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empty and their union has size at most 6. We prove a structure theorem for such

Abstract. Suppose that F C (M) contains no three sets whose intersection is

families which easily implies the best possible bound, |F| < (”;1)



Let [n] ={1,2,...,n}. For aninteger k,0 < k < nlet ([Z]) denote the collection
of all k-element subsets of [n]. A family F C ([Z]) is called a k-graph.

Definition 1. The k-element sets A, B, C are called o Katona-triple if both
ANBNC =0 and |[AUBUC| <2k hold.

Let m(n, k) denote the maximum of |F| for F C ([Z}) over all F without a

Katona-triple.

For n < %/{:, ANBNC # 0 for all choices of A, B, C € ([Z]). Consequently,
m(n, k) = (Z) holds.

For %k’ < n < 2k the second condition, |AU B UC| < 2k is satisfied automati-
cally. Thus m(n, k) = (Zj) follows from the following.

Theorem 1 (Frankl [Fra76], 1976). Let r > 3 be an integer, n > "5k and suppose
that F C ([Z}) is r-wise intersecting. That is, FyN... F, # 0 for all Fy, ..., F, € F.

Then _
A< (i21) )

Moreover, in case of equality, for some fized element x € [n] one has
F={Fre(}):zerF}
Remark 1. The statement about uniqueness was not stated in [Fra76] but it is

proved, e. g., in [Fra87].

What happens for n > 2k? This was a problem asked by Katona and answered
by Frankl and Firedi [FF83] who proved the following result.

Theorem 2 ([FF83], 1983). Suppose that F C ([Z]), F contains no Katona-triple
and n > k? + 3k. Then (1) holds and the only optimal family is the star.

Frankl and Fiiredi conjectured that the same holds true for all n > 2k as well.
They proved it in [FF83] for k£ = 3 and claim it for £ = 4, 5 (without proof). Mubayi
[Mub06] proved this conjecture for all £k and n > 2k via an entirely different proof.
For four and more sets cf. [Mub07] and [MR09].
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Our aim is to use a different approach and derive (1) in the first non-trivial

case, k = 3 from a structure theorem.

Definition 2. Let F C 2" be a family, F € F. The subset G C F is called
unique if there is no different F' € F with G C F'.

Theorem 3 (Bollobés [Bol65], 1963). Suppose that for every member H of the
family H c 2", G(H) C H is a unique subset. Then

1
Z(,Z_H_G(H))g (2)

HeH |G(H)

holds.

Since for an antichain H and for all H € H the choice G(H) = H provides a

unique subset, (2) generalizes the famous LY M-inequality.

Corollary 1. Suppose that H C <[Z]> and every H € ‘H has a unique (k—1)-subset

G(H) C H. Then
n—1
(")) ®)
holds.

Indeed, for such H, G(H) each term in (2) is exactly (Z—a) O
One can show that equality is possible only for the full star of a fixed vertex. Let
us mention that (3) can be proved without using (2). One proof is using linear inde-
pendence. Another one is using a weight function w(H, G) for all pairs G C H € H,
|G| = k—1. Assigning weights 1 to (H,G) for G = G(H) and ;—— for G # G(H)
assures that for G' € (k[ﬁ]l)
> w(H,G)<1

HeH

and (3) follows by simple calculation.

Let us state our main result.



Theorem 4. Suppose that F C Gg]) contains no Katona-triple. Then F can be

partitioned into two families H and B and the ground set [n]| into two disjoint
subsets Y and Z such that

o HC (g) and every H € H contains a unique 2-element set,

e 3 C (g) and B is the vertex-disjoint union of %' complete 3-graphs on 4

vertices.

Proof of the theorem:

Let us define
H= {H €eF:3dG=G(H) e <[Z]> such that G is unique} :

Set B = F —H. Note that for all B € B and every b € B, there exists ' = F(B,b),
F # B such that (B—{b}) is contained in F'. A priori there might be several choices

for such an F'. However we prove the following.

Lemma 1. For every B € B there exists an element ¢ € ([n] — B) such that
F(B,b) = (B —{b}) U {c}
holds for each b € B.

Proof: Let B = {by, by, b3} and let ¢y, ¢, 5 be such that F(B,b;) = (B—b;) U{c}
holds. Note that

F(B,b1) U F(B,b2) U F(B,bs) = {b1,2,b3} U {c1, c2, c3},

i. e., it consist of at most six elements. Since it is not a Katona-triple, the inter-
section of these three sets is non-empty. Let ¢ denote the common element. Then

c=c¢;,1=1,2,3 and the uniqueness of the choice of ¢; follows. n



By the lemma every B € B gives rise to a complete 3-graph on four vertices
(with vertex set B U {c}). Since every 2-subset of a complete 3-graph on four

vertices is contained in two edges, (B — {b;}) U {c} isin B for all i = 1,2, 3.
The following lemma was essentially proved already in [FF83].

Lemma 2. If F, F' € F satisfy FNF' = {y} for somey € [n] then (F' —{y}) is

a unique subset.

Proof: Suppose the contrary and let F” € F satisfy F’ # F" and (F' —{y}) C F".
Then y ¢ F” implies that FNF'NF" = (). Since FUF'UF" = FUF'U(F" - F),
the size of the union is at most six. That is F, F’, F” form a Katona-triple, a

contradiction. O

Let D € ([Z}) satisfy that (?) C F. Let us prove the following.

Proposition 1. For every F € F either F C D or F N D = holds.

Proof: Suppose F' ¢ D. If |[FFN D| =1 or 2 then we have exactly two choices for
B € (?) satisfying |F'N B| = 1. Setting F’ = B and using B € B this contradicts
Lemma 2. The only remaining possibility is £'N D = (). [

To conclude the proof of the theorem just let Z be the union of all D € ([Z})
with (?) C F,and set Y = ([n] — Z). OO

In view of the Bollobas Theorem,

Y e R Y L R !

For n > 5 the right hand side is maximized for |Y| = n and its maximal value is
n—1
("2")
It would be interesting to find a structure theorem for k-graphs with £ > 4

without Katona-triples that implies the (Zj) upper bound, i. e., m(n, k) = (Zj)
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