g., [11]). It was shown in [1] that in order to determine asymptotically a minimum degree guaranteeing the existence of a perfect matching in a k-graph on n vertices, it suffices to prove a fractional version of Erdős's
conjecture for $(k-1)$-graphs with $n-1$ vertices and $s=\frac{n}{k}$. For $k=3$ this can be easily deduced from Theorem 1.1 and we obtain the following corollary.

Corollary 1.2. If H is a 4-uniform hypergraph with the number of vertices n divisible by 4 and with $\delta(H) \geqslant(1+o(1)) \frac{37}{64}\binom{n-1}{3}$, then H contains a perfect matching.

This improves a previous bound of $(1+o(1)) \frac{42}{64}\binom{n-1}{3}$ due to Markström and Ruciński [10]. In [1] the fractional version of Erdős's conjecture is proved, by quite different methods, also for 4 -graphs with $s=\frac{n}{5}$. This yields an analogue of Corollary 1.2 for 5uniform hypergraphs with $\frac{369}{625}\binom{n-1}{4}$ in place of $\frac{37}{64}\binom{n-1}{3}$. (Both thresholds are asymptotically best possible.)

Recently, the result of Corollary 1.2 has also been proved, by quite different methods, by Khan [8] as well as by Lo and Markström [9].

2. Proof of Theorem 1.1

The proof is by induction on s, with the case $s=1$ completely trivial. Before we show the induction's step, let us recall the operation of shifting. Consider a hypergraph H with the vertex set $V(H)$ ordered linearly, say $V(H)=\{1,2, \ldots, n\}$. Given $1 \leqslant i<j \leqslant n$ and an edge $e \in H$, we define the (i, j)-shift $S_{i j}(e)$ of e as follows:

$$
S_{i j}(e)= \begin{cases}(e \backslash\{j\}) \cup\{i\} & \text { if } i \notin e, j \in e,(e \backslash\{j\}) \cup\{i\} \notin H, \tag{2.1}\\ e & \text { otherwise } .\end{cases}
$$

We define $S_{i j}(H)=\left\{S_{i j}(e): e \in H\right\}$. We call H shifted if $S_{i j}(H)=H$ for all $1 \leqslant i<$ $j \leqslant n$. Note that shifting preserves the size of a hypergraph and that it does not increase the size of a largest matching. Formally, $\left|S_{i j}(H)\right|=|H|$ and $v\left(S_{i j}(H)\right) \leqslant v(H)$. Therefore, in what follows we may assume that H is shifted.

Let us fix $s \geqslant 2$ and assume that Theorem 1.1 is true for all $s^{\prime}<s$. In the proofs of the next two claims we are going to use the following notation: for all $v \in V(H)$, let

$$
H_{\nexists v}=\{e \in H: v \notin e\}, \quad H_{\ni v}=\{e \in H: v \in e\} .
$$

We will first show that it suffices to restrict the proof of Theorem 1.1 to the sole case of $n=4 s$.

Claim 2.1. For all $s \geqslant 2$ and $n \geqslant 4 s+1$, if Theorem 1.1 holds for $n-1$ then it also holds for n.

Proof. Let H be a shifted 3-uniform hypergraph on n vertices with $v(H) \leqslant s-1$. Then, clearly, $\left|V\left(H_{\nexists n}\right)\right|=n-1, v\left(H_{\not \nexists n}\right) \leqslant s-1$ and so, by our assumption that Theorem 1.1 holds for $n-1$, we have $\left|H_{\ngtr n}\right| \leqslant\binom{ n-1}{3}-\binom{n-s}{3}$.

Let $H^{\prime}=\left\{e \backslash\{n\}: e \in H_{\ni n}\right\}$. We claim that $v\left(H^{\prime}\right) \leqslant s-1$. Suppose not. Then there are s disjoint edges in H^{\prime} and, because H is shifted, each of them forms an edge of H with any vertex $v \in V(H)$. There are, however, at least $n-2 s \geqslant 2 s+1 \geqslant s$ vertices v available and a matching of size s exists in H, a contradiction.

Since $v\left(H^{\prime}\right) \leqslant s-1$, by the Erdős-Gallai theorem (see (1.1)), $\left|H^{\prime}\right| \leqslant\binom{ n-1}{2}-\binom{n-s}{2}$. Hence, $|H|=\left|H_{\nrightarrow n}\right|+\left|H^{\prime}\right| \leqslant\binom{ n-1}{3}-\binom{n-s}{3}+\binom{n-1}{2}-\binom{n-s}{2}=\binom{n}{3}-\binom{n-s+1}{3}$.

We can therefore assume that $n=4 s$ throughout the rest of the proof.
Claim 2.2. If $\{1,3 s-1,3 s\} \in H$ and $v(H) \leqslant s-1$, then $|H| \leqslant\binom{ n}{3}-\binom{n-s+1}{3}$.
Proof. Suppose $v\left(H_{\not \supset 1}\right)=s-1$. Then, because H is shifted, there is a matching M of size $s-1$ in $H_{\ngtr 1}$ such that $V(M)=\{2,3, \ldots, 3 s-2\}$. This matching, together with the edge $\{1,3 s-1,3 s\}$, forms a matching of size s in H, which contradicts the assumption that $v(H) \leqslant s-1$. Consequently, $v\left(H_{\ngtr 1}\right) \leqslant s-2$ and, hence, by induction on $s,\left|H_{\ngtr 1}\right| \leqslant$ $\binom{n-1}{3}-\binom{n-s+1}{3}$. On the other hand, trivially, $\left|H_{\ni 1}\right| \leqslant\binom{ n-1}{2}$ and we conclude that

$$
|H| \leqslant\left|H_{\ngtr 1}\right|+\left|H_{\ni 1}\right| \leqslant\binom{ n-1}{3}+\binom{n-1}{2}-\binom{n-s+1}{3}=\binom{n}{3}-\binom{n-s+1}{3}
$$

In view of Claim 2.2, we assume that $\{1,3 s-1,3 s\} \notin H$. As a consequence, no edge of H intersects the set $\{3 s-1,3 s, \ldots, 4 s\}$ in 2 or 3 vertices. Let

$$
F_{0}=\left\{e \in\binom{[4 s]}{3}:|e \cap\{3 s-1,3 s, \ldots, 4 s\}| \geqslant 2\right\} .
$$

Then the complement H^{c} of H contains F_{0} and

$$
\left|F_{0}\right|=\binom{s+2}{3}+\binom{s+2}{2}(3 s-2)
$$

Hence, in order to prove Theorem 1.1, it is enough to verify that

$$
\begin{equation*}
\left|H^{c} \backslash F_{0}\right| \geqslant\binom{ 3 s+1}{3}-\left|F_{0}\right|=\frac{1}{6}\left(17 s^{3}-24 s^{2}-5 s+12\right):=W(s) . \tag{2.2}
\end{equation*}
$$

Consider an auxiliary bipartite graph $B=(X, Y, E(B))$, where $X=\{2 s+1, \ldots, 3 s\}, Y=$ $[s]:=\{1, \ldots, s\}$ and, for $w \in X$ and $i \in Y$, the pair $\{w, i\} \in E(B)$ if $\{i, 2 s+1-i, w\} \in H$. Since $v(H) \leqslant s-1$, the graph B does not have a perfect matching, and by Hall's theorem, there is a set $T \subseteq X, 1 \leqslant t:=|T| \leqslant s$, such that its neighbourhood $N:=N_{B}(T)$ has size $|N|=t-1$. Because H is shifted, we may assume that $T=\{3 s-t+1, \ldots, 3 s\}$.

Because H is shifted, if $\{x, y, z\} \notin H$ and $x \leqslant u, y \leqslant v$, and $z \leqslant w$, with all u, v, w distinct, then also $\{u, v, w\} \notin H$. In such a case we say that triple $\{u, v, w\} \notin H$ is forbidden by triple $\{x, y, z\} \notin H$.

By the definition of the set N, for every $w \in T$ and $i \in[s] \backslash N$, we have $\{i, 2 s+1-$ $i, w\} \notin H$. For each $i=1, \ldots, s$, let A_{i} be the set of all triples of $H^{c} \backslash F_{0}$ forbidden by $\{i, 2 s+1-i, 3 s-t+1\}$, that is,

$$
A_{i}=\{1 \leqslant u<v<w \leqslant 4 s: i \leqslant u, 2 s+1-i \leqslant v \leqslant 3 s-2,3 s-t+1 \leqslant w\} .
$$

Then

$$
\begin{equation*}
\left|H^{c} \backslash F_{0}\right| \geqslant\left|\bigcup_{i \in[s] \backslash N} A_{i}\right| . \tag{2.3}
\end{equation*}
$$

Since our goal is to prove (2.2), it will be sufficient to show that $\left|\bigcup_{i \in[s] \backslash N} A_{i}\right| \geqslant W(s)$. We will consider two cases, $t=1$ and $t \geqslant 2$, with the latter split into two subcases, $t=s$ and $2 \leqslant t \leqslant s-1$.

Case $\boldsymbol{t}=1$. In this case $N=\emptyset$, and hence none of the triples $\{i, 2 s+1-i, 3 s\}, i=1, \ldots, s$, belong to H. In order to estimate $\left|\bigcup_{i \in[s] \backslash N} A_{i}\right|$, we count triples which are not forbidden by any of the triples $\{i, 2 s+1-i, 3 s\}$.

For each $w=3 s, 3 s+1, \ldots, 4 s$ only the pairs $\{i, j\}, i=1, \ldots, s-1, j=i+1, \ldots, 2 s-i$, can form an edge with w, altogether, at most $s(s-1)$ edges for each w. This means that

$$
\left|\bigcup_{i \in[s] \backslash N} A_{i}\right| \geqslant(s+1)\left[\binom{3 s-2}{2}-s(s-1)\right]=\frac{1}{2}\left(7 s^{3}-6 s^{2}-7 s+6\right),
$$

and inequality (2.2) can be easily verified for every $s \geqslant 1$.
Case $\boldsymbol{t} \geqslant 2$. In order to calculate $\left|A_{i}\right|$, we define four segments of vertices:

- $A=\{i, \ldots, 2 s-i\}, a:=|A|=2 s-2 i+1$,
- $B=\{2 s-i+1, \ldots, 3 s-t\}, b:=|B|=s-t+i$,
- $C=\{3 s-t+1, \ldots, 3 s-2\}, c:=|C|=t-2$,
- $D=\{3 s-1, \ldots, 4 s\}, d:=|D|=s+2$.

Observe that

$$
A_{i}=\{1 \leqslant u<v<w \leqslant 4 s: u \in A \cup B \cup C, v \in B \cup C, w \in C \cup D\},
$$

and, moreover,

- $a b(c+d)$ triples in A_{i} satisfy $u \in A, v \in B$,
- $a\left(c d+\binom{c}{2}\right)$ triples in A_{i} satisfy $u \in A, v \in C$,
- $\binom{b}{2}(c+d)$ triples in A_{i} satisfy $u \in B, v \in B$,
- $b\left(c d+\binom{c}{2}\right)$ triples in A_{i} satisfy $u \in B, v \in C$,
- $\binom{c}{2} d+\binom{c}{3}$ triples in A_{i} satisfy $u \in C, v \in C$.

Hence,

$$
\left|A_{i}\right|=a b(c+d)+a\left(c d+\binom{c}{2}\right)+\binom{b}{2}(c+d)+b\left(c d+\binom{c}{2}\right)+\binom{c}{2} d+\binom{c}{3} .
$$

After plugging in the formulas for a, b, c, d and collecting together all terms involving a, we obtain the following formula:

$$
\begin{equation*}
\left|A_{i}\right|=a[b(c+d)+q]+r_{i}=(2 s-2 i+1)[(s-t+i)(s+t)+q]+r_{i}, \tag{2.4}
\end{equation*}
$$

where

$$
q=\binom{c}{2}+c d=\binom{t-2}{2}+(t-2)(s+2)
$$

and

$$
r_{i}=\binom{b}{2}(c+d)+b q+\binom{c}{2} d+\binom{c}{3}
$$

Subcase $t=s$. For $t=s$ the above formula simplifies to

$$
\left|A_{i}\right|=(2 s-2 i+1)(2 s i+q)+s i(i-1)+q i+\binom{s-2}{2}(s+2)+\binom{s-2}{3}
$$

which is a quadratic function of i with the main term $-3 s i^{2}$. So, the minimum is achieved at either $i=1$ or $i=s$.

We have

$$
\left|A_{1}\right|=\frac{1}{3}\left(11 s^{3}-12 s^{2}-5 s+6\right)
$$

and

$$
\left|A_{s}\right|=\frac{1}{6}\left(19 s^{3}-18 s^{2}-7 s+6\right)
$$

It can be easily checked that for $s \geqslant 1$ both these quantities are greater than or equal to $W(s)$, and so (2.2) holds.

Subcase $\mathbf{2} \leqslant \boldsymbol{t} \leqslant \boldsymbol{s} \mathbf{- 1}$. In this case, we refine our estimates by considering unions $\left|A_{i} \cup A_{j}\right|$. Given $1 \leqslant i<j \leqslant s$, observe that

$$
A_{i} \cap A_{j}=\{1 \leqslant u<v<w \leqslant 4 s: j \leqslant u, 2 s+1-i \leqslant v \leqslant 3 s-2,3 s-t+1 \leqslant w\}
$$

and thus, the formula for $\left|A_{i} \cap A_{j}\right|$ can be obtained from that for $\left|A_{i}\right|$ by replacing the set $A=\{i, \ldots, 2 s-i\}$ with $\tilde{A}=\{j, \ldots, 2 s-i\}$, in other words, replacing $a=|A|$ with $\tilde{a}=|\tilde{A}|=2 s-i-j+1$.

Hence,

$$
\left|A_{i} \cap A_{j}\right|=(2 s-i-j+1)[(s+i-t)(s+t)+q]+r_{i}
$$

and consequently

$$
\left|A_{i} \cup A_{j}\right|=\left|A_{i}\right|+\left|A_{j}\right|-\left|A_{i} \cap A_{j}\right|=Q(i, j, t)+\left|A_{j}\right|,
$$

where

$$
\begin{equation*}
Q(i, j, t)=(j-i)[(s+i-t)(s+t)+q] . \tag{2.5}
\end{equation*}
$$

We are going to minimize Q with respect to all three variables: i, j, and t. Note that Q depends also on s, but we suppress this dependence here. Since $|[s] \backslash N|=s-t+1$, there are $i, j \in[s] \backslash N$ such that $s-t+1 \leqslant j \leqslant s$ and $1 \leqslant i \leqslant j-s+t$. For every $2 \leqslant t \leqslant s-1$, we estimate

$$
\begin{equation*}
\left|\bigcup_{i \in[s] \backslash N} A_{i}\right| \geqslant \max _{i, j \in[s] \backslash N}\left|A_{i} \cup A_{j}\right| \geqslant \min \left\{\left|A_{i} \cup A_{j}\right|: s-t+1 \leqslant j \leqslant s, 1 \leqslant i \leqslant j-s+t\right\} . \tag{2.6}
\end{equation*}
$$

Since $Q(i, j, t)$ is a quadratic function of i with a negative coefficient at i^{2}, we have in the given range of i

$$
Q(i, j, t) \geqslant \min \{Q(1, j, t), Q(j-s+t, j, t)\} \geqslant Q(j-s+t, j, t)
$$

where the last inequality comes from direct comparison, i.e.,

$$
Q(1, j, t)-Q(j-s+t, j, t)=(j+t-s-1)(q+s+t) \geqslant 0
$$

because $j \geqslant s-t+1$. Consequently, combining (2.2)-(2.6),

$$
\left|H^{c} \backslash F_{0}\right| \geqslant Q(j-s+t, j, t)+\left|A_{j}\right|=(s-t)[j(s+t)+q]+\left|A_{j}\right|:=P(j, t)
$$

for some $j=s-t+1, \ldots, s$. (Again, we suppress the dependence of P on s.)
Using (2.4) we can check that $P(j, t)$ is a quadratic function of j with a negative coefficient at j^{2}, and so

$$
P(j, t) \geqslant \min \{P(s-t+1, t), P(s, t)\} .
$$

Our plan is to express both $f(t):=P(s, t)$ and $g(t):=P(s-t+1, t)$ as polynomials (of degree 3) in t and show that their minima over $t, 2 \leqslant t \leqslant s-1$, are still at least as large as the right-hand side of (2.2). After collecting all terms we obtain

$$
f(t)=-\frac{1}{3} t^{3}-\frac{1}{2}(5 s-1) t^{2}+\left(3 s^{2}+\frac{3}{2} s+\frac{5}{6}\right) t+3 s^{3}-5 s^{2}-2 s+1
$$

and

$$
g(t)=-\frac{4}{3} t^{3}-2(s-1) t^{2}+\left(4 s^{2}-\frac{2}{3}\right) t+3 s^{3}-6 s^{2}-s+2 .
$$

Since the second derivatives with respect to t satisfy $f^{\prime \prime}(t)=-2 t+1-5 s<0$ and $g^{\prime \prime}(t)=-8 t-4 s+4<0$, both functions are concave and the minima are attained at $t=2$ or $t=s-1$. It remains to compare $f(2), f(s-1), g(2)$, and $g(s-1)$ against $W(s)$, the right-hand side of (2.2). We have

$$
\begin{aligned}
f(2) & =3 s^{3}+s^{2}-9 s+2, \\
f(s-1) & =\frac{1}{6}\left(19 s^{3}-43 s+6\right) \\
g(2) & =3 s^{3}+2 s^{2}-9 s-2 \\
\text { and } g(s-1) & =\frac{1}{6}\left(22 s^{3}-70 s+36\right)
\end{aligned}
$$

It can be easily checked that

$$
\min \{f(2), f(s-1), g(2), g(s-1)\}-W(s) \geqslant 0
$$

for every $s \geqslant 2$. This completes the proof of (2.2) and, therefore, also the proof of Theorem 1.1.

References

[1] Alon, N., Frankl, P., Huang, H., Rödl, V., Ruciński, A. and Sudakov, B. On the existence of large matchings and fractional matchings in uniform hypergraphs. Submitted.
[2] Bollobás, B., Daykin, D. E. and Erdős, P. (1976) Sets of independent edges of a hypergraph. Quart. J. Math. Oxford (2) 27 25-32.
[3] Erdős, P. (1965) A problem on independent r-tuples. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 93-95.
[4] Erdős, P. and Gallai, T. (1959) On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10 337-356.
[5] Frankl, P. (1987) The shifting technique in extremal set theory. In Surveys in Combinatorics, Vol. 123 of London Mathematical Society Lecture Notes, Cambridge University Press, pp. 81-110.
[6] Frankl, P. and Füredi, Z. Unpublished.
[7] Huang, H., Loh, P. and Sudakov, B. The size of a hypergraph and its matching number. Submitted.
[8] Khan, I. Perfect matchings in 4-uniform hypergraphs. Submitted.
[9] Lo, A. and Markström, K. F-factors in hypergraphs via absorption. Submitted.
[10] Markström, K. and Ruciński, A. (2011) Perfect matchings and Hamilton cycles in hypergraphs with large degrees. Europ. J. Combin. 32 677-687.
[11] Rödl, V. and Ruciński, A. (2010) Dirac-type questions for hypergraphs: A survey (or more problems for Endre to solve). In An Irregular Mind: Szemerédi is 70, Vol. 21 of Bolyai Soc. Math. Studies, pp. 561-590.

[^0]: \dagger Research supported by NSF grant DMS 080070.
 \ddagger Research supported by the National Science Centre grant N N201 604940. Research partly carried out at Emory University, Atlanta.

