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In 1965 Erdős conjectured a formula for the maximum number of edges in a k-uniform

n-vertex hypergraph without a matching of size s. We prove this conjecture for k = 3 and

all s � 1 and n � 4s.

1. Introduction

A k-uniform hypergraph, or k-graph for short, is a pair H = (V , E), where V := V (H) is a

finite set of vertices and E := E(H) ⊆
(
V
k

)
is a family of k-element subsets of V . Whenever

convenient we will identify H with E(H). A matching in H is a set of disjoint edges of H .

The number of edges in a matching is called the size of the matching. The size of the

largest matching in a k-graph H is denoted by ν(H). A matching is perfect if its size

equals |V |/k.
In this paper we study the relation between |E(H)| and ν(H).

Definition. Let integers k, s, and n be such that k � 2 and 0 � s � n/k. Define ms(k, n) to

be the smallest integer m such that every n-vertex k-graph H with |E(H)| � m contains a

matching of size s. In other words,

ms(k, n) = min{m : |E(H)| � m =⇒ ν(H) � s}.

† Research supported by NSF grant DMS 080070.
‡ Research supported by the National Science Centre grant N N201 604940. Research partly carried out at
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It is quite easy to see that, for graphs, mn/2(2, n) =
(
n−1
2

)
+ 1. For k-graphs an analogous

result is true: mn/k(k, n) =
(
n−1
k

)
+ 1. Indeed, the example of the clique on n − 1 vertices

plus an isolated vertex yields the lower bound. For the upper bound, let k divide n, and let

H be an arbitrary n-vertex k-graph with at least
(
n−1
k

)
+ 1 edges. Then, the complement Hc

of H has fewer than
(
n−1
k−1

)
edges, and therefore has to miss at least one perfect matching

of K (k)
n . (This can be seen by considering the expected number of edges in common with

a random perfect matching.)

Erdős and Gallai [4] proved that, for all 1 � s � n/2,

ms(2, n) = max

{(
2s − 1

2

)
,

(
n

2

)
−

(
n − s + 1

2

)}
+ 1. (1.1)

A few years later Erdős [3] conjectured a generalization to all k � 2 and 1 � s � n/k:

ms(k, n) = max

{(
ks − 1

k

)
,

(
n

k

)
−

(
n − s + 1

k

)}
+ 1. (1.2)

The two competing k-graphs yielding the lower bound are K
(k)
ks−1 ∪ (n − ks + 1)K1, that

is, the clique on ks − 1 vertices appended by n − ks + 1 isolated vertices, and K (k)
n − K

(k)
n−s+1,

a k-graph obtained from the complete k-graph on n vertices by deleting all edges of a

fixed clique of order n − s + 1. Equivalently, K (k)
n − K

(k)
n−s+1 is the k-graph consisting of all

k-element sets intersecting a given subset of vertices of size s − 1.

Trivially, the conjecture is true for s = 1, but already for s = 2 it is equivalent to the

celebrated Erdős–Ko–Rado theorem. For larger s, the conjecture has been confirmed by

Erdős himself [3], but only for n sufficiently large with respect to k and s. Later, Bollobás,

Daykin and Erdős [2], and Frankl and Füredi [6] improved the lower bound on n, to 2k3s

and 100ks2, respectively. Recently, Huang, Loh, and Sudakov [7] improved this bound

further to 3k2s. We refer the reader to the survey paper [5]. Here we prove the Erdős

conjecture for k = 3 and all s � 1 and n � 4s.

Theorem 1.1. For all s � 1 and n � 4s, if H is a 3-uniform hypergraph with |V (H)| = n

and ν(H) � s − 1, then |H | �
(
n
3

)
−

(
n−s+1

3

)
. In other words,

ms(3, n) =

(
n

3

)
−

(
n − s + 1

3

)
+ 1.

Note that for k = 3 and n � 4s the maximum in (1.2) is achieved by the second term. The

actual transition point is around (3.486)s, so the question remains whether Theorem 1.1

can be extended to all n for which
(
3s−1

3

)
�

(
n
3

)
−

(
n−s+1

3

)
.

The proof of Theorem 1.1 relies on the technique of shifting and is presented in

Section 2.

1.1. Minimum degree versus perfect matching

There are several results relating the minimum degree of a k-uniform hypergraph to

the existence of a perfect matching (see, e.g., [11]). It was shown in [1] that in order

to determine asymptotically a minimum degree guaranteeing the existence of a perfect

matching in a k-graph on n vertices, it suffices to prove a fractional version of Erdős’s
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conjecture for (k − 1)-graphs with n − 1 vertices and s = n
k
. For k = 3 this can be easily

deduced from Theorem 1.1 and we obtain the following corollary.

Corollary 1.2. If H is a 4-uniform hypergraph with the number of vertices n divisible by 4

and with δ(H) � (1 + o(1)) 37
64

(
n−1
3

)
, then H contains a perfect matching.

This improves a previous bound of (1 + o(1)) 42
64

(
n−1
3

)
due to Markström and Ruciński

[10]. In [1] the fractional version of Erdős’s conjecture is proved, by quite different

methods, also for 4-graphs with s = n
5
. This yields an analogue of Corollary 1.2 for 5-

uniform hypergraphs with 369
625

(
n−1
4

)
in place of 37

64

(
n−1
3

)
. (Both thresholds are asymptotically

best possible.)

Recently, the result of Corollary 1.2 has also been proved, by quite different methods,

by Khan [8] as well as by Lo and Markström [9].

2. Proof of Theorem 1.1

The proof is by induction on s, with the case s = 1 completely trivial. Before we show the

induction’s step, let us recall the operation of shifting. Consider a hypergraph H with

the vertex set V (H) ordered linearly, say V (H) = {1, 2, . . . , n}. Given 1 � i < j � n and an

edge e ∈ H , we define the (i, j)-shift Sij(e) of e as follows:

Sij(e) =

{
(e \ {j}) ∪ {i} if i �∈ e, j ∈ e, (e \ {j}) ∪ {i} �∈ H,

e otherwise.
(2.1)

We define Sij(H) = {Sij(e) : e ∈ H}. We call H shifted if Sij(H) = H for all 1 � i <

j � n. Note that shifting preserves the size of a hypergraph and that it does not increase

the size of a largest matching. Formally, |Sij(H)| = |H | and ν(Sij(H)) � ν(H). Therefore,

in what follows we may assume that H is shifted.

Let us fix s � 2 and assume that Theorem 1.1 is true for all s′ < s. In the proofs of the

next two claims we are going to use the following notation: for all v ∈ V (H), let

H �	v = {e ∈ H : v �∈ e}, H	v = {e ∈ H : v ∈ e}.

We will first show that it suffices to restrict the proof of Theorem 1.1 to the sole case

of n = 4s.

Claim 2.1. For all s � 2 and n � 4s + 1, if Theorem 1.1 holds for n − 1 then it also holds

for n.

Proof. Let H be a shifted 3-uniform hypergraph on n vertices with ν(H) � s − 1. Then,

clearly, |V (H �	n)| = n − 1, ν(H �	n) � s − 1 and so, by our assumption that Theorem 1.1

holds for n − 1, we have |H �	n| �
(
n−1
3

)
−

(
n−s
3

)
.

Let H ′ = {e \ {n} : e ∈ H	n}. We claim that ν(H ′) � s − 1. Suppose not. Then there are

s disjoint edges in H ′ and, because H is shifted, each of them forms an edge of H with

any vertex v ∈ V (H). There are, however, at least n − 2s � 2s + 1 � s vertices v available

and a matching of size s exists in H , a contradiction.
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Since ν(H ′) � s − 1, by the Erdős–Gallai theorem (see (1.1)), |H ′| �
(
n−1
2

)
−

(
n−s
2

)
. Hence,

|H | = |H �	n| + |H ′| �
(
n − 1

3

)
−

(
n − s

3

)
+

(
n − 1

2

)
−

(
n − s

2

)
=

(
n

3

)
−

(
n − s + 1

3

)
.

We can therefore assume that n = 4s throughout the rest of the proof.

Claim 2.2. If {1, 3s − 1, 3s} ∈ H and ν(H) � s − 1, then |H | �
(
n
3

)
−

(
n−s+1

3

)
.

Proof. Suppose ν(H �	1) = s − 1. Then, because H is shifted, there is a matching M of

size s − 1 in H �	1 such that V (M) = {2, 3, . . . , 3s − 2}. This matching, together with the

edge {1, 3s − 1, 3s}, forms a matching of size s in H , which contradicts the assumption

that ν(H) � s − 1. Consequently, ν(H �	1) � s − 2 and, hence, by induction on s, |H �	1| �(
n−1
3

)
−

(
n−s+1

3

)
. On the other hand, trivially, |H	1| �

(
n−1
2

)
and we conclude that

|H | � |H �	1| + |H	1| �
(
n − 1

3

)
+

(
n − 1

2

)
−

(
n − s + 1

3

)
=

(
n

3

)
−

(
n − s + 1

3

)
.

In view of Claim 2.2, we assume that {1, 3s − 1, 3s} �∈ H . As a consequence, no edge of

H intersects the set {3s − 1, 3s, . . . , 4s} in 2 or 3 vertices. Let

F0 =

{
e ∈

(
[4s]

3

)
: |e ∩ {3s − 1, 3s, . . . , 4s}| � 2

}
.

Then the complement Hc of H contains F0 and

|F0| =

(
s + 2

3

)
+

(
s + 2

2

)
(3s − 2).

Hence, in order to prove Theorem 1.1, it is enough to verify that

|Hc \ F0| �
(

3s + 1

3

)
− |F0| =

1

6
(17s3 − 24s2 − 5s + 12) := W (s). (2.2)

Consider an auxiliary bipartite graph B = (X,Y , E(B)), where X = {2s + 1, . . . , 3s}, Y =

[s] := {1, . . . , s} and, for w ∈ X and i ∈ Y , the pair {w, i} ∈ E(B) if {i, 2s + 1 − i, w} ∈ H .

Since ν(H) � s − 1, the graph B does not have a perfect matching, and by Hall’s theorem,

there is a set T ⊆ X, 1 � t := |T | � s, such that its neighbourhood N := NB(T ) has size

|N| = t − 1. Because H is shifted, we may assume that T = {3s − t + 1, . . . , 3s}.
Because H is shifted, if {x, y, z} �∈ H and x � u, y � v, and z � w, with all u, v, w distinct,

then also {u, v, w} �∈ H . In such a case we say that triple {u, v, w} �∈ H is forbidden by triple

{x, y, z} �∈ H .

By the definition of the set N, for every w ∈ T and i ∈ [s] \ N, we have {i, 2s + 1 −
i, w} �∈ H . For each i = 1, . . . , s, let Ai be the set of all triples of Hc \ F0 forbidden by

{i, 2s + 1 − i, 3s − t + 1}, that is,

Ai = {1 � u < v < w � 4s : i � u, 2s + 1 − i � v � 3s − 2, 3s − t + 1 � w}.
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Then

|Hc \ F0| �
∣∣∣∣ ⋃
i∈[s]\N

Ai

∣∣∣∣. (2.3)

Since our goal is to prove (2.2), it will be sufficient to show that |
⋃

i∈[s]\N Ai| � W (s).

We will consider two cases, t = 1 and t � 2, with the latter split into two subcases, t = s

and 2 � t � s − 1.

Case t = 1. In this case N = ∅, and hence none of the triples {i, 2s + 1 − i, 3s}, i = 1, . . . , s,

belong to H . In order to estimate |
⋃

i∈[s]\N Ai|, we count triples which are not forbidden

by any of the triples {i, 2s + 1 − i, 3s}.
For each w = 3s, 3s + 1, . . . , 4s only the pairs {i, j}, i = 1, . . . , s − 1, j = i + 1, . . . , 2s − i,

can form an edge with w, altogether, at most s(s − 1) edges for each w. This means that∣∣∣∣ ⋃
i∈[s]\N

Ai

∣∣∣∣ � (s + 1)

[(
3s − 2

2

)
− s(s − 1)

]
=

1

2
(7s3 − 6s2 − 7s + 6),

and inequality (2.2) can be easily verified for every s � 1.

Case t � 2. In order to calculate |Ai|, we define four segments of vertices:

• A = {i, . . . , 2s − i}, a := |A| = 2s − 2i + 1,

• B = {2s − i + 1, . . . , 3s − t}, b := |B| = s − t + i,

• C = {3s − t + 1, . . . , 3s − 2}, c := |C| = t − 2,

• D = {3s − 1, . . . , 4s}, d := |D| = s + 2.

Observe that

Ai = {1 � u < v < w � 4s : u ∈ A ∪ B ∪ C, v ∈ B ∪ C,w ∈ C ∪ D},

and, moreover,

• ab(c + d) triples in Ai satisfy u ∈ A, v ∈ B,

• a
(
cd +

(
c
2

))
triples in Ai satisfy u ∈ A, v ∈ C ,

•
(
b
2

)
(c + d) triples in Ai satisfy u ∈ B, v ∈ B,

• b
(
cd +

(
c
2

))
triples in Ai satisfy u ∈ B, v ∈ C ,

•
(
c
2

)
d +

(
c
3

)
triples in Ai satisfy u ∈ C, v ∈ C .

Hence,

|Ai| = ab(c + d) + a

(
cd +

(
c

2

))
+

(
b

2

)
(c + d) + b

(
cd +

(
c

2

))
+

(
c

2

)
d +

(
c

3

)
.

After plugging in the formulas for a, b, c, d and collecting together all terms involving

a, we obtain the following formula:

|Ai| = a[b(c + d) + q] + ri = (2s − 2i + 1)[(s − t + i)(s + t) + q] + ri, (2.4)

where

q =

(
c

2

)
+ cd =

(
t − 2

2

)
+ (t − 2)(s + 2)
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and

ri =

(
b

2

)
(c + d) + bq +

(
c

2

)
d +

(
c

3

)
.

Subcase t = s. For t = s the above formula simplifies to

|Ai| = (2s − 2i + 1)(2si + q) + si(i − 1) + qi +

(
s − 2

2

)
(s + 2) +

(
s − 2

3

)
,

which is a quadratic function of i with the main term −3si2. So, the minimum is achieved

at either i = 1 or i = s.

We have

|A1| =
1

3
(11s3 − 12s2 − 5s + 6)

and

|As| =
1

6
(19s3 − 18s2 − 7s + 6).

It can be easily checked that for s � 1 both these quantities are greater than or equal

to W (s), and so (2.2) holds.

Subcase 2 � t � s − 1. In this case, we refine our estimates by considering unions |Ai ∪ Aj |.
Given 1 � i < j � s, observe that

Ai ∩ Aj = {1 � u < v < w � 4s : j � u, 2s + 1 − i � v � 3s − 2, 3s − t + 1 � w},

and thus, the formula for |Ai ∩ Aj | can be obtained from that for |Ai| by replacing

the set A = {i, . . . , 2s − i} with Ã = {j, . . . , 2s − i}, in other words, replacing a = |A| with

ã = |Ã| = 2s − i − j + 1.

Hence,

|Ai ∩ Aj | = (2s − i − j + 1)[(s + i − t)(s + t) + q] + ri,

and consequently

|Ai ∪ Aj | = |Ai| + |Aj | − |Ai ∩ Aj | = Q(i, j, t) + |Aj |,

where

Q(i, j, t) = (j − i)[(s + i − t)(s + t) + q]. (2.5)

We are going to minimize Q with respect to all three variables: i, j, and t. Note that Q

depends also on s, but we suppress this dependence here. Since |[s] \ N| = s − t + 1, there

are i, j ∈ [s] \ N such that s − t + 1 � j � s and 1 � i � j − s + t. For every 2 � t � s − 1,

we estimate∣∣∣∣ ⋃
i∈[s]\N

Ai

∣∣∣∣ � max
i,j∈[s]\N

|Ai ∪ Aj | � min{|Ai ∪ Aj | : s − t + 1 � j � s, 1 � i � j − s + t}.

(2.6)
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Since Q(i, j, t) is a quadratic function of i with a negative coefficient at i2, we have in

the given range of i

Q(i, j, t) � min{Q(1, j, t), Q(j − s + t, j, t)} � Q(j − s + t, j, t),

where the last inequality comes from direct comparison, i.e.,

Q(1, j, t) − Q(j − s + t, j, t) = (j + t − s − 1)(q + s + t) � 0,

because j � s − t + 1. Consequently, combining (2.2)–(2.6),

|Hc \ F0| � Q(j − s + t, j, t) + |Aj | = (s − t)[j(s + t) + q] + |Aj | := P (j, t)

for some j = s − t + 1, . . . , s. (Again, we suppress the dependence of P on s.)

Using (2.4) we can check that P (j, t) is a quadratic function of j with a negative

coefficient at j2, and so

P (j, t) � min{P (s − t + 1, t), P (s, t)}.

Our plan is to express both f(t) := P (s, t) and g(t) := P (s − t + 1, t) as polynomials (of

degree 3) in t and show that their minima over t, 2 � t � s − 1, are still at least as large

as the right-hand side of (2.2). After collecting all terms we obtain

f(t) = −1

3
t3 − 1

2
(5s − 1)t2 +

(
3s2 +

3

2
s +

5

6

)
t + 3s3 − 5s2 − 2s + 1,

and

g(t) = −4

3
t3 − 2(s − 1)t2 +

(
4s2 − 2

3

)
t + 3s3 − 6s2 − s + 2.

Since the second derivatives with respect to t satisfy f′′(t) = −2t + 1 − 5s < 0 and

g′′(t) = −8t − 4s + 4 < 0, both functions are concave and the minima are attained at

t = 2 or t = s − 1. It remains to compare f(2), f(s − 1), g(2), and g(s − 1) against W (s),

the right-hand side of (2.2). We have

f(2) = 3s3 + s2 − 9s + 2,

f(s − 1) =
1

6
(19s3 − 43s + 6),

g(2) = 3s3 + 2s2 − 9s − 2,

and g(s − 1) =
1

6
(22s3 − 70s + 36).

It can be easily checked that

min{f(2), f(s − 1), g(2), g(s − 1)} − W (s) � 0

for every s � 2. This completes the proof of (2.2) and, therefore, also the proof of

Theorem 1.1.
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