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Abstract

We give a short survey of problems and results on (1) diameter graphs and hypergraphs, and

(2) geometric Ramsey theory. We also make some modest contributions to both areas. Extending

a well known theorem of Kahn and Kalai which disproved Borsuk’s conjecture, we show that for

any integer r ě 2, there exist ε “ εprq ą 0 and d0 “ d0prq with the following property. For every

d ě d0, there is a finite point set P Ă Rd of diameter 1 such that no matter how we color the

elements of P with fewer than p1 ` εq
?
d colors, we can always find r points of the same color,

any two of which are at distance 1.

Erdős, Graham, Montgomery, Rothschild, Spencer, and Strauss called a finite point set

P Ă Rd Ramsey if for every r ě 2, there exists a set R “ RpP, rq Ă RD for some D ě d

such that no matter how we color all of its points with r colors, we can always find a monochro-

matic congruent copy of P . If such a set R exists with the additional property that its diameter

is the same as the diameter of P , then we call P diameter-Ramsey. We prove that, in contrast

to the original Ramsey property, (a) the condition that P is diameter-Ramsey is not hereditary,

and (b) not all triangles are diameter-Ramsey. We raise several open questions related to this

new concept.
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1 Introduction

The aim of this article is twofold. In the spirit of Graham-Yao [GrY90], we give a “whirlwind tour”

of two areas of Geometric Ramsey Theory, and make some modest contributions to them.

The diameter of a finite point set P , denoted by diampP q, is the largest distance that occurs

between two points of P . Borsuk’s famous conjecture [Bor33], restricted to finite point sets, states

that any such set of unit diameter in Rd can be colored by d` 1 colors so that no two points of the

same color are at distance one. This conjecture was disproved in a celebrated paper of Kahn and

Kalai [KaK93]. We extend the theorem of Kahn and Kalai as follows.

Theorem 1. For any integer r ě 2, there exist ε “ εprq ą 0 and d0 “ d0prq with the following

property. For every d ě d0, there is a finite point set P Ă Rd of diameter 1 such that no matter

how we color the elements of P with fewer than p1` εq
?
d colors, we can always find r points of the

same color, any two of which are at distance 1.

In a seminal paper of Erdős, Graham, Montgomery, Rothschild, Spencer, and Strauss [ErGM73],

the following notion was introduced. A finite set P of points in a Euclidean space is a Ramsey

configuration or, briefly, is Ramsey if for every r ě 2, there exists an integer d “ dpP, rq such that

no matter how we color all points of Rd with r colors, we can always find a monochromatic subset of

Rd that is congruent to P . In two follow-up articles [ErGM75a], [ErGM75b], Erdős, Graham, and

their coauthors established many important properties of these sets.

In the present paper, we introduce a related notion.

Definition 2. A finite set P of points in a Euclidean space is diameter-Ramsey if for every integer

r ě 2, there exist an integer d “ dpP, rq and a finite subset R Ă Rd with diampRq “ diampP q such

that no matter how we color all points of R with r colors, we can always find a monochromatic

subset of R that is congruent to P .

Obviously, every diameter-Ramsey set is Ramsey, but the converse is not true. For example, we

know that all triangles are Ramsey, but not all of them are diameter-Ramsey.

Theorem 3. All acute and all right-angled triangles are diameter-Ramsey.

Theorem 4. No triangle that has an angle larger than 150˝ is diameter-Ramsey.

There is another big difference between the two notions: By definition, every subset of a Ramsey

configuration is Ramsey. This is not the case for diameter-Ramsey sets.
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Theorem 5. The 7-element set consisting of a vertex of a 6-dimensional cube and its 6 adjacent

vertices is not diameter-Ramsey.

We will see that the vertex set of a cube (in fact, the vertex set of any brick) is diameter-Ramsey;

see Lemma 4.2. Therefore, the property that a set is diameter-Ramsey is not hereditary.

It appears to be a formidable task to characterize all diameter-Ramsey simplices. It easily follows

from the definition that all regular simplices are diameter-Ramsey; see Proposition 4.1. We will show

that the same is true for “almost regular” simplices.

Theorem 6. For every integer n ě 2, there exists a positive real number ε “ εpnq such that every

n-vertex simplex whose side lengths belong to the interval r1´ ε, 1` εs is diameter-Ramsey.

This article is organized as follows: In Section 2, we give a short survey of problems and results

on the structure of diameters and related coloring questions. In Section 3, we prove Theorem 1.

In Section 4, we establish some simple properties of diameter-Ramsey sets and prove Theorems 3,

4, and 6, in a slightly stronger form. The proof of Theorem 5 is presented in Section 5. The last

section contains a few open problems and concluding remarks.

2 A short history

I. The number of edges of diameter graphs and hypergraphs. Hopf and Pannwitz [HoP34]

noticed that in any set P of n points in the plane, the diameter occurs at most n times. In other

words, among the
`

n
2

˘

distances between pairs of points from P at most n are equal to diampP q.

This bound can be attained for every n ě 3. For odd n this is shown by the vertex set of a regular

n-gon, and for even n it is not hard to observe that one may add a further point to the vertex set

of a regular pn ´ 1q-gon so as to obtain such an example. In fact all extremal configurations were

characterized by Woodall [Wo71].

The same question in R3 was raised by Vázsonyi, who conjectured that the maximum number

of times the diameter can occur among n ě 4 points in 3-space is 2n ´ 2. Vázsonyi’s conjecture

was proved independently by Grünbaum [Gr56], by Heppes [He56], and by Straszewicz [St57]; see

also [Sw08] for a simple proof. The extremal configurations were characterized in terms of ball

polytopes by Kupitz, Martini, and Perles [KuMP10].

In dimensions larger than 3, the nature of the problem is radically different.
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Theorem 2.1. (Erdős [Er60]) For any integer d ą 3, the maximum number of occurrences of the

diameter (and, in fact, of any fixed distance) in a set of n points in Rd is 1
2

´

1´ 1
td{2u

` op1q
¯

n2.

More recently, Swanepoel [Sw09] determined the exact maximum number of appearances of the

diameters for all d ą 3 and all n that are sufficiently large depending on d.

The diameter graph associated with a set of points P is a graph with vertex set P , in which two

points are connected by an edge if and only if their distance is diampP q. Erdős noticed that there

is an intimate relationship between the above estimates for the number of edges of diameter graphs

and the following attractive conjecture of Borsuk [Bor33]: Every (finite) d-dimensional point set can

be decomposed into at most d`1 sets of smaller diameter. If it were true, this bound would be best

possible, as demonstrated by the vertex set of a regular simplex in Rd.

One can generalize the notion of diameter graph as follows. Given a point set P Ă Rd and an

integer r ě 2, let HrpP q denote the hypergraph with vertex set P whose hyperedges are all r-element

subsets tp1, . . . , pru Ď P with |pi ´ pj | “ diampP q whenever 1 ď i ‰ j ď r. Obviously, H2pP q is

the diameter graph of P , and HrpP q consists of the vertex sets of all r-cliques (complete subgraphs

with r vertices) in the diameter graph. Note that every r-clique corresponds to a regular pr ´ 1q-

dimensional simplex with side length diampP q. We call HrpP q the r-uniform diameter hypergraph

of P .

It was conjectured by Schur that the Hopf-Pannwitz theorem mentioned at the beginning of

this subsection can be extended to higher dimensions in the following way: For any d ě 2 and any

d-dimensional n-element point set P , the hypergraph HdpP q has at most n hyperedges. This was

proved for d “ 3 by Schur, Perles, Martini, and Kupitz [ScPMK03]. Building on work of Morić and

Pach [MoP15], the case d “ 4 was resolved by Kupavskii [Ku14], and the general case of Schur’s

conjecture was subsequently settled by Kupavskii and Polyanskii [KuP14].

However, for 2 ă r ă d we know very little about the number of edges of the diameter hyper-

graphs HrpP q and it would be interesting to investigate this matter further.

II. The chromatic number of diameter graphs and hypergraphs. Erdős [Er46] pointed out

that if we could prove that the number of edges of the diameter graph of every n-element point set

P Ă Rd is smaller than d`1
2 n, then this would imply that there is a vertex of degree at most d.

Hence, the chromatic number of the diameter graph would be at most d`1, and the color classes of

any proper coloring with d` 1 colors would define a decomposition of P into at most d` 1 pieces of

smaller diameter, as required by Borsuk’s conjecture. For d “ 2 and 3, this is the case. However, as
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is shown by Theorem 2.1, in higher dimensions the number of edges of an n-vertex diameter graph

can grow quadratically in n. Based on this, Erdős later suspected that Borsuk’s conjecture may be

false (personal communication). This was verified only in 1993 by Kahn and Kalai [KaK93].

Using a theorem of Frankl and Wilson [FrW81], Kahn and Kalai established the following much

stronger statement.

Theorem 2.2. (Kahn-Kalai) For any sufficiently large d, there is a finite point set P in the

d-dimensional Euclidean space such that no matter how we partition it into fewer than p1.2q
?
d

parts, at least one of the parts contains two points whose distance is diampP q.

In other words, the chromatic number of the diameter graph of P is at least p1.2q
?
d. Today

Borsuk’s conjecture is known to be false for all dimensions d ě 64; cf. [JeB14].

Definition 2.3. The chromatic number of a hypergraph H is the smallest number χ “ χpHq with

the property that the vertex set of H can be colored with χ colors such that no hyperedge of H is

monochromatic.

Clearly, we have

χpHrpP qq ď χpHr´1pP qq ď . . . ď χpH2pP qq ,

for every P and r ě 2. Moreover,

χpHrpP qq ď

R

χpH2pP qq

r ´ 1

V

.

To see this, take a proper coloring of the diameter graph H2pP q with the minimum number,

χ “ χpH2pP qq, of colors and let P1, . . . , Pχ be the corresponding color classes. Coloring all ele-

ments of

Ppi´1qpr´1q`1 Y Ppi´1qpr´1q`2 Y . . .Y Pipr´1q

with color i for 1 ď i ď χ
r´1 , we obtain a proper coloring of the hypergraph HrpP q. (Here we set

Ps “ H for all s ą χ.)

Using the above notation, the Kahn-Kalai theorem states that for any sufficiently large integer d,

there exists a set P Ă Rd with χpH2pP qq ě p1.2q
?
d. According to a result of Schramm [Sch88], we

have χpH2pP qq ď
`
a

3{2` ε
˘d

for every ε ą 0, provided that d is sufficiently large.

In the next section, we prove Theorem 1 stated in the Introduction. It extends the Kahn-Kalai

theorem to r-uniform diameter hypergraphs with r ě 2. Using the above notation, we will prove

the following.
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Theorem 2.4. For any integer r ě 2, there exist ε “ εprq ą 0 and d0 “ d0prq with the following

property. For every d ě d0, there is a finite point set P Ă Rd of diameter 1 such that

χpHrpP qq ě p1` εq
?
d .

That is, for any partition of P into fewer than p1 ` εq
?
d parts at least one of the parts contains r

points any two of which are at distance 1.

III. Geometric Ramsey theory. Recall from the Introduction that, according to the definition

of Erdős, Graham et al. [ErGM73], a finite set of points in some Euclidean space is said to be

Ramsey if for every r ě 2, there exists an integer d “ dpP, rq such that no matter how we color

all points of Rd with r colors, we can always find a monochromatic subset of Rd that is congruent

to P . Erdős, Graham et al. proved, among many other results, that every Ramsey set is spherical,

i.e., embeddable into the surface of a sphere. Later Graham [Gr94] conjectured that the converse

is also true: every spherical configuration is Ramsey. An important special case of this conjecture

was settled by Frankl and Rödl.

Theorem 2.5. [FrR90] Every simplex is Ramsey.

It was shown in [ErGM73] that the class of all Ramsey sets is closed both under taking subsets

and taking Cartesian products. This implies

Corollary 2.6. [ErGM73] All bricks, i.e., Cartesian products of finitely many 2-element sets, are

Ramsey.

Further progress in this area has been rather slow. The first example of a planar Ramsey

configuration with at least five elements was exhibited by Kř́ıž, who showed that every regular

polygon is Ramsey. He also proved that the same is true for every Platonic solid. Actually, he

deduced both of these statements from the following more general theorem.

Theorem 2.7. [Kr91] If there is a soluble group of isometries acting on a finite set of points P in

Rd, which has at most 2 orbits, then P is Ramsey.

Graham’s conjecture is still widely open. In fact, it is not even known whether all quadrilaterals

inscribed in a circle are Ramsey.

An alternative conjecture has been put forward by Leader, Russell, and Walters [LRW12]. They

call a point set transitive if its symmetry group is transitive. A subset of a transitive set is said to be
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subtransitive. Leader et al. conjecture that a set is Ramsey if and only if it is subtransitive. It is not

obvious a priori that this conjecture is different from Graham’s, that is, if there exists any spherical

set which is not subtransitive. However, this was shown to be the case in [LRW12]. In [LRW11] the

same authors showed further that not all quadrilaterals inscribed in a circle are subtransitive.

The “compactness” property of the chromatic number, established by Erdős and de Bruijn [BrE51],

implies that for every Ramsey set P and every positive integer r, there exists a finite configuration

R “ RpP, rq with the property that no matter how we color the points of R with r colors, we can find

a congruent copy of P which is monochromatic. Following the (now standard) notation introduced

by Erdős and Rado, we abbreviate this property by writing

R ÝÑ pP qr.

In Section 4, we address the problem how small the diameter of such a set R can be. In particular, we

investigate the question whether there exists a set R with diampRq “ diampP q such that R ÝÑ pP qr.

If such a set exists for every r, then according to Definition 2 (in the Introduction), P is called

diameter-Ramsey.

3 Proof of Theorem 1

The proof of Theorem 1, reformulated as Theorem 2.4, is based on the construction used by Kahn

and Kalai in [KaK93].

Suppose for simplicity that d “
`

2n
2

˘

holds for some even integer n and set r2ns “ t1, 2, . . . , 2nu.

The construction takes place in Rd and in the following we will index the coordinates of this space

by the 2-element subsets of r2ns.

To each partition r2ns “ XYY of r2ns into two n-element subsets X and Y , we assign the point

ppX,Y q “ ppY,Xq P Rd whose coordinate pT pX,Y q corresponding to some unordered pair T Ď r2ns

is given by

pT pX,Y q “

#

1 if |T XX| “ |T X Y | “ 1,

0 otherwise.

Let P Ď Rd be the set of all such points ppX,Y q. We have |P | “ 1
2

`

2n
n

˘

.

Each point ppX,Y q P P has precisely |X| |Y | “ n2 nonzero coordinates. The squared Euclidean

distance between ppX,Y q and ppX 1, Y 1q, for two different partitions of r2ns, is equal to the number
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of coordinates in which ppX,Y q and ppX 1, Y 1q differ. The number of coordinates in which both

ppX,Y q and ppX 1, Y 1q have a 1 is equal to

|X XX 1||Y X Y 1| ` |X X Y 1||X 1 X Y | .

Denoting |X XX 1| “ |Y X Y 1| by t, the last expression is equal to t2 ` pn´ tq2. Thus, we have

}ppX,Y q ´ ppX 1, Y 1q}2 “ 2n2 ´ 2pt2 ` pn´ tq2q ,

which attains its maximum for t “ n
2 . The maximum is n2, so that diampP q “ n.

Fact 3.1. An r-element subset tppX1, Y1q, . . . , ppXr, Yrqu Ď P is a hyperedge of HrpP q, the r-

uniform diameter hypergraph of P , if and only if

|Xi XXj | “
n

2
for all 1 ď i ‰ j ď r. l

We need the following important special case of a result of Frankl and Rödl [FrR87] from extremal

set theory. The set of all n-element subsets of r2ns is denoted by
`

r2ns
n

˘

.

Theorem 3.2. [FrR87] For every integer r ě 2, there exists γ “ γprq ą 0 with the following

property. Every family of subsets F Ď
`

r2ns
n

˘

with |F | ě p2 ´ γq2n has r members, F1, . . . , Fr P F ,

such that

|Fi X Fj | “
Yn

2

]

for all 1 ď i ‰ j ď r .

To establish Theorem 2.4, fix a subset Q of the set P defined above. The elements of Q are

points ppX,Y q P Rd for certain partitions r2ns “ X Y Y . Let FpQq Ď
`

r2ns
n

˘

denote the family of all

sets X and Y defining the points in Q. Notice that |FpQq| “ 2 |Q|.

By definition, χ “ χpHrpP qq is the smallest number for which there is a partition

P “ Q1 Y . . .YQχ

such that no Qk contains any hyperedge belonging to HrpP q. According to Fact 3.1, this is equivalent

to the condition that FpQkq does not contain r members such that any two have precisely n
2 elements

in common. Now Theorem 3.2 implies that

|FpQkq| “ 2 |Qk| ă
`

2´ γprq
˘2n

whenever 1 ď k ď χ .
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Thus, we have

|P | “

χ
ÿ

k“1

|Qk| ă
χ

2

`

2´ γprq
˘2n

.

Comparing the last inequality with the equation |P | “ 1
2

`

2n
n

˘

, we obtain

χ “ χpHrpP qq ą

`

2n
n

˘

`

2´ γprq
˘2n ą

ˆ

1`
γprq

3

˙

?
2d

.

This completes the proof of Theorem 2.4.

The proof of Theorem 2.4 gives the following result. The regular simplex Sr with r vertices and

unit side length is not only a Ramsey configuration, but for every k there exists set P pkq Ď Rd of

unit diameter with d ď cprq log2 k such that no matter how we color P pkq with k colors, it contains

a monochromatic congruent copy of Sr. (Here cprq ą 0 is a suitable constant that depends only

on r.)

4 Diameter-Ramsey sets – Proofs of Theorems 3, 4, and 6

According to Definition 2 (in the Introduction), a finite point set P is diameter-Ramsey if for every

r ě 2, there exists a finite set R in some Euclidean space with diampRq “ diampP q such that no

matter how we color all points of R with r colors, we can always find a monochromatic subset of R

that is congruent to P . Before proving Theorems 3, 4, and 6, we make some general observations

about diameter-Ramsey sets.

Proposition 4.1. Every regular simplex is diameter-Ramsey.

Proof. Let P be (the vertex set of) a d-dimensional regular simplex. For a fixed integer r ě 2, let

R be an rd-dimensional regular simplex of the same side length. By the pigeonhole principle, no

matter how we color the vertices of R with r colors, at least d` 1 of them will be of the same color,

and they induce a congruent copy of P . l

Recall that a brick is the vertex set of the Cartesian product of finitely many 2-element sets.

Lemma 4.2. If P and Q are diameter-Ramsey sets, then so is their Cartesian product P ˆ Q.

Consequently, any brick is diameter-Ramsey.
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Proof. It was shown in [ErGM73] that for any Ramsey sets P and Q, their Cartesian product,

P ˆQ “ tpˆ q | p P P, q P Qu ,

is also a Ramsey set. Their argument, combined with the equation

diam2pP ˆQq “ diam2pP q ` diam2pQq ,

proves the lemma. l

Proof of Theorem 3. Consider a right-angled triangle T whose legs are of length l1 and l2. Let

P (resp., Q) be a set consisting of two points at distance l1 (resp., l2) from each other, so that we

have T Ď P ˆ Q. By Lemma 4.2, P ˆ Q is diameter-Ramsey. Since diampT q “ diampP ˆ Qq, we

also have that T is diameter-Ramsey.

Now let T be an acute triangle with sides a, b, and c, where a ď b ď c. Set

l1 “
a

c2 ´ a2, l2 “
a

c2 ´ b2, and x “
a

a2 ` b2 ´ c2 .

Since T is acute, we have a2 ` b2 ´ c2 ą 0. Therefore, x is well defined. We have l1 ě l2 ě 0.

Suppose first that l1 ě l2 ą 0. Let T0 be a right angled triangle with legs l1 and l2, and let S be an

equilateral triangle of side length x. We have a2 “ l22`x
2, b2 “ l21`x

2, and c2 “ l21` l
2
2`x

2. Thus,

T Ď T0 ˆ S and diampT q “ diampT0 ˆ Sq “ c .

By Proposition 4.1 and Lemma 4.2, we conclude that T is diameter-Ramsey. In the remaining case,

we have l2 “ 0. Now T0 degenerates into a line segment or a point. It is easy to see that the above

proof still applies. l

We will prove Theorem 4 in a more general form. For this, we need a definition.

Definition 4.3. Let t be a positive integer. A finite set of points P in some Euclidean space is said

to be t-degenerate if it has a point p P P such that for the vertex set S of any regular t-dimensional

simplex with p P S and diampSq “ diampP q, we have

diampP Y Sq ą diampP q.

Theorem 4.4. Let t ě 1 and let P be a finite t-degenerate set of points in some Euclidean space,

which contains the vertex set of a regular t-dimensional simplex of side length diampP q. Then P is

not diameter-Ramsey.
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Proof. Suppose for contradiction that P is diameter-Ramsey. This implies that there exists a set R

with diampRq “ diampP q such that no matter how we color it by two colors, it always contains a

monochromatic congruent copy of P .

Color the points of R with red and blue, as follows. A point is colored red if it belongs to a

subset S Ă R that spans a t-dimensional simplex of side length diampRq. Otherwise, we color it

blue. Let P 1 be a monochromatic copy of P . By the assumptions, P 1 contains the vertices of a

regular t-dimensional simplex of side length diampP q, and all of these vertices are red. Since P is

t-degenerate, the point of P 1 corresponding to p is blue, which is a contradiction. l

Theorem 4 is an immediate corollary of Theorem 4.4 and the following statement.

Lemma 4.5. Every triangle that has an angle larger than 150˝ is 1-degenerate.

With no danger of confusion, for any two points p and p1, we write pp1 to denote both the segment

connecting them and its length.

To establish Lemma 4.5, it is sufficient to verify the following.

Lemma 4.6. Let T “ tp1, p2, p3u be the vertex set of a triangle and q another point in some

Euclidean space such that

maxpp2q, p3qq ď p1q ď p2p3.

Then the angle of T at p1 is at most 150˝.

First, we show why Lemma 4.6 implies Lemma 4.5. Let T “ tp1, p2, p3u be a triangle whose

angle at p1 is larger than 150˝, so that diampT q “ p2p3. Suppose without loss of generality that

diampT q “ 1. To prove that T is 1-degenerate, it is enough to show that for any unit segment

S “ p1q, we have diampT Y Sq ą 1. Suppose not. Then we have maxpp2q, p3qq ď p1q “ p2p3 “ 1.

Hence, by Lemma 4.6, the angle of T at p1 is at most 150˝, which is a contradiction.

Proof of Lemma 4.6. Proceeding indirectly, we assume that

?p2p1p3 ą 150˝ . (1)

Let Π denote a (2-dimensional) plane containing T , and let q1 denote the orthogonal projection of q

to Π. In the plane Π, let g and h denote the perpendicular bisectors of the segments p1p2 and p2p3,

respectively.
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b

p1

b
p2

b
p3

b q′

b o

g h

Since p1q ě p2q, we have p1q
1 ě p2q

1. Thus, q1 belongs

to the closed half-plane of Π bounded by g where p2 lies. By

symmetry, q1 belongs to the half-plane bounded by h that

contains p3. This implies that the intersection of these two

half-planes is nonempty. In particular, p1 cannot be an inte-

rior point of p2p3 and, by (1), it follows that the triangle T

must be non-degenerate. Hence, g and h must meet at a point

o, the circumcenter of T .

Due to the inscribed angle theorem, we have

?p2p1p3 `
1
2?p2op3 “ 180˝

and hence ?p2op3 ă 60˝ by (1). This, in turn, implies that p2o, p3o ą p2p3. Thus, we have

p2q
1 ď p2q ď p2p3 ă p2o

and, in particular, q1 ‰ o. If one side of a triangle is smaller than another, then the same is true for

the opposite angles. Applying this to the triangle p2q
1o, we obtain that ?q1op2 ă 90˝. Analogously,

we have ?q1op3 ă 90˝, which contradicts the position of q1 described in the previous paragraph. l

We have been unable to answer

Question 4.7. Does there exist any obtuse triangle that is diameter-Ramsey?

We would like to remark, however, that the answer would be affirmative if we would just consider

colourings with two colours. This is shown by the following example.

Example 4.8. Let R be the vertex set of a regular heptagon p1p2 . . . p7 and let P “ tp1, p2, p4u.

Clearly, P is the vertex set of an obtuse triangle having an angle of size 4
7 ¨ 180˝ ą 90˝ and

diampRq “ diampP q. Moreover, we have R ÝÑ pP q2, because the triple system with vertex set R

whose edges are all sets of the form tpi, pi`1, pi`3u (the addition being performed modulo 7) is known

to be isomorphic to the Fano plane, which in turn is known to have chromatic number 3.

It seems to be quite difficult to characterize all diameter-Ramsey simplices. According to Propo-

sition 4.1, every regular simplex is diameter-Ramsey. Theorem 6 states that this remains true for

“almost regular” simplices. It is a direct corollary of the following statement.
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Lemma 4.9. Every simplex S with vertices p1, p2, . . . , pn satisfying

ÿ

1ďiăjďn

ppipjq
2 ě

ˆˆ

n

2

˙

´ 1

˙

diam2pSq

is diameter-Ramsey.

Proof. Suppose without loss of generality that diampSq “ p1p2 “ 1. Our strategy is to embed S

into the Cartesian product R of 1 `
`

n
2

˘

regular simplices, some of which might degenerate to a

point. We will be able to achieve this, while making sure that diampRq “ 1. Thus, in view of

Proposition 4.1 and Lemma 4.2, we will be done.

Set

a “

g

f

f

e

ÿ

iăj

ppipjq2 ´

ˆ

n

2

˙

` 1 and xij “
b

1´ ppipjq2

for every i ă j. Let T0 be a regular simplex of side length a with n vertices. Let Sij be a regular

simplex of side length xij with n ´ 1 vertices, 1 ď i ă j ď n. For the Cartesian product of these

simplices,

R “ T0 ˆ
ź

iăj

Sij ,

we have

diam2pRq “ a2 `
ÿ

iăj

x2ij “ 1 ,

as required.

Let π0 : R ÝÑ T0 and πij : R ÝÑ Sij denote the canonical projections. Choose n points,

q1, . . . , qn P R such that

T0 “ tπ0pq1q, . . . , π0pqnqu , Sij “ tπijpq1q, . . . , πijpqnqu and πijpqiq “ πijpqjq ,

for 1 ď i ă j ď n. It remains to check that the simplex tq1, . . . , qnu is congruent to S. However,

this is obvious, because

pqkq`q
2 “ a2 `

ÿ

iăj

x2ij ´ x
2
k` “ 1´ x2k` “ ppkp`q

2 ,

for every 1 ď k ă ` ď n. l
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5 Proof of Theorem 5

Throughout this section, let d ě 6, let p0 denote the origin of Rd, and let S “ tp0, p1, p2, p3u Ă Rd

be the vertex set of a regular tetrahedron of side length
?

2. Further, let P Ă Rd denote the 7-

element set consisting of the origin p0 P Rd and the (endpoints of the) first 6 unit coordinate vectors

q1 “ p1, 0, 0, 0, 0, 0, . . .q, q2 “ p0, 1, 0, 0, 0, 0, . . .q, . . . , q6 “ p0, 0, 0, 0, 0, 1, . . .q. Obviously, we have

diampSq “ diampP q “
?

2.

In view of Theorem 4.4, in order to establish Theorem 5, it is sufficient to prove that P is

3-degenerate. That is, we have to show that diampP Y Sq ą
?

2. In other words, we have to

establish

Claim 5.1. There exist integers i and j p1 ď i ď 3, 1 ď j ď 6q with piqj ą
?

2.

The rest of this section is devoted to the proof of this claim.

For i “ 1, 2, 3, decompose pi into two components: the orthogonal projection of pi to the subspace

induced by the first 6 coordinate axes and its orthogonal projection to the subspace induced by the

remaining coordinate axes. That is, if pi “ pxip1q, . . . , xipdqq, let pi “ p1i ` p
2
i , where

p1i “ pxip1q, . . . , xip6q, 0, . . . , 0q and p2i “ p0, . . . , 0, xip7q, . . . , xipdqq .

Obviously, we have

|pi|
2 “ |p1i|

2 ` |p2i |
2 “ 2 . (2)

The proof of Claim 5.1 is indirect. Suppose, for the sake of contradiction, that

diamtp0, p1, p2, p3, q1, . . . , q6u “
?

2 .

Since qj and p0 differ only in their jth coordinate and piqj ď pip0, the points pi and qj lie on the

same side of the hyperplane perpendicularly bisecting the segment p0qj . That is,

xipjq ě
1

2
for every i, j p1 ď i ď 3, 1 ď j ď 6q. (3)

Hence, we have |p1i|
2 “

ř6
j“1 x

2
i pjq ě

3
2 and, by (2),

|p2i |
2 “ |pi|

2 ´ |p1i|
2 ď

1

2
for every i p1 ď i ď 3q. (4)

Moreover, if i, i1 P t1, 2, 3u are distinct, then

xpi, pi1y “
1
2

`

|pi|
2 ` |p2i1 | ´ |pi ´ pi1 |

2
˘

“ 1
2p2` 2´ 2q “ 1 ,

14



whence (3) implies

xp2i , p
2
i1y “ 1´

6
ÿ

j“1

xipjqxi1pjq ď ´
1
2 .

In view of (4) it follows that

|p21 ` p
2
2 ` p

2
3|
2 “ |p21|

2 ` |p22|
2 ` |p23|

2 ` 2
`

xp21, p
2
2y ` xp

2
1, p

2
3y ` xp

2
2, p

2
3y
˘

ď ´3
2 ,

which is a contradiction. This concludes the proof of Claim 5.1 and, hence, also the proof of

Theorem 5.

6 Concluding remarks

I. Kneser graphs and hypergraphs. Let d “ rn ` pk ´ 1qpr ´ 1q, where r, k ě 2 are integers.

Assign to each n-element subset X Ď rds the characteristic vector of X. That is, assign to X the

point ppXq P Rd, whose i-th coordinate is

pipXq “

#

1 if i P X,

0 if i R X.

Let P Ď Rd be the set of all points ppXq. We have |P | “
`

d
n

˘

and diampP q “
?

2n.

For r “ 2, we have P Ă R2n`k´1, and the diameter graph H2pP q is called a Kneser graph. It

was conjectured by Kneser [Kn55] and proved by Lovász [Lo78] that χpH2pP qq ą k. On the other

hand, if k ď n, we have H3pP q “ H.

This was generalized to any value of r by Alon, Frankl, and Lovász [AlFL86], who showed that

χpHrpP qq ą k, while Hr`1pP q “ H, provided that pk´ 1qpr´ 1q ă n. In other words, the fact that

the chromatic number of the r-uniform diameter hypergraph of a point set is high does not imply

that the same must hold for its pr ` 1q-uniform counterpart.

For any integers r, d ě 2, let χrpdq denote the maximum chromatic number which an r-uniform

diameter hypergraph of a point set P Ď Rd can have.

Question 6.1. Is it true that for every r ě 2, we have χr`1pdq “ opχrpdqq, as d tends to infinity?

II. Relaxations of the diameter-Ramsey property. Diameter-Ramsey configurations seem to

constitute a somewhat peculiar subclass of the class of all Ramsey configurations. We suggest to

classify all Ramsey configurations P according to the growth rate of the minimum diameter of a

point set R with R ÝÑ pP qr, as r Ñ8.
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Definition 6.2. Given a Ramsey configuration P and an integer r, we define

dP prq “ inf tdiampRq |R ÝÑ pP qru .

We have dP prq ě diampP q, for any Ramsey set P and any integer r, and this holds with equality

if and only if for every ε ą 0 there exists a configuration R with R ÝÑ pP qr and diampRq ď

p1 ` εqdiampP q. Certainly, all diameter-Ramsey sets P satisfy dP prq “ diampP q for all r, but

perhaps the configurations with the latter property form a broader class.

Definition 6.3. We call a Ramsey set P , lying in some Euclidean space,

(a) almost diameter-Ramsey if dP prq “ diampP q holds for all positive integers r;

(b) diameter-bounded if there is CP ą 0 such that dP prq ă CP holds for every positive integer r;

(c) diameter-unbounded if dP prq tends to infinity, as r Ñ8.

We do not know whether there exists any almost diameter-Ramsey configuration that fails to be

diameter-Ramsey. Thus, we would like to ask the following

Question 6.4. Is it true that every almost diameter-Ramsey set is diameter-Ramsey?

To establish the diameter-boundedness of certain sets, we may utilize a result of Matoušek and

Rödl [MaR95]. They showed that, given a simplex S with circumradius %, any number of colors r,

and any ε ą 0, there exists an integer d such that the d-dimensional sphere of radius %` ε contains

a configuration R with R ÝÑ pSqr. In particular, this implies the following

Corollary 6.5. Every simplex is diameter-bounded Ramsey.

Consequently, every diameter-unbounded Ramsey set must be affinely dependent. We cannot

decide whether there exists any diameter-unbounded Ramsey set, but the regular pentagon may

serve as a good candidate. Kř́ıž’s proof establishing that the regular pentagon is Ramsey [Kr91]

does not seem to imply that it is also diameter-bounded.

Question 6.6. Is the regular pentagon diameter-unbounded?

Finally we mention that one can also define these notions for families of configurations and ask,

e.g., whether they be uniformly diameter-bounded Ramsey. As an example, we remark that a slight

modification of a colouring appearing in [ErGM73] shows that no bounded subset of any Euclidean
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space can simultaneously arrow all triangles whose diameter is 2 with 8 colours. To see this, one may

colour each point x with the residue class of t2}x}2u modulo 8. Given any K ą 1 we set ξ “ 1
17K2

and consider the isosceles triangle with legs of length 1 ` ξ and base of length 2. Assume for the

sake of contradiction that there is a monochromatic copy abc of this triangle with apex vertex b and

with }a}, }b}, }c} ď K. Let m denote the mid-point of the segment ac and observe that bm “
?
ξ.

The triangle inequality yields
a

ξ “ }b´m} ě
ˇ

ˇ}b} ´ }m}
ˇ

ˇ

and, hence, we have
a

ξ ¨
`

}b} ` }m}
˘

ě
ˇ

ˇ}b}2 ´ }m}2
ˇ

ˇ .

Multiplying by 4, and applying triangle inequality to the left-hand side and the parallelogram law

to the right-hand side we infer

2
a

ξ ¨
`

}a} ` 2}b} ` }c}
˘

ě
ˇ

ˇ4}b}2 ´ }a` c}2
ˇ

ˇ

“
ˇ

ˇ4}b}2 ´ 2}a}2 ´ 2}c}2 ` }a´ c}2
ˇ

ˇ

“
ˇ

ˇ4`
`

2}b}2 ´ 2}a}2
˘

`
`

2}b}2 ´ 2}c}2
˘ˇ

ˇ ,

which due to t2}a}2u ” t2}b}2u ” t2}c}2u pmod 8q leads to 8K
?
ξ ě 2, contrary to our choice of ξ.

Remark 6.7. While revising this article, we learned from Nora Frankl about some progress regard-

ing Question 4.7 obtained jointly with Jan Corsten [CF17]. They proved that the bound of 150˝

appearing in Theorem 4 above can be lowered to 135˝. Their elegant proof involves the spherical

colouring and Jung’s inequality.
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177–190.
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[Kr91] I. Kř́ıž: Permutation groups in Euclidean Ramsey theory, Proc. Amer. Math. Soc. 112

(1991), no. 3, 899–907.

[Ku14] A. Kupavskii: Diameter graphs in R4, Discrete Comput. Geom. 51 (2014), no. 4, 842–858.

[KuP14] A. B. Kupavskii and A. Polyanskii: Proof of Schur’s conjecture in Rd, arXiv:1402.3694v1.

[KuMP10] Y. S. Kupitz, H. Martini, and M. A. Perles: Ball polytopes and the Vázsonyi problem,

Acta Math. Hungar. 126 (2010), no. 1-2, 99–163.

[Lo78] L. Lovász: Knesers conjecture, chromatic number, and homotopy, J. Combin. Theory Ser.

A 25 (1978), no. 3, 319–324.

[LRW11] I. Leader, P. A. Russell, and M. Walters: Transitive sets and cyclic quadrilaterals, J.

Comb. 2 (2011), no. 3, 457–462.

[LRW12] I. Leader, P. A. Russell, and M. Walters: Transitive sets in Euclidean Ramsey Theory, J.

Combin. Theory Ser. A 119 (2012), no. 2, 382–396.
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