
A NOTE ON SUPERSATURATED SET SYSTEMS1

PETER FRANKL, YOSHIHARU KOHAYAKAWA, AND VOJTĚCH RÖDL2

Abstract. A well known theorem of Erdős, Ko and Rado implies that any family F of k-

element subsets of an n-element set with more than
(
n−t
k−t

)
members must contain two members F

and F ′ with |F ∩F ′| < t, as long as n is sufficiently large with respect to k and t. We investigate

how many such pairs (F, F ′) ∈ F ×F there must be in any such family F with |F | = α
(
n−t
k−t

)
and α > 1.

1. Introduction3

Let 1 ≤ t < k ≤ n be integers. Let X be a set with |X| = n and let F ⊂
(
X
k

)
be a family of4

k-element subsets of X. We say that F is t-intersecting if |F ∩ F ′| ≥ t for any F and F ′ ∈ F .5

For example, the family I (T ) of all
(
n−t
k−t
)

subsets of X with k elements containing a fixed6

t-element set T ⊂ X is t-intersecting.7

The well known theorem of Erdős, Ko and Rado [5] states that, for any given 1 ≤ t < k, the8

largest possible size of a t-intersecting family F ⊂
(
X
k

)
is
(
n−t
k−t
)
, provided that |X| = n ≥ n0(k, t).9

The least value of n0(k, t) for which this holds, namely, n0(k, t) = (k−t+1)(t+1), was established10

by the first author [7] for every t > 14 and Wilson [11] generalized this to t > 1. The original11

paper [5] already contained this result for t = 1 (see also [8] for a new short proof). Thus,12

if n ≥ (k − t + 1)(t + 1) and F ⊂
(
X
k

)
is such that |F | >

(
n−t
k−t
)
, then F contains a pair of13

members F and F ′ with |F ∩ F ′| < t. In this note, we study how many pairs (F, F ′) ∈ F ×F14

with |F ∩F ′| < t are guaranteed to exist in any family F ⊂
(
X
k

)
with |F | = α

(
n−t
k−t
)

and α > 1.15

The case t = 1 is already very interesting: this problem was raised by Ahlswede [1] in 1980. Very16

recently, Das, Gan and Sudakov [4] addressed this problem for arbitrary t and k. The related17

problem in which we let t = 1 and consider general set systems F ⊂ 2X and not only k-uniform18

hypergraphs F ⊂
(
X
k

)
was solved independently by the first author [6] and Ahlswede [1] (see19

also Bollobás and Leader [3]). For a detailed, recent account on the relevant literature, the20

reader is referred to [4].21
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In order to state our result precisely, we introduce some notation. As usual, let [n] =22

{1, . . . , n}. Given a family of sets F , let23

F
(2)
j = {(F, F ′) ∈ F ×F : |F ∩ F ′| = j} (1)

and let F
(2)
<t =

⋃
j<t F

(2)
j . Let24

µ(n, k, t, α) = min
F

∣∣F (2)
<t

∣∣, (2)

where the minimum is taken over all F ⊂
([n]
k

)
with |F | =

⌊
α
(
n−t
k−t
)⌋

. Das, Gan and Sudakov [4]25

determined µ(n, k, t, α) precisely for all k, t and α, for all n ≥ n0(k, t, α). We shall be able to26

handle a somewhat wider range of the parameters k, t and α, at the expense of giving asymptotic27

estimates for µ(n, k, t, α) only. Our proofs are also of a different nature.28

We need some further preparations to state our results. For any real number α, let29 {
α

2

}
=

(
bαc
2

)
+ (α− bαc)bαc, (3)

where, as usual, for any integer k, we let
(
x
k

)
= (x)k/k! = x(x− 1) . . . (x−k+ 1)/k! if k ≥ 0 and30

we let
(
x
k

)
= 0 if k < 0. If α is an integer, then

{
α
2

}
=
(
α
2

)
and, for real α, if we write α = bαc+x,31

then
{
α
2

}
grows linearly in x from

(bαc
2

)
to
(bαc+1

2

)
. Thus,

{
α
2

}
is the ‘simplest’ piecewise linear32

function that coincides with
(
α
2

)
on integer values of α.33

In what follows, the asymptotic notation is with respect to n→∞. For a function f = f(n)34

and an eventually positive function g = g(n), we write f � g and f = o(g) if |f/g| → 035

as n → ∞. In particular, o(1) denotes functions f = f(n) with |f | → 0 as n → ∞. When36

convenient, we shall write f ∼ g to mean that f = (1 +o(1))g and we shall write f & g to mean37

that f ≥ (1 + o(1))g.38

Let σ be a real number such that, for some x0, every interval [x−xσ, x] with x ≥ x0 contains39

a prime number. Baker, Harman and Pintz [2] have proved that one can take σ = 0.525. Fix40

a real number 0 < η < 1. Let t = t(n) and k = k(n) be non-decreasing integer functions41

with 1 ≤ t < k ≤ n. We say that (k, t) is an η-admissible pair of functions if either42

(i) k = k(n) ≤ 1/η for every n43

or44

(ii) k →∞, k ≤ (1− η)n1/2 and t� k1/2 and t� (n/k)1−σ.45

We shall prove the following result.46
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Theorem 1. Let η > 0 be a fixed real number. Let k = k(n) and t = t(n) be integer functions47

forming an η-admissible pair (k, t). Let α = α(n) be a non-decreasing real function with 1+η ≤48

α ≤
(
n
k

)(
n−t
k−t
)−1

. Then the following hold.49

(i) If k � n1/2, then50

µ(n, k, t, α) ∼ 2

{
α

2

}(
n− t
k − t

)2

. (4)

(ii) Suppose k ≥ cn1/2 for some 0 < c < 1 and every large enough n and suppose α� n/k.51

Then52

µ(n, k, t, α) ∼ 2

{
α

2

}(
n− t
k − t

)(
n− k − t
k − t

)
. (5)

Remark 2. Consider case (i) of Theorem 1, that is, let k � n1/2.53

(a) Suppose α → ∞. Then 2
{
α
2

}
∼ α2. It follows that the right-hand side of (4) is ∼54

α2
(
n−t
k−t
)2

. Therefore, (4) tells us that any F ⊂
([n]
k

)
with |F |

(
n−t
k−t
)−1 → ∞ is such55

that |F (2)
<t | ∼ |F |2 if k � n1/2.56

(b) Note that, in this case, that is, when k � n1/2, almost all pairs (A,B) in
([n]
k

)
×
([n]
k

)
57

are such that A ∩ B = ∅. Remark (a) above tells us that any ‘moderately large’ F is58

such that |F (2)
<t | ∼ |F |2. Naturally, these two facts go hand in hand.59

Remark 3. Consider case (ii) of Theorem 1, that is, suppose k = Ω(n1/2). In this case, a60

positive fraction of the pairs (A,B) ∈
([n]
k

)
×
([n]
k

)
are such that |A ∩ B| ≥ t. It is natural61

that µ(n, k, t, α) should be ‘smaller’ in this case: note that the estimate in (5) is smaller than62

the estimate in (4) by a factor of
(
n−k−t
k−t

)(
n−t
k−t
)−1

.63

Remark 4. As mentioned before, Das, Gan and Sudakov [4] have determined µ(n, k, t, α)64

precisely for all k, t and α, for all n ≥ n0(k, t, α). (They have also characterized the extremal65

systems.) Let us consider the case t = 1. In our notation, their result establishes µ(n, k, 1, α)66

for all n ≥ n1(k, α) with n1(k, α) of order k2α(k + α). Therefore, unfortunately, their result67

does not cover values of k of order larger than n1/3 or α or order larger than n1/2. Theorem 1,68

even though far from determining µ(n, k, 1, α), covers a wider range of k and α. The case in69

which t > 1 is similar.70

Remark 5. The proof of the fact that µ(n, k, t, α) is at most the right-hand side of (4) and (5)71

asymptotically involves a construction that, as proved in [4], gives the exact value of µ(n, k, t, α)72

for a certain range of the parameters. Their precise result covers, however, a somewhat more73

restricted range of k, t and α. Let us also remark that, in Theorem 1, since we suppose that (k, t)74

is an η-admissible pair, we suppose that k ≤ (1− η)n1/2 ≤ n1/2. However, this condition on k75
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is not required in the proof of the asymptotic upper bound in (5), which turns out to be valid76

for k of order larger than n1/2, as long as α � n/k and t � n1/2 (this can be read out of the77

proof below, given in Section 2.2).78

2. Proof of Theorem 179

To prove Theorem 1, we establish the upper and lower bounds involved in (4) and (5) sepa-80

rately. We prove the lower bounds in Section 2.1 and we prove the upper bounds in Section 2.2.81

2.1. Proof of the lower bounds. Let us first introduce some concepts and results that will82

be required. A set system S ⊂
([n]
k

)
is a (θ, k, t)-system if83

(i) |S | = θ
(
n
t

)(
k
t

)−1
and84

(ii) |S ∩ S′| < t for all distinct S and S′ ∈ S .85

A simple double counting argument shows that any S ⊂
([n]
k

)
that satisfies (ii) is such86

that |S | ≤
(
n
t

)(
k
t

)−1
. Systems close to achieving this upper bound (that is, with θ → 1)87

are sometimes called almost complete (k, t)-systems. The following result [9, 10], which will be88

crucial in what follows, states that, roughly speaking, almost complete (k, t)-systems exist for89

any admissible pair of functions (k, t),90

Lemma 6. Let η > 0 be fixed and let k = k(n) and t = t(n) form an η-admissible pair of91

functions (k, t). Then, for any δ > 0, there is n0 such that, for any n ≥ n0, there is a (θ, k, t)-92

system with θ ≥ 1− δ.93

We are interested in the cardinality of S
(2)
j for (θ, k, t)-systems S (recall the notation intro-94

duced in (1)).95

Fact 7. Let S ⊂
([n]
k

)
be a (θ, k, t)-systems. Then, for any 0 ≤ j ≤ t, we have96

|S (2)
j | ≤ θ

(n)t(n− k)t−j

j!
(
(k − j)t−j

)2 . (6)

Proof. We count the pairs (S, S′) in S
(2)
j as follows. First choose S ∈ S . Then we choose a97

j-subset J of S and a (t− j)-subset T ′ of [n] \ S. Our hypothesis (ii) implies that at most one98

member S′ of S contains the t-element set T = J ∪ T ′. Note that, even if S contains such99

a set S′, it may happen that |S′ ∩ S| > j; we are not interested in such S′ at the moment, as100

we are currently concerned with pairs (S, S′) ∈ S
(2)
j . Suppose T = J ∪ T ′ determines S′ ∈ S101

with |S′ ∩ S| = j, that is, S′ ∩ S = J . Each such S′ is obtained in exactly
(
k−j
t−j
)

ways: this102

is the number of T ′ ⊂ S′ \ S = S′ \ J with |T ′| = t − j that, together with J , determine this103
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particular S′. We conclude that there are at most
(
n−k
t−j
)(
k−j
t−j
)−1

such sets S′ for any given J .104

We now sum over all choices of S and J and infer that105

|S (2)
j | ≤ |S |

(
k

j

)(
n− k
t− j

)(
k − j
t− j

)−1
= θ

(
n

t

)(
k

t

)−1(k
j

)(
n− k
t− j

)(
k − j
t− j

)−1
= θ

(n)t(n− k)t−j

j! ((k − j)t−j)2
, (7)

as required. �106

We shall derive the lower bounds in (4) and (5) from the following lemma.107

Lemma 8. Let 1 ≤ t < k ≤ n−t and suppose a (θ, k, t)-systems S ⊂
([n]
k

)
exists. Let F ⊂

([n]
k

)
108

be given and set α = |F |
(
n−t
k−t
)−1

. Then109

|F (2)
<t | ≥

2

θ

{
θα

2

}(
n− t
k − t

)(
n− k − t
k − t

)
. (8)

Proof. Let F ⊂
([n]
k

)
be given and let α be as defined in the statement of our lemma. Fix a110

(θ, k, t)-system S . We shall consider the quantity111

∑
π

|π(S ) ∩F |, (9)

where π runs over all permutations π : [n]→ [n]. Observe that the number of times each F ∈ F112

is counted in (9) is113

|S |k!(n− k)! = θ

(
n

t

)(
k

t

)−1
k!(n− k)! = θ(n)t(k − t)!(n− k)!. (10)

Consequently,114

∑
π

|π(S ) ∩F | = |F ||S |k!(n− k)! = θα

(
n− t
k − t

)
(n)t(k − t)!(n− k)! = θαn!. (11)

We shall now use the following fact.115

Fact 9. Let x1, . . . , xN be non-negative integers and let a = N−1
∑

1≤i≤N xi. Then116

1

N

∑
1≤i≤N

(
xi
2

)
≥
{
a

2

}
. (12)

Proof. It is straightforward to check that the left-hand side of (12) is minimized when all117

the xi are as equal as possible, that is, when xi ∈ {bac, dae}. Suppose aN = bacN + r,118

where 0 ≤ r < N . The minimum of the left-hand side of (12) is achieved when N − r of the xi119
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are bac and the remaining r are dae. Thus, this minimum is120

(
1− r

N

)(bac
2

)
+

r

N

(
dae
2

)
=

{
a

2

}
, (13)

as required. �121

In view of (11), Fact 9 applied to the sequence of n! numbers |π(S ) ∩F | gives that122

∑
π

(
|π(S ) ∩F |

2

)
≥
{
θα

2

}
n!. (14)

We now note that123

∑
π

(
|π(S ) ∩F |

2

)
=

1

2

∑
j<t

∑
(S,S′)∈S

(2)
j

∑
(F,F ′)∈F

(2)
j

∑
π

1{π(S) = F , π(S′) = F ′}

=
1

2

∑
j<t

|S (2)
j ||F

(2)
j |j!

(
(k − j)!

)2
(n− 2k + j)!, (15)

which, by (6), is at most124

θ

2

∑
j<t

|F (2)
j |

(n)t(n− k)t−j
(
(k − j)!

)2
j!

j! ((k − j)t−j)2
(n− 2k + j)!

=
θ

2

∑
j<t

|F (2)
j |(n)t(n− k)t−j(n− 2k + j)!

(
(k − t)!

)2
. (16)

Multiplying and dividing the quantity in (16) by n!, we obtain125

θ
n!

2

∑
j<t

|F (2)
j |

(n)t(n− k)t−j(n− 2k + j)!

n!

(
(k − t)!

)2
= θ

n!

2

∑
j<t

|F (2)
j |

(
(k − t)!

)2
(n− t)k−t(n− k − t+ j)k−t

= θ
n!

2

(
n− t
k − t

)−1∑
j<t

|F (2)
j |
(
n− k − t+ j

k − t

)−1
.

(17)

Comparing (14) and (17) we see that126

θ

2

(
n− t
k − t

)−1∑
j<t

|F (2)
j |
(
n− k − t+ j

k − t

)−1
≥
{
θα

2

}
. (18)

Since
(
n−k−t+j

k−t
)
≥
(
n−k−t
k−t

)
, we get from (18) that127

|F (2)
<t | =

∑
j<t

|F (2)
j | ≥

2

θ

{
θα

2

}(
n− t
k − t

)(
n− k − t
k − t

)
, (19)
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as required. �128

We now state and prove a simple fact that will be required soon.129

Fact 10. (i) For every η > 0 and ε > 0, there is δ > 0 such that, for every 1 − δ ≤ θ ≤ 1130

and every α ≥ 1 + η, we have131 {
θα

2

}
≥
(

1− ε

2

){α
2

}
. (20)

(ii) For every η > 0 and ε > 0, there is δ > 0 such that, for every α ≥ 1 + η, we have132 {
(1 + δ)α

2

}
≤
(

1 +
ε

2

){α
2

}
. (21)

Proof. Let us start with the proof of (i). Let η and ε be given. Let us first recall that
{
α
2

}
≥
(
α
2

)
133

for every α and that
{
α
2

}
∼
(
α
2

)
as α→∞. Therefore, if α ≥ α0(ε) and 0 < δ ≤ δ0(ε), then, for134

every 1− δ ≤ θ ≤ 1, we have135 {
θα

2

}
≥
(
θα

2

)
≥
(

1− ε

4

)(α
2

)
≥
(

1− ε

2

){α
2

}
, (22)

and (20) holds. We now suppose α < α0(ε). Let δ1 = δ1(η, ε) = ηε/4α0(ε) and suppose 1−δ1 ≤136

θ ≤ 1. Then137

α− δ1α ≤ θα ≤ α. (23)

Recall that
{
α
2

}
is a piecewise linear function. Moreover, the derivative of

{
α
2

}
at α is bαc and,138

more generally, it is m in the interval (m,m+1) for every integer m. Therefore, in view of (23),139 {
θα

2

}
≥
{
α

2

}
− δ1αbαc =

{
α

2

}(
1− δ1αbαc

{
α

2

}−1)
. (24)

However,140

δ1αbαc
{
α

2

}−1
=

δ1αbαc
bαc(bαc − 1)/2 + bαc(α− bαc)

=
2δ1α

2α− bαc − 1

=
2δ1α

α+ (α− bαc)− 1
≤ 2δ1α

α− 1
≤ 2δ1α

η
≤ ε

2
. (25)

Inequalities (24) and (25) therefore imply (20) in this case. The discussion above tells us141

that δ = min{δ0(ε), δ1(η, ε)} will do in the statement of (i).142

Let us now turn to (ii) of our fact, whose proof is very similar. Let η and ε be given. One can143

again check that if α ≥ α1(ε) and 0 < δ ≤ δ2(ε), then (21) holds. We now suppose α < α1(ε).144

Let δ3 = δ3(η, ε) = ηε/8α1(ε).145
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Recalling that
{
α
2

}
has derivative bαc in the interval (bαc, bαc+ 1), we see that, for any 0 <146

δ ≤ δ3, we have147 {
(1 + δ)α

2

}
≤
{
α

2

}
+ δ3α(bαc+ 1) =

{
α

2

}(
1 + 2δ3αbαc

{
α

2

}−1)
. (26)

Calculations very similar to those in (25) show that (26) implies (21) in this case. It now suffices148

to take δ = min{δ2(ε), δ3(η, ε)} for the statement of (ii). �149

We are now ready to prove the lower bounds in Theorem 1.150

Proof of the lower bounds in (4) and (5). Let η > 0, k = k(n), t = t(n) and α = α(n) be as in151

the statement of Theorem 1. We first show that, for any ε > 0, if n is large enough, then152

µ(n, k, t, α) ≥ (2− ε)
{
α

2

}(
n− t
k − t

)(
n− k − t
k − t

)
. (27)

Since we suppose that α ≥ 1 + η, Fact 10(i) tells us that there is δ = δ(η, ε) > 0 so that, for153

every 1− δ ≤ θ ≤ 1, we have154

2

θ

{
θα

2

}
≥ 2

{
θα

2

}
≥ (2− ε)

{
α

2

}
. (28)

Since we suppose that (k, t) is an η-admissible pair, Lemma 6 tells us that almost complete (k, t)-155

systems exist. Let n0 be so that, for every n ≥ n0, a (θ, k, t)-system exists for some θ ≥ 1− δ.156

It now suffices to notice that, because of (28), the right-hand side of (8) is at least as large157

of the right-hand of (27). We remark that the extra hypotheses on k and α specified in the158

statement of Theorem 1(ii) are not required in the derivation of (27). (They are required in159

the proof of the upper bound in (5).)160

We now turn to the lower bound in (4). In this case, we suppose k � n1/2 and wish to show161

that162

µ(n, k, t, α) & 2

{
α

2

}(
n− t
k − t

)2

. (29)

It suffices to notice that (29) follows from (27), because
(
n−k−t
k−t

)
∼
(
n−t
k−t
)

if k � n1/2. �163

2.2. Proof of the upper bounds. We now prove the upper bounds in (4) and (5). Let η > 0,164

k = k(n), t = t(n), α = α(n) be as in the statement of Theorem 1.165

Let us start with the following observation. Suppose |F | =
⌊
α
(
n−t
k−t
)⌋

and α→∞. Recalling166

Remark 2(a), we see that the trivial bound |F (2)
<t | ≤ |F |2 ∼ α2

(
n−t
k−t
)2

implies the upper bound167

in (4). In what follows, we suppose that168

α� n/k (30)
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and prove that169

µ(n, k, t, α) . 2

{
α

2

}(
n− t
k − t

)(
n− k − t
k − t

)
≤ 2

{
α

2

}(
n− t
k − t

)2

. (31)

Clearly, this will complete the proof of the upper bound in (4) and will establish the upper170

bound in (5). Let us turn to the proof of (31), assuming (30).171

Let ε > 0 be given. Recall that we assume that α ≥ 1 + η. Fact 10(ii) tells us that there172

is δ > 0 so that if β = (1 + δ)α, then173 {
β

2

}
≤
(

1 +
ε

2

){α
2

}
. (32)

In what follows, whenever necessary, we tacitly assume that n is large enough for our inequalities174

to hold. We shall construct a family F ⊂
([n]
k

)
with |F | & β

(
n−t
k−t
)
≥ α

(
n−t
k−t
)

such that175

|F (2)
<t | . 2

{
β

2

}(
n− t
k − t

)(
n− k − t
k − t

)
≤ 2

(
1 +

ε

2

){α
2

}(
n− t
k − t

)(
n− k − t
k − t

)
= (2 + ε)

{
α

2

}(
n− t
k − t

)(
n− k − t
k − t

)
. (33)

Since F will be constructed for arbitrary ε > 0, this will establish (31). Let us proceed with176

the construction of F .177

Given a set T ⊂ [n] with |T | = t, let178

I (T ) =
{
F ∈

(
[n]

k

)
: T ⊂ F

}
. (34)

Clearly, |I (T )| =
(
n−t
k−t
)

for any such T . Our F will be, roughly speaking, a union of cer-179

tain I (T ) for a collection of β sets T (the fact that β is not necessarily an integer will be dealt180

with in a certain natural way). For 1 ≤ b ≤ dβe, let181

Tb = [t− 1] ∪ {b+ t− 1}. (35)

We may now define F in the case β is an integer.182

Definition 11 (F for integer β). Let Fb = I (Tb) for all 1 ≤ b ≤ β and let F =
⋃

1≤b≤β Fb.183

We shall define F for non-integer β in a short while. The following claim will help us estimate184

the cardinality of F (both for integer β and non-integer β).185

Claim 12. We have186 ∣∣∣∣ ⋃
1≤b≤β

I (Tb)

∣∣∣∣ ∼ bβc(n− tk − t

)
. (36)
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Furthermore, we have187 ∣∣∣∣I (Tdβe) ∩
⋃

1≤j<dβe

I (Tj)

∣∣∣∣� (
n− t
k − t

)
. (37)

Proof. By Bonferroni’s inequalities, we have188

bβc
(
n− t
k − t

)
−
(
bβc
2

)(
n− t− 1

k − t− 1

)
≤
∣∣∣∣ ⋃
1≤b≤β

I (Tb)

∣∣∣∣ ≤ bβc(n− tk − t

)
. (38)

In view of (30), a quick calculation shows that (38) implies that (36) holds. To see that (37)189

holds, note that the left-hand side of (37) is at most (dβe − 1)
(
n−t−1
k−t−1

)
, and hence (37) follows190

from (30) (recall that β = (1 + δ)α). �191

We need to introduce a piece of notation. Given J and J ′ ⊂
([n]
k

)
, let (J ,J ′)<t be the set192

of pairs (F, F ′) ∈J ×J ′ with |F ∩F ′| < t. Note that, for any 1 ≤ b < b′ ≤ dβe, if F ∈ I (Tb),193

then194

({F},I (Tb′)) ≤
(
n− t
k − t

)(
n− k − 1

k − t

)
. (39)

Recalling that t� k1/2 ≤ n1/4, we see that195

∣∣(I (Tb),I (Tb′)
)
<t

∣∣ ≤ (n− t
k − t

)(
n− k − 1

k − t

)
∼
(
n− t
k − t

)(
n− k − t
k − t

)
. (40)

To define F in the case of non-integer β, we need one further observation, which we state in196

the claim below.197

Claim 13. There is F ′ ⊂ I (Tdβe) such that198

|F ′| =
⌊

(β − bβc)
(
n− t
k − t

)⌋
(41)

and199 ∣∣∣∣( ⋃
1≤b≤β

I (Tb),F
′
)
<t

∣∣∣∣ . bβc(β − bβc)(n− tk − t

)(
n− k − t
k − t

)
(42)

Proof. Let J =
⋃

1≤b≤β I (Tb) and J ′ = I (Tdβe). Then |J | ≤ bβc
(
n−t
k−t
)

and |J ′| =
(
n−t
k−t
)
.200

Consider a bipartite graph Γ with vertex classes J and J ′, with {F, F ′} an edge if and only201

if |F ∩F ′| < t. In view of (39), applied with b′ = dβe, a simple averaging argument shows that,202

for any integer M ≥ 0, one may select G ⊂ J ′ with |G | = M so that the number of edges in203

our graph Γ induced by J ∪ G is at most204

|J |
(
n− k − 1

k − t

)
M

|J ′|
. (43)
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The claim now follows by setting M to be the right-hand side of (41) and by observing205

that
(
n−k−1
k−t

)
∼
(
n−k−t
k−t

)
, as t� k1/2 ≤ n1/4. �206

We are ready to define F in the case in which β is not an integer.207

Definition 14 (F for non-integer β). Let Fb = I (Tb) for all 1 ≤ b ≤ β and let Fdβe be a208

family F ′ as in Claim 13. Let F =
⋃

1≤b≤dβeFb.209

We shall now prove that the system F defined in Definitions 11 and 14 will do. Note first210

that Claim 12 implies that |F | ∼ β
(
n−t
k−t
)

holds. Let us now estimate |F (2)
<t |. If β is an integer,211

then, using (40), we see that212

|F (2)
<t | ≤ 2

∑
1≤b<b′≤β

∣∣(Fb,Fb′
)
<t

∣∣ = 2
∑

1≤b<b′≤β

∣∣(I (Tb),I (Tb′)
)
<t

∣∣
. 2

∑
1≤b<b′≤β

(
n− t
k − t

)(
n− k − t
k − t

)
= 2

(
β

2

)(
n− t
k − t

)(
n− k − t
k − t

)

= 2

{
β

2

}(
n− t
k − t

)(
n− k − t
k − t

)
, (44)

establishing the first inequality in (33) in the case in which β is an integer. If β is not an integer,213

then214

|F (2)
<t | ≤ 2

∑
1≤b<b′≤β

∣∣(Fb,Fb′
)
<t

∣∣+ 2

∣∣∣∣( ⋃
1≤b≤β

Fb,Fdβe

)
<t

∣∣∣∣
= 2

∑
1≤b<b′≤β

∣∣(I (Tb),I (Tb′)
)
<t

∣∣+ 2

∣∣∣∣( ⋃
1≤b≤β

I (Tb),Fdβe

)
<t

∣∣∣∣. (45)

By (40) and by the choice of Fdβe, the right-hand side of (45) is215

. 2
∑

1≤b<b′≤β

(
n− t
k − t

)(
n− k − t
k − t

)
+ 2bβc(β − bβc)

(
n− t
k − t

)(
n− k − t
k − t

)

≤ 2

(
bβc
2

)(
n− t
k − t

)(
n− k − t
k − t

)
+ 2bβc(β − bβc)

(
n− t
k − t

)(
n− k − t
k − t

)
= 2

{
β

2

}(
n− t
k − t

)(
n− k − t
k − t

)
, (46)

again establishing the first inequality in (33). Thus F is as required. This concludes the proof216

of (31).217
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3. Concluding remarks218

In this note, for simplicity, we have restricted ourselves to the case in which α is bounded219

away from 1. Our method does give results for α → 1, but we do not elaborate on those here.220

We have also omitted some results that one may obtain via standard eigenvalue methods in the221

case in which t = 1.222

Let us now focus on the case t > 1. Our main tool, namely, Lemma 8, requires the existence223

of ‘good’ (k, t)-systems. As it turns out, this rules out the case k � n1/2 (see [9]). We believe224

that it would be interesting to investigate the behaviour of µ(n, k, t, α) for t > 1 and k � n1/2.225

For instance, how much is µ(n, k, 2, α) for, say, k ∼ n2/3 and α ∼ 1
2

(
n
k

)(
n−2
k−2
)−1

?226
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E-mail address: rodl@mathcs.emory.edu256

13


