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The following conjecture of G. O. H. Katona is proved. Let X be a finite set 
of cardinality n, and ~r a family of subsets of X. Let us suppose that for any two 
membersA, B o f d w e h a v e  [ A w B l < n - - r ,  I A c ~ B l > l ,  r i s a p o s i t i v e  
integer, r < n. Then 

(n-- l - -r) /2 

for odd, and 

(n-2-r)lu 
(n 7 1) + ((n n 2 - -  2r)/2) 

for even values of n -- r. 

1. INTRODUCTION 

Let X be a finite set o f  cardinality n. Let d be a system of  subsets of  X. 
Let r and s be positive integers r, s ~ n. 

Katona has proved in [1] that if for any sets A, B belonging to d we 
h a v e l A w B I  ~ < n - - r ,  then 

for even, and 

(n-r)/2 n (*) 
i=0 

(n--r--l)/2 1l 

i=o - -  r - -  1)/2) (**)  i t-< (i)§ 
fo r  o d d  va lues  o f  n - -  r > / 0 .  
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In  his survey paper [2] he raised the problem what  can we say about  
[ d [ if we know that  for  any two sets A,  B belonging to ~r we have 

I A U B I  < ~ n - - r ,  l A m B [  > i s ,  r , s < ~ n .  

He conjectured that  for  s = 1, 

i=O 

for  odd, and 

(n--2--r) I$ 

g=O 

(.-,) + ( ( . . -2  
i - -  2 - -  r)/2) 

for  even values o f  n - -  r. 
Ka tona  has shown that  for 

attained. 
the following systems equality can be 

(a) n - -  r = 2t - -  I 

Let x be an arbitrary element o f  X, and let d consist o f  exactly those 
subsets o f  X which contain x, and have cardinality less than or equal to t. 

(b) n - -  r = 2t 

Let  x and y be two different elements of  X. Let  d consist o f  the subsets 
o f  X which contain x and have cardinality less than or  equal to t or which 
contain both x and y and have cardinality t + 1. 

In  this paper  we prove this conjecture and show that  every optimal 
system is o f  the above form, unless r = 1. 

We need two results, the first o f  which is due to Klei tman [3] while 
the second is due to Ka tona  [1]. 

I. Let  ~ ,  M be two families o f  subsets o f  X which satisfy 

A'  C A ~ d implies A '  ~ .~r 

B '  D B e ~ implies B '  ~ ~ ,  

Then we have 

II. 

I W r ~  = { C l U e d  A C ~ } l  ~ (I d l l ~ l ) / 2 " .  

Let d be a family of / -e lement  subsets of  X. Let 

~ ' g - - - - { B I I B t  = g ^ 3 A E d I B C A } .  

(1) 
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I f  any two sets belonging to d have at least k elements in common then 
we have 

I d  I >/ [21--k] (g+k~ l ,g< l ) .  (2) 
I, ] l 

2. THE RESULTS 

THEOREM. Let X be a finite set o f  cardinality n, and let d be a family 
o f  subsets o f  X. Let us suppose that for  any two sets .4, B belonging to d 
we have l A  w B[ <~ n - - r ,  [ A n B[ >~ 1, r <~ n. 

Then 

for  odd, and 

(n--l--r)/2 
x 
i=o i 

(n--2-r)/2 

I d l~<  (n- -  1) + (( n n - - 2  
i - -  2 - -  r)/2) 

for  even values o f  n - -  r. 

For r ~ 1, equality holds only for  the families given in the Introduction. 

Proof. We separate the two cases n - -  r is odd, n - -  r is even. 

Case a (n - -  r is odd). Let us define two further families: 

d *  = {B 13A e se, A C B}, 

d .  = {Cl 3 A e d ,  C C A } .  

If B, B' belong to d * ,  and C, C' belong to d , ,  then we have 

I B c ~ B ' I  >~ 1, I C k J C ' l < ~ n - - r .  

We define these families for the other case, too. By (*) and by (**) 
we have 

(vi--'r--1)/2 

I d * l  < 2  " - I  , I d . I  ~< f___, 
i=0 

( " )  + - - " - - ,  - -  ' " 
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As d C d ,  n d * ,  applying (1) we get 

n ,  )) 
i~. i~  i- , . .~-,*  i ~ ~ (<'-7"" ( 7 )+  ( ( , , - , - , )1,  

\ /=0 

(n-~'--l)/2 ~((;) + z 
i=1 

,--.-.,,. (n-- ,) 
- -  i ' i=0 

- - 1 )  n - - 1  n - - 1  
[(n i +(i 1)]+((n- -r - - I )~2) )  

as asserted. Equality can hold only if equality holds in (**). It can happen 
only if for some x ~ X we have 

aft, = {A I [ A I ~ (n - -  r)/2} 

u (A I x ~ A, I A I = (n - -  r + 1)/2}, r > l .  

It follows that the members of the second term in this union belong to d 
and consequently every set belonging to d has to contain x (they are 
nondisjoint with the sets in the second term of the above union), and 
the uniqueness follows. 

Case b ( n -  r is even). Let a~ denote the number of k-element 
subsets of X belonging to d .  By the Erd6s-Ko-Rado theorem (see [3]) 
we have a~ ~ ~-~ (k-l) for k ~ n/2. Hence 

(n-r)/2 (n-r-2)/2 
ai ~ ~ (n-- 1) (3') 

i=o i=o i " 

Let  us suppose that d has maximal cardinality, then we have 

a~ >/((n n --  2 
- -  2 - -  r ) / 2 )  " i=(n--r+2) ]2 

(3) 

Let dk  denote the family of k-element subsets of X belonging to d , ,  
[ d r  [ = 5~. By (3) we have 

a~ ~> ((n n -- 2 
- -  2 - -  r ) / 2 )  " k~(n--r+2) [2 

We shall next prove 

Kj q _ j - -  l + r _ ( n )  
j a._,+l-~ <<. j (2j  ~< n - r). (4) 
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This inequality is essentially contained in [1]. Let  

~2~. = {B [ I B ] = n --  j ,  3A c d,_~+x_~ I A C B). 

Obviously we have I ~ [ q- I Ms I ~< (]), and by (2), 

[~ j  I ~ I d.- ,+l_j  I [(j - -  1 + r)/j], 

and (4) follows. As 2j ~< n --  r, so we can rewrite (4) ( j  ~ 0): 

aJ-~an-T+l-J ~ ( j )  
r - - 1  ( n )  2 ( r - -  1) 
~ -  d.-~+x-j ~ j n - -  r a.-~+l-~.. (5) 

Summing (5) f rom j = 0 through j = (n  - -  r ) / 2  we get (s  0 ~< 1 = (3)): 

n--r (n--r)/2 

1~$ I = E aJ ~ E (a./" "~- an_r+l_3" ) 
j=0 j=0 

~< J=o~" J n - -  r i= (n - r+2) /~an- r+ l - J  

(n - r ) /2  

E 
- - 1 )  n - - 1  [(nj +(j 2 ( r - - l )  ((n n - - 2  

n - -  r - -  2 - -  r)/2) 

-=--2 
(n--r--2)/2 

E 
j=O 

n - -  1) n - -  1 2 ( r - -  1) ((n n - - 2  
n --  r - -  2 - -  r) /2) 

= 2  j + ((n - -  2 - -  r)/2)) " (6) 
1) 

As [ d *  ] <~ 2 n - l ,  the statement of  the theorem follows as in Case a. 
I f  we have equality in (6) and r > 1 then we must  have equality in (3), 

whence in (3'). Consequently al = 1, i.e., for  some x e X, {x} e d .  Hence 
for any A ~ d ,  x ~ A and the uniqueness of  the optimal family follows 
f rom (**) as in Case a. 

3. REMARKS 

The theorem for the special case r = 1 was first proved by Daykin  
and Lov~isz [5]. In this case the optimal families are not  unique. This 
case is a trivial consequence of  (1) as it was observed by Klei tman 
(personal communication).  
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We conclude this paper  with a 

Conjecture. Let X be a finite set o f  cardinality n. Let  d be a family 
consisting o f  subsets o f  X, and let us suppose that  for  any to members  
A, B of  d we have 

[ A u B L  < ~ n - - 2 ,  t A n B [  ~ 2 .  (7) 

Let X = Y u Z ,  [ Y ]  = [ n / 2 ] ,  I Z [  = [ ( n + 1 ) / 2 ]  for  n = k  and 
n - - - - - k + l ;  ] Y[ = [ ( n - - 2 ) / 2 ] ,  I Z I  = [ ( n + 3 ) / 2 ]  for  n = k + 2  
and n = k + 3. 

Let  ff  be an optimal family o f  subsets o f  Y and ~ be an opt imal  
family o f  subsets o f  Z which satisfy the first and the second condition, 
respectively in (7). Let us define the family 

~ = { B C X I B n Y e T ,  B n Z e ~ } ,  then I~l  ~ [ d l .  
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