a NOTE ON SUPERSATURATED SET SYSTEMS

PETER FRANKL, YOSHIHARU KOHAYAKAWA, AND VOJTĚCH RÖDL

Abstract

A well known theorem of Erdős, Ko and Rado implies that any family \mathscr{F} of k element subsets of an n-element set with more than $\binom{n-t}{k-t}$ members must contain two members F and F^{\prime} with $\left|F \cap F^{\prime}\right|<t$, as long as n is sufficiently large with respect to k and t. We investigate how many such pairs $\left(F, F^{\prime}\right) \in \mathscr{F} \times \mathscr{F}$ there must be in any such family \mathscr{F} with $|\mathscr{F}|=\alpha\binom{n-t}{k-t}$ and $\alpha>1$.

1. Introduction

Let $1 \leq t<k \leq n$ be integers. Let X be a set with $|X|=n$ and let $\mathscr{F} \subset\binom{X}{k}$ be a family of k-element subsets of X. We say that \mathscr{F} is t-intersecting if $\left|F \cap F^{\prime}\right| \geq t$ for any F and $F^{\prime} \in \mathscr{F}$. For example, the family $\mathscr{I}(T)$ of all $\binom{n-t}{k-t}$ subsets of X with k elements containing a fixed t-element set $T \subset X$ is t-intersecting.

The well known theorem of Erdős, Ko and Rado [5] states that, for any given $1 \leq t<k$, the largest possible size of a t-intersecting family $\mathscr{F} \subset\binom{X}{k}$ is $\binom{n-t}{k-t}$, provided that $|X|=n \geq n_{0}(k, t)$. The least value of $n_{0}(k, t)$ for which this holds, namely, $n_{0}(k, t)=(k-t+1)(t+1)$, was established by the first author [7] for every $t>14$ and Wilson [11] generalized this to $t>1$. The original paper [5] already contained this result for $t=1$ (see also [8] for a new short proof). Thus, if $n \geq(k-t+1)(t+1)$ and $\mathscr{F} \subset\binom{X}{k}$ is such that $|\mathscr{F}|>\binom{n-t}{k-t}$, then \mathscr{F} contains a pair of members F and F^{\prime} with $\left|F \cap F^{\prime}\right|<t$. In this note, we study how many pairs $\left(F, F^{\prime}\right) \in \mathscr{F} \times \mathscr{F}$ with $\left|F \cap F^{\prime}\right|<t$ are guaranteed to exist in any family $\mathscr{F} \subset\binom{X}{k}$ with $|\mathscr{F}|=\alpha\binom{n-t}{k-t}$ and $\alpha>1$. The case $t=1$ is already very interesting: this problem was raised by Ahlswede [1] in 1980. Very recently, Das, Gan and Sudakov [4] addressed this problem for arbitrary t and k. The related problem in which we let $t=1$ and consider general set systems $\mathscr{F} \subset 2^{X}$ and not only k-uniform hypergraphs $\mathscr{F} \subset\binom{X}{k}$ was solved independently by the first author [6] and Ahlswede [1] (see also Bollobás and Leader [3]). For a detailed, recent account on the relevant literature, the reader is referred to [4].

Date: 2014/02/17, 5:24pm.
The second author was partially supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq (308509/2007-2 and $477203 / 2012-4$), NSF (DMS 1102086) and NUMEC/USP (Project MaCLinC/USP). The third author was supported by the NSF grants DMS 0800070, 1301698 and 1102086 and by CORES ERC CZ LL1201.

In order to state our result precisely, we introduce some notation. As usual, let $[n]=$ $\{1, \ldots, n\}$. Given a family of sets \mathscr{F}, let

$$
\begin{equation*}
\mathscr{F}_{j}^{(2)}=\left\{\left(F, F^{\prime}\right) \in \mathscr{F} \times \mathscr{F}:\left|F \cap F^{\prime}\right|=j\right\} \tag{1}
\end{equation*}
$$

and let $\mathscr{F}_{<t}^{(2)}=\bigcup_{j<t} \mathscr{F}_{j}^{(2)}$. Let

$$
\begin{equation*}
\mu(n, k, t, \alpha)=\min _{\mathscr{F}}\left|\mathscr{F}_{<t}^{(2)}\right|, \tag{2}
\end{equation*}
$$

where the minimum is taken over all $\mathscr{F} \subset\binom{[n]}{k}$ with $|\mathscr{F}|=\left\lfloor\alpha\binom{n-t}{k-t}\right\rfloor$. Das, Gan and Sudakov [4] determined $\mu(n, k, t, \alpha)$ precisely for all k, t and α, for all $n \geq n_{0}(k, t, \alpha)$. We shall be able to handle a somewhat wider range of the parameters k, t and α, at the expense of giving asymptotic estimates for $\mu(n, k, t, \alpha)$ only. Our proofs are also of a different nature.

We need some further preparations to state our results. For any real number α, let

$$
\left\{\begin{array}{l}
\alpha \tag{3}\\
2
\end{array}\right\}=\binom{\lfloor\alpha\rfloor}{ 2}+(\alpha-\lfloor\alpha\rfloor)\lfloor\alpha\rfloor,
$$

where, as usual, for any integer k, we let $\binom{x}{k}=(x)_{k} / k!=x(x-1) \ldots(x-k+1) / k!$ if $k \geq 0$ and we let $\binom{x}{k}=0$ if $k<0$. If α is an integer, then $\left\{\begin{array}{l}\alpha \\ 2\end{array}\right\}=\binom{\alpha}{2}$ and, for real α, if we write $\alpha=\lfloor\alpha\rfloor+x$, then $\left\{\begin{array}{l}\alpha \\ 2\end{array}\right\}$ grows linearly in x from $\binom{\lfloor\alpha\rfloor}{ 2}$ to $\binom{\lfloor\alpha\rfloor+1}{2}$. Thus, $\left\{\begin{array}{l}\alpha \\ 2\end{array}\right\}$ is the 'simplest' piecewise linear function that coincides with $\binom{\alpha}{2}$ on integer values of α.

In what follows, the asymptotic notation is with respect to $n \rightarrow \infty$. For a function $f=f(n)$ and an eventually positive function $g=g(n)$, we write $f \ll g$ and $f=o(g)$ if $|f / g| \rightarrow 0$ as $n \rightarrow \infty$. In particular, $o(1)$ denotes functions $f=f(n)$ with $|f| \rightarrow 0$ as $n \rightarrow \infty$. When convenient, we shall write $f \sim g$ to mean that $f=(1+o(1)) g$ and we shall write $f \gtrsim g$ to mean that $f \geq(1+o(1)) g$.

Let σ be a real number such that, for some x_{0}, every interval $\left[x-x^{\sigma}, x\right]$ with $x \geq x_{0}$ contains a prime number. Baker, Harman and Pintz [2] have proved that one can take $\sigma=0.525$. Fix a real number $0<\eta<1$. Let $t=t(n)$ and $k=k(n)$ be non-decreasing integer functions with $1 \leq t<k \leq n$. We say that (k, t) is an η-admissible pair of functions if either
(i) $k=k(n) \leq 1 / \eta$ for every n
or
(ii) $k \rightarrow \infty, k \leq(1-\eta) n^{1 / 2}$ and $t \ll k^{1 / 2}$ and $t \ll(n / k)^{1-\sigma}$.

We shall prove the following result.

Theorem 1. Let $\eta>0$ be a fixed real number. Let $k=k(n)$ and $t=t(n)$ be integer functions forming an η-admissible pair (k, t). Let $\alpha=\alpha(n)$ be a non-decreasing real function with $1+\eta \leq$ $\alpha \leq\binom{ n}{k}\binom{n-t}{k-t}^{-1}$. Then the following hold.
(i) If $k \ll n^{1 / 2}$, then

$$
\mu(n, k, t, \alpha) \sim 2\left\{\begin{array}{l}
\alpha \tag{4}\\
2
\end{array}\right\}\binom{n-t}{k-t}^{2}
$$

(ii) Suppose $k \geq c n^{1 / 2}$ for some $0<c<1$ and every large enough n and suppose $\alpha \ll n / k$. Then

$$
\mu(n, k, t, \alpha) \sim 2\left\{\begin{array}{l}
\alpha \tag{5}\\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t}
$$

Remark 2. Consider case (i) of Theorem 1, that is, let $k \ll n^{1 / 2}$.
(a) Suppose $\alpha \rightarrow \infty$. Then $2\left\{\begin{array}{l}\alpha \\ 2\end{array}\right\} \sim \alpha^{2}$. It follows that the right-hand side of (4) is \sim $\alpha^{2}\binom{n-t}{k-t}^{2}$. Therefore, (4) tells us that any $\mathscr{F} \subset\binom{[n]}{k}$ with $|\mathscr{F}|\binom{n-t}{k-t}^{-1} \rightarrow \infty$ is such that $\left|\mathscr{F}_{<t}^{(2)}\right| \sim|\mathscr{F}|^{2}$ if $k \ll n^{1 / 2}$.
(b) Note that, in this case, that is, when $k \ll n^{1 / 2}$, almost all pairs (A, B) in $\binom{[n]}{k} \times\binom{[n]}{k}$ are such that $A \cap B=\emptyset$. Remark (a) above tells us that any 'moderately large' \mathscr{F} is such that $\left|\mathscr{F}_{<t}^{(2)}\right| \sim|\mathscr{F}|^{2}$. Naturally, these two facts go hand in hand.

Remark 3. Consider case (ii) of Theorem 1, that is, suppose $k=\Omega\left(n^{1 / 2}\right)$. In this case, a positive fraction of the pairs $(A, B) \in\binom{[n]}{k} \times\binom{[n]}{k}$ are such that $|A \cap B| \geq t$. It is natural that $\mu(n, k, t, \alpha)$ should be 'smaller' in this case: note that the estimate in (5) is smaller than the estimate in (4) by a factor of $\binom{n-k-t}{k-t}\binom{n-t}{k-t}^{-1}$.

Remark 4. As mentioned before, Das, Gan and Sudakov 4 have determined $\mu(n, k, t, \alpha)$ precisely for all k, t and α, for all $n \geq n_{0}(k, t, \alpha)$. (They have also characterized the extremal systems.) Let us consider the case $t=1$. In our notation, their result establishes $\mu(n, k, 1, \alpha)$ for all $n \geq n_{1}(k, \alpha)$ with $n_{1}(k, \alpha)$ of order $k^{2} \alpha(k+\alpha)$. Therefore, unfortunately, their result does not cover values of k of order larger than $n^{1 / 3}$ or α or order larger than $n^{1 / 2}$. Theorem 1 , even though far from determining $\mu(n, k, 1, \alpha)$, covers a wider range of k and α. The case in which $t>1$ is similar.

Remark 5. The proof of the fact that $\mu(n, k, t, \alpha)$ is at most the right-hand side of (4) and (5) asymptotically involves a construction that, as proved in [4], gives the exact value of $\mu(n, k, t, \alpha)$ for a certain range of the parameters. Their precise result covers, however, a somewhat more restricted range of k, t and α. Let us also remark that, in Theorem 1 , since we suppose that (k, t) is an η-admissible pair, we suppose that $k \leq(1-\eta) n^{1 / 2} \leq n^{1 / 2}$. However, this condition on k
is not required in the proof of the asymptotic upper bound in (5), which turns out to be valid for k of order larger than $n^{1 / 2}$, as long as $\alpha \ll n / k$ and $t \ll n^{1 / 2}$ (this can be read out of the proof below, given in Section 2.2).

2. Proof of Theorem 1

To prove Theorem 1, we establish the upper and lower bounds involved in (4) and (5) separately. We prove the lower bounds in Section 2.1 and we prove the upper bounds in Section 2.2 .
2.1. Proof of the lower bounds. Let us first introduce some concepts and results that will be required. A set system $\mathscr{S} \subset\binom{[n]}{k}$ is a (θ, k, t)-system if
(i) $|\mathscr{S}|=\theta\binom{n}{t}\binom{k}{t}^{-1}$ and
(ii) $\left|S \cap S^{\prime}\right|<t$ for all distinct S and $S^{\prime} \in \mathscr{S}$.

A simple double counting argument shows that any $\mathscr{S} \subset\binom{[n]}{k}$ that satisfies (ii) is such that $|\mathscr{S}| \leq\binom{ n}{t}\binom{k}{t}^{-1}$. Systems close to achieving this upper bound (that is, with $\theta \rightarrow 1$) are sometimes called almost complete (k, t)-systems. The following result [9, 10], which will be crucial in what follows, states that, roughly speaking, almost complete (k, t)-systems exist for any admissible pair of functions (k, t),

Lemma 6. Let $\eta>0$ be fixed and let $k=k(n)$ and $t=t(n)$ form an η-admissible pair of functions (k, t). Then, for any $\delta>0$, there is n_{0} such that, for any $n \geq n_{0}$, there is a (θ, k, t) system with $\theta \geq 1-\delta$.

We are interested in the cardinality of $\mathscr{S}_{j}^{(2)}$ for (θ, k, t)-systems \mathscr{S} (recall the notation introduced in (1)).

Fact 7. Let $\mathscr{S} \subset\binom{[n]}{k}$ be a (θ, k, t)-systems. Then, for any $0 \leq j \leq t$, we have

$$
\begin{equation*}
\left|\mathscr{S}_{j}^{(2)}\right| \leq \theta \frac{(n)_{t}(n-k)_{t-j}}{j!\left((k-j)_{t-j}\right)^{2}} \tag{6}
\end{equation*}
$$

Proof. We count the pairs $\left(S, S^{\prime}\right)$ in $\mathscr{S}_{j}^{(2)}$ as follows. First choose $S \in \mathscr{S}$. Then we choose a j-subset J of S and a $(t-j)$-subset T^{\prime} of $[n] \backslash S$. Our hypothesis (ii) implies that at most one member S^{\prime} of \mathscr{S} contains the t-element set $T=J \cup T^{\prime}$. Note that, even if \mathscr{S} contains such a set S^{\prime}, it may happen that $\left|S^{\prime} \cap S\right|>j$; we are not interested in such S^{\prime} at the moment, as we are currently concerned with pairs $\left(S, S^{\prime}\right) \in \mathscr{S}_{j}^{(2)}$. Suppose $T=J \cup T^{\prime}$ determines $S^{\prime} \in \mathscr{S}$ with $\left|S^{\prime} \cap S\right|=j$, that is, $S^{\prime} \cap S=J$. Each such S^{\prime} is obtained in exactly $\binom{k-j}{t-j}$ ways: this is the number of $T^{\prime} \subset S^{\prime} \backslash S=S^{\prime} \backslash J$ with $\left|T^{\prime}\right|=t-j$ that, together with J, determine this
particular S^{\prime}. We conclude that there are at most $\binom{n-k}{t-j}\binom{k-j}{t-j}^{-1}$ such sets S^{\prime} for any given J. We now sum over all choices of S and J and infer that

$$
\begin{align*}
&\left|\mathscr{S}_{j}^{(2)}\right| \leq|\mathscr{S}|\binom{k}{j}\binom{n-k}{t-j}\binom{k-j}{t-j}^{-1}=\theta\binom{n}{t}\binom{k}{t}^{-1}\binom{k}{j}\binom{n-k}{t-j}\binom{k-j}{t-j}^{-1} \\
&=\theta \frac{(n)_{t}(n-k)_{t-j}}{j!\left((k-j)_{t-j}\right)^{2}} \tag{7}
\end{align*}
$$ as required.

$$
\begin{equation*}
\sum_{\pi}|\pi(\mathscr{S}) \cap \mathscr{F}| \tag{9}
\end{equation*}
$$

112 where π runs over all permutations $\pi:[n] \rightarrow[n]$. Observe that the number of times each $F \in \mathscr{F}$ 113 is counted in (9) is

$$
\begin{equation*}
|\mathscr{S}| k!(n-k)!=\theta\binom{n}{t}\binom{k}{t}^{-1} k!(n-k)!=\theta(n)_{t}(k-t)!(n-k)!. \tag{10}
\end{equation*}
$$

114
Consequently,

$$
\begin{equation*}
\sum_{\pi}|\pi(\mathscr{S}) \cap \mathscr{F}|=|\mathscr{F}||\mathscr{S}| k!(n-k)!=\theta \alpha\binom{n-t}{k-t}(n)_{t}(k-t)!(n-k)!=\theta \alpha n!. \tag{11}
\end{equation*}
$$

We shall now use the following fact.

116 Fact 9. Let x_{1}, \ldots, x_{N} be non-negative integers and let $a=N^{-1} \sum_{1 \leq i \leq N} x_{i}$. Then

$$
\frac{1}{N} \sum_{1 \leq i \leq N}\binom{x_{i}}{2} \geq\left\{\begin{array}{l}
a \tag{12}\\
2
\end{array}\right\}
$$

117 Proof. It is straightforward to check that the left-hand side of (12) is minimized when all 118 the x_{i} are as equal as possible, that is, when $x_{i} \in\{\lfloor a\rfloor,\lceil a\rceil\}$. Suppose $a N=\lfloor a\rfloor N+r$, 119 where $0 \leq r<N$. The minimum of the left-hand side of (12) is achieved when $N-r$ of the x_{i}

120 are $\lfloor a\rfloor$ and the remaining r are $\lceil a\rceil$. Thus, this minimum is

$$
\left(1-\frac{r}{N}\right)\binom{\lfloor a\rfloor}{ 2}+\frac{r}{N}\binom{\lceil a\rceil}{ 2}=\left\{\begin{array}{l}
a \tag{13}\\
2
\end{array}\right\},
$$

121 as required.

In view of (11), Fact 9 applied to the sequence of $n!$ numbers $|\pi(\mathscr{S}) \cap \mathscr{F}|$ gives that

$$
\sum_{\pi}\binom{|\pi(\mathscr{S}) \cap \mathscr{F}|}{2} \geq\left\{\begin{array}{c}
\theta \alpha \tag{14}\\
2
\end{array}\right\} n!.
$$

123 We now note that

$$
\begin{align*}
& \sum_{\pi}\binom{|\pi(\mathscr{S}) \cap \mathscr{F}|}{2}=\frac{1}{2} \sum_{j<t} \sum_{\left(S, S^{\prime}\right) \in \mathscr{\mathscr { S }}_{j}^{(2)}} \sum_{\left(F, F^{\prime}\right) \in \mathscr{F}_{j}^{(2)}} \sum_{\pi} 1\left\{\pi(S)=F, \pi\left(S^{\prime}\right)=F^{\prime}\right\} \\
&= \frac{1}{2} \sum_{j<t}\left|\mathscr{S}_{j}^{(2)} \| \mathscr{F}_{j}^{(2)}\right| j!((k-j)!)^{2}(n-2 k+j)!, \tag{15}
\end{align*}
$$

124 which, by (6), is at most

$$
\begin{align*}
& \frac{\theta}{2} \sum_{j<t}\left|\mathscr{F}_{j}^{(2)}\right| \frac{(n)_{t}(n-k)_{t-j}((k-j)!)^{2} j!}{j!\left((k-j)_{t-j}\right)^{2}}(n-2 k+j)! \\
& \quad=\frac{\theta}{2} \sum_{j<t}\left|\mathscr{F}_{j}^{(2)}\right|(n)_{t}(n-k)_{t-j}(n-2 k+j)!((k-t)!)^{2} . \tag{16}
\end{align*}
$$

125 Multiplying and dividing the quantity in (16) by n !, we obtain

$$
\begin{align*}
\theta \frac{n!}{2} \sum_{j<t}\left|\mathscr{F}_{j}^{(2)}\right| \frac{(n)_{t}(n-k)_{t-j}}{n!} & (n-2 k+j)! \\
& =\theta \frac{n!}{2} \sum_{j<t} \left\lvert\,\left(\mathscr{F}_{j}^{(2)} \left\lvert\, \frac{((k-t)!)^{2}}{(n-t)_{k-t}}\right.\right)^{2}\right. \tag{17}\\
& =\theta \frac{n!}{2}\binom{n-t}{k-t}^{-1} \sum_{j<t}\left|\mathscr{F}_{j}^{(2)}\right|\binom{n-k-t+j)_{k-t}}{k-t}^{-1} .
\end{align*}
$$

126 Comparing (14) and (17) we see that

$$
\frac{\theta}{2}\binom{n-t}{k-t}^{-1} \sum_{j<t}\left|\mathscr{F}_{j}^{(2)}\right|\binom{n-k-t+j}{k-t}^{-1} \geq\left\{\begin{array}{c}
\theta \alpha \tag{18}\\
2
\end{array}\right\} .
$$

127 Since $\binom{n-k-t+j}{k-t} \geq\binom{ n-k-t}{k-t}$, we get from (18) that

$$
\left|\mathscr{F}_{<t}^{(2)}\right|=\sum_{j<t}\left|\mathscr{F}_{j}^{(2)}\right| \geq \frac{2}{\theta}\left\{\begin{array}{c}
\theta \alpha \tag{19}\\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t},
$$

$$
\left\{\begin{array}{c}
\theta \alpha \tag{22}\\
2
\end{array}\right\} \geq\binom{\theta \alpha}{2} \geq\left(1-\frac{\varepsilon}{4}\right)\binom{\alpha}{2} \geq\left(1-\frac{\varepsilon}{2}\right)\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}
$$

However,

$$
\begin{align*}
& \delta_{1} \alpha\lfloor\alpha\rfloor\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}^{-1}=\frac{\delta_{1} \alpha\lfloor\alpha\rfloor}{\lfloor\alpha\rfloor(\lfloor\alpha\rfloor-1) / 2+\lfloor\alpha\rfloor(\alpha-\lfloor\alpha\rfloor)}=\frac{2 \delta_{1} \alpha}{2 \alpha-\lfloor\alpha\rfloor-1} \\
& =\frac{2 \delta_{1} \alpha}{\alpha+(\alpha-\lfloor\alpha\rfloor)-1} \leq \frac{2 \delta_{1} \alpha}{\alpha-1} \leq \frac{2 \delta_{1} \alpha}{\eta} \leq \frac{\varepsilon}{2} . \tag{25}
\end{align*}
$$

Inequalities (24) and (25) therefore imply (20) in this case. The discussion above tells us that $\delta=\min \left\{\delta_{0}(\varepsilon), \delta_{1}(\eta, \varepsilon)\right\}$ will do in the statement of (i).

Let us now turn to $(i i)$ of our fact, whose proof is very similar. Let η and ε be given. One can again check that if $\alpha \geq \alpha_{1}(\varepsilon)$ and $0<\delta \leq \delta_{2}(\varepsilon)$, then (21) holds. We now suppose $\alpha<\alpha_{1}(\varepsilon)$. Let $\delta_{3}=\delta_{3}(\eta, \varepsilon)=\eta \varepsilon / 8 \alpha_{1}(\varepsilon)$. $\delta \leq \delta_{3}$, we have

$$
\left\{\begin{array}{c}
(1+\delta) \alpha \tag{26}\\
2
\end{array}\right\} \leq\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}+\delta_{3} \alpha(\lfloor\alpha\rfloor+1)=\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}\left(1+2 \delta_{3} \alpha\lfloor\alpha\rfloor\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}^{-1}\right) .
$$

Calculations very similar to those in (25) show that (26) implies (21) in this case. It now suffices to take $\delta=\min \left\{\delta_{2}(\varepsilon), \delta_{3}(\eta, \varepsilon)\right\}$ for the statement of (ii),

We are now ready to prove the lower bounds in Theorem 1.
Proof of the lower bounds in (4) and (5). Let $\eta>0, k=k(n), t=t(n)$ and $\alpha=\alpha(n)$ be as in the statement of Theorem 1. We first show that, for any $\varepsilon>0$, if n is large enough, then

$$
\mu(n, k, t, \alpha) \geq(2-\varepsilon)\left\{\begin{array}{l}
\alpha \tag{27}\\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t} .
$$

Since we suppose that $\alpha \geq 1+\eta$, Fact $1 q[(i)$ tells us that there is $\delta=\delta(\eta, \varepsilon)>0$ so that, for every $1-\delta \leq \theta \leq 1$, we have

$$
\frac{2}{\theta}\left\{\begin{array}{c}
\theta \alpha \tag{28}\\
2
\end{array}\right\} \geq 2\left\{\begin{array}{c}
\theta \alpha \\
2
\end{array}\right\} \geq(2-\varepsilon)\left\{\begin{array}{c}
\alpha \\
2
\end{array}\right\} .
$$

Since we suppose that (k, t) is an η-admissible pair, Lemma 6 tells us that almost complete (k, t) systems exist. Let n_{0} be so that, for every $n \geq n_{0}$, a (θ, k, t)-system exists for some $\theta \geq 1-\delta$.

It now suffices to notice that, because of (28), the right-hand side of (8) is at least as large of the right-hand of 27). We remark that the extra hypotheses on k and α specified in the statement of Theorem $](i i)$ are not required in the derivation of (27). (They are required in the proof of the upper bound in (5).)

We now turn to the lower bound in (4). In this case, we suppose $k \ll n^{1 / 2}$ and wish to show that

$$
\mu(n, k, t, \alpha) \gtrsim 2\left\{\begin{array}{l}
\alpha \tag{29}\\
2
\end{array}\right\}\binom{n-t}{k-t}^{2} .
$$

It suffices to notice that 29) follows from (27), because $\binom{n-k-t}{k-t} \sim\binom{n-t}{k-t}$ if $k \ll n^{1 / 2}$.
2.2. Proof of the upper bounds. We now prove the upper bounds in (4) and (5). Let $\eta>0$, $k=k(n), t=t(n), \alpha=\alpha(n)$ be as in the statement of Theorem 1 .
Let us start with the following observation. Suppose $|\mathscr{F}|=\left\lfloor\alpha\binom{n-t}{k-t}\right\rfloor$ and $\alpha \rightarrow \infty$. Recalling Remark $2(a)$, we see that the trivial bound $\left|\mathscr{F}_{<t}^{(2)}\right| \leq|\mathscr{F}|^{2} \sim \alpha^{2}\binom{n-t}{k-t}$ implies the upper bound in (4). In what follows, we suppose that

$$
\begin{equation*}
\alpha \ll n / k \tag{30}
\end{equation*}
$$

and prove that

$$
\mu(n, k, t, \alpha) \lesssim 2\left\{\begin{array}{l}
\alpha \tag{31}\\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t} \leq 2\left\{\begin{array}{c}
\alpha \\
2
\end{array}\right\}\binom{n-t}{k-t}^{2} .
$$

$$
\left\{\begin{array}{l}
\beta \tag{32}\\
2
\end{array}\right\} \leq\left(1+\frac{\varepsilon}{2}\right)\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\} .
$$

174 In what follows, whenever necessary, we tacitly assume that n is large enough for our inequalities 175 to hold. We shall construct a family $\mathscr{F} \subset\binom{[n]}{k}$ with $|\mathscr{F}| \gtrsim \beta\binom{n-t}{k-t} \geq \alpha\binom{n-t}{k-t}$ such that

$$
\begin{align*}
\left|\mathscr{F}_{<t}^{(2)}\right| \lesssim 2\left\{\begin{array}{l}
\beta \\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t} \leq 2\left(1+\frac{\varepsilon}{2}\right) & \left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t} \\
& =(2+\varepsilon)\left\{\begin{array}{l}
\alpha \\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t} . \tag{33}
\end{align*}
$$

177 the construction of \mathscr{F}.

Given a set $T \subset[n]$ with $|T|=t$, let

$$
\begin{equation*}
\mathscr{I}(T)=\left\{F \in\binom{[n]}{k}: T \subset F\right\} . \tag{34}
\end{equation*}
$$

Clearly, $|\mathscr{I}(T)|=\binom{n-t}{k-t}$ for any such T. Our \mathscr{F} will be, roughly speaking, a union of certain $\mathscr{I}(T)$ for a collection of β sets T (the fact that β is not necessarily an integer will be dealt with in a certain natural way). For $1 \leq b \leq\lceil\beta\rceil$, let

$$
\begin{equation*}
T_{b}=[t-1] \cup\{b+t-1\} . \tag{35}
\end{equation*}
$$

We may now define \mathscr{F} in the case β is an integer.
Definition $11(\mathscr{F}$ for integer $\beta)$. Let $\mathscr{F}_{b}=\mathscr{I}\left(T_{b}\right)$ for all $1 \leq b \leq \beta$ and let $\mathscr{F}=\bigcup_{1 \leq b \leq \beta} \mathscr{F}_{b}$.
We shall define \mathscr{F} for non-integer β in a short while. The following claim will help us estimate the cardinality of \mathscr{F} (both for integer β and non-integer β).

Claim 12. We have

$$
\begin{equation*}
\left|\bigcup_{1 \leq b \leq \beta} \mathscr{I}\left(T_{b}\right)\right| \sim\lfloor\beta\rfloor\binom{ n-t}{k-t} . \tag{36}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\left|\mathscr{I}\left(T_{\lceil\beta\rceil}\right) \cap \bigcup_{1 \leq j<\lceil\beta\rceil} \mathscr{I}\left(T_{j}\right)\right| \ll\binom{n-t}{k-t} \tag{37}
\end{equation*}
$$

Proof. By Bonferroni's inequalities, we have

$$
\begin{equation*}
\lfloor\beta\rfloor\binom{ n-t}{k-t}-\binom{\lfloor\beta\rfloor}{ 2}\binom{n-t-1}{k-t-1} \leq\left|\bigcup_{1 \leq b \leq \beta} \mathscr{I}\left(T_{b}\right)\right| \leq\lfloor\beta\rfloor\binom{ n-t}{k-t} \tag{38}
\end{equation*}
$$ then

$$
\begin{equation*}
\left(\{F\}, \mathscr{I}\left(T_{b^{\prime}}\right)\right) \leq\binom{ n-t}{k-t}\binom{n-k-1}{k-t} \tag{39}
\end{equation*}
$$

195 Recalling that $t \ll k^{1 / 2} \leq n^{1 / 4}$, we see that

$$
\begin{equation*}
\left|\left(\mathscr{I}\left(T_{b}\right), \mathscr{I}\left(T_{b^{\prime}}\right)\right)_{<t}\right| \leq\binom{ n-t}{k-t}\binom{n-k-1}{k-t} \sim\binom{n-t}{k-t}\binom{n-k-t}{k-t} \tag{40}
\end{equation*}
$$

Claim 13. There is $\mathscr{F}^{\prime} \subset \mathscr{I}\left(T_{\lceil\beta\rceil}\right)$ such that

$$
\begin{equation*}
\left|\mathscr{F}^{\prime}\right|=\left\lfloor(\beta-\lfloor\beta\rfloor)\binom{n-t}{k-t}\right\rfloor \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(\bigcup_{1 \leq b \leq \beta} \mathscr{I}\left(T_{b}\right), \mathscr{F}^{\prime}\right)_{<t}\right| \lesssim\lfloor\beta\rfloor(\beta-\lfloor\beta\rfloor)\binom{n-t}{k-t}\binom{n-k-t}{k-t} \tag{42}
\end{equation*}
$$

We need to introduce a piece of notation. Given \mathscr{J} and $\mathscr{J}^{\prime} \subset\binom{[n]}{k}$, let $\left(\mathscr{J}, \mathscr{J}^{\prime}\right)_{<t}$ be the set of pairs $\left(F, F^{\prime}\right) \in \mathscr{J} \times \mathscr{J}^{\prime}$ with $\left|F \cap F^{\prime}\right|<t$. Note that, for any $1 \leq b<b^{\prime} \leq\lceil\beta\rceil$, if $F \in \mathscr{I}\left(T_{b}\right)$, (hen

To define \mathscr{F} in the case of non-integer β, we need one further observation, which we state in the claim below.
$\left|\left(\bigcup_{1 \leq b \leq \beta} \mathscr{I}\left(T_{b}\right), \mathscr{F}^{\prime}\right)_{<t}\right| \lesssim\lfloor\beta\rfloor(\beta-\lfloor\beta\rfloor)\binom{n-t}{k-t}\binom{n-k-t}{k-t}$

Proof. Let $\mathscr{J}=\bigcup_{1 \leq b \leq \beta} \mathscr{I}\left(T_{b}\right)$ and $\mathscr{J}^{\prime}=\mathscr{I}\left(T_{\lceil\beta\rceil}\right)$. Then $|\mathscr{J}| \leq\lfloor\beta\rfloor\binom{ n-t}{k-t}$ and $\left|\mathscr{J}^{\prime}\right|=\binom{n-t}{k-t}$. Consider a bipartite graph Γ with vertex classes \mathscr{J} and \mathscr{J}^{\prime}, with $\left\{F, F^{\prime}\right\}$ an edge if and only if $\left|F \cap F^{\prime}\right|<t$. In view of (39), applied with $b^{\prime}=\lceil\beta\rceil$, a simple averaging argument shows that, for any integer $M \geq 0$, one may select $\mathscr{G} \subset \mathscr{J}^{\prime}$ with $|\mathscr{G}|=M$ so that the number of edges in our graph Γ induced by $\mathscr{J} \cup \mathscr{G}$ is at most

$$
\begin{equation*}
|\mathscr{J}|\binom{n-k-1}{k-t} \frac{M}{\left|\mathscr{J}^{\prime}\right|} \tag{43}
\end{equation*}
$$

We are ready to define \mathscr{F} in the case in which β is not an integer.

Definition $14(\mathscr{F}$ for non-integer $\beta)$. Let $\mathscr{F}_{b}=\mathscr{I}\left(T_{b}\right)$ for all $1 \leq b \leq \beta$ and let $\mathscr{F}_{\lceil\beta\rceil}$ be a family \mathscr{F}^{\prime} as in Claim 13 . Let $\mathscr{F}=\bigcup_{1 \leq b \leq\lceil\beta\rceil} \mathscr{F}_{b}$.

We shall now prove that the system \mathscr{F} defined in Definitions 11 and 14 will do. Note first that Claim 12 implies that $|\mathscr{F}| \sim \beta\binom{n-t}{k-t}$ holds. Let us now estimate $\left|\mathscr{F}_{<t}^{(2)}\right|$. If β is an integer, then, using (40), we see that

$$
\begin{array}{r}
\left|\mathscr{F}_{<t}^{(2)}\right| \leq 2 \sum_{1 \leq b<b^{\prime} \leq \beta}\left|\left(\mathscr{F}_{b}, \mathscr{F}_{b^{\prime}}\right)_{<t}\right|=2 \sum_{1 \leq b<b^{\prime} \leq \beta}\left|\left(\mathscr{I}\left(T_{b}\right), \mathscr{I}\left(T_{b^{\prime}}\right)\right)_{<t}\right| \\
\vdots 2 \sum_{1 \leq b<b^{\prime} \leq \beta}\binom{n-t}{k-t}\binom{n-k-t}{k-t}=2\binom{\beta}{2}\binom{n-t}{k-t}\binom{n-k-t}{k-t} \\
=2\left\{\begin{array}{c}
\beta \\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t}, \tag{44}
\end{array}
$$

213 establishing the first inequality in (33) in the case in which β is an integer. If β is not an integer, then

$$
\begin{align*}
\left|\mathscr{F}_{<t}^{(2)}\right| \leq 2 \sum_{1 \leq b<b^{\prime} \leq \beta} & \left|\left(\mathscr{F}_{b}, \mathscr{F}_{b^{\prime}}\right)_{<t}\right|+2\left|\left(\bigcup_{1 \leq b \leq \beta} \mathscr{F}_{b}, \mathscr{F}_{\lceil\beta\rceil}\right)_{<t}\right| \\
& =2 \sum_{1 \leq b<b^{\prime} \leq \beta}\left|\left(\mathscr{I}\left(T_{b}\right), \mathscr{I}\left(T_{b^{\prime}}\right)\right)_{<t}\right|+2\left|\left(\bigcup_{1 \leq b \leq \beta} \mathscr{I}\left(T_{b}\right), \mathscr{F}_{\lceil\beta\rceil}\right)_{<t}\right| . \tag{45}
\end{align*}
$$

By (40) and by the choice of $\mathscr{F}_{\lceil\beta\rceil}$, the right-hand side of (45) is

$$
\begin{array}{r}
\lesssim 2 \sum_{1 \leq b<b^{\prime} \leq \beta}\binom{n-t}{k-t}\binom{n-k-t}{k-t}+2\lfloor\beta\rfloor(\beta-\lfloor\beta\rfloor)\binom{n-t}{k-t}\binom{n-k-t}{k-t} \\
\leq 2\binom{\lfloor\beta\rfloor}{ 2}\binom{n-t}{k-t}\binom{n-k-t}{k-t}+2\lfloor\beta\rfloor(\beta-\lfloor\beta\rfloor)\binom{n-t}{k-t}\binom{n-k-t}{k-t} \\
=2\left\{\begin{array}{c}
\beta \\
2
\end{array}\right\}\binom{n-t}{k-t}\binom{n-k-t}{k-t} \tag{46}
\end{array}
$$

216 again establishing the first inequality in (33). Thus \mathscr{F} is as required. This concludes the proof 217 of (31).

In this note, for simplicity, we have restricted ourselves to the case in which α is bounded away from 1. Our method does give results for $\alpha \rightarrow 1$, but we do not elaborate on those here. We have also omitted some results that one may obtain via standard eigenvalue methods in the case in which $t=1$.

Let us now focus on the case $t>1$. Our main tool, namely, Lemma 8, requires the existence of 'good' (k, t)-systems. As it turns out, this rules out the case $k \gg n^{1 / 2}$ (see 9]). We believe that it would be interesting to investigate the behaviour of $\mu(n, k, t, \alpha)$ for $t>1$ and $k \gg n^{1 / 2}$. For instance, how much is $\mu(n, k, 2, \alpha)$ for, say, $k \sim n^{2 / 3}$ and $\alpha \sim \frac{1}{2}\binom{n}{k}\binom{n-2}{k-2}^{-1}$?

References

1. R. Ahlswede, Simple hypergraphs with maximal number of adjacent pairs of edges, J. Combin. Theory Ser. B 28 (1980), no. 2, 164-167.
2. R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562.
3. B. Bollobás and I. Leader, Set systems with few disjoint pairs, Combinatorica 23 (2003), no. 4, 559-570.
4. S. Das, W. Gan, and B. Sudakov, The minimum number of disjoint pairs in set systems and related problems, arXiv:1305.6715 [math] (2013).
5. P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
6. P. Frankl, On the minimum number of disjoint pairs in a family of finite sets, J. Combinatorial Theory Ser. A 22 (1977), no. 2, 249-251.
7. \qquad The Erdős-Ko-Rado theorem is true for $n=c k t$, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam, 1978, pp. 365375.
8. P. Frankl and Z. Füredi, A new short proof of the EKR theorem, J. Combin. Theory Ser. A 119 (2012), no. 6, 1388-1390.
9. N. N. Kuzjurin, On the difference between asymptotically good packings and coverings, European J. Combin. 16 (1995), no. 1, 35-40.
10. V. Rödl, On a packing and covering problem, European J. Combin. 6 (1985), no. 1, 69-78.
11. R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247-257.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. Mailing address: Peter Frankl Office, Shibuya-ku, Shibuya 3-12-25, Tokyo, Japan (P. Frankl)

E-mail address: peter.frankl@gmail.com
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508090 São Paulo, Brazil (Y. Kohayakawa)

E-mail address: yoshi@ime.usp.br
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (Y. Kohayakawa and V. Rödl)

E-mail address: rodl@mathcs.emory.edu

