A structural result for 3-graphs

by P. Frankl (Rényi Institute, Budapest, Hungary)

Abstract

Suppose that $\mathcal{F} \subset\binom{[n]}{3}$ contains no three sets whose intersection is empty and their union has size at most 6 . We prove a structure theorem for such families which easily implies the best possible bound, $|\mathcal{F}| \leq\binom{ n-1}{2}$.

Let $[n]=\{1,2, \ldots, n\}$. For an integer $k, 0 \leq k \leq n$ let $\binom{[n]}{k}$ denote the collection of all k-element subsets of $[n]$. A family $\mathcal{F} \subset\binom{[n]}{k}$ is called a k-graph.

Definition 1. The k-element sets A, B, C are called a Katona-triple if both $A \cap B \cap C=\emptyset$ and $|A \cup B \cup C| \leq 2 k$ hold .

Let $m(n, k)$ denote the maximum of $|\mathcal{F}|$ for $\mathcal{F} \subset\binom{[n]}{k}$ over all \mathcal{F} without a Katona-triple.

For $n<\frac{3}{2} k, A \cap B \cap C \neq \emptyset$ for all choices of $A, B, C \in\binom{[n]}{k}$. Consequently, $m(n, k)=\binom{n}{k}$ holds.

For $\frac{3}{2} k \leq n \leq 2 k$ the second condition, $|A \cup B \cup C| \leq 2 k$ is satisfied automatically. Thus $m(n, k)=\binom{n-1}{k-1}$ follows from the following.

Theorem 1 (Frankl [Fra76], 1976). Let $r \geq 3$ be an integer, $n \geq \frac{r}{r-1} k$ and suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is r-wise intersecting. That is, $F_{1} \cap \ldots F_{r} \neq \emptyset$ for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$. Then

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-1}{k-1} \tag{1}
\end{equation*}
$$

Moreover, in case of equality, for some fixed element $x \in[n]$ one has $\mathcal{F}=\left\{F \in\binom{[n]}{k}: x \in F\right\}$.

Remark 1. The statement about uniqueness was not stated in [Fra76] but it is proved, e. g., in [Fra87].

What happens for $n>2 k$? This was a problem asked by Katona and answered by Frankl and Füredi [FF83] who proved the following result.

Theorem 2 ([FF83], 1983). Suppose that $\mathcal{F} \subset\binom{[n]}{k}, \mathcal{F}$ contains no Katona-triple and $n>k^{2}+3 k$. Then (1) holds and the only optimal family is the star.

Frankl and Füredi conjectured that the same holds true for all $n>2 k$ as well. They proved it in [FF83] for $k=3$ and claim it for $k=4,5$ (without proof). Mubayi [Mub06] proved this conjecture for all k and $n>2 k$ via an entirely different proof. For four and more sets cf. [Mub07] and [MR09].

Our aim is to use a different approach and derive (1) in the first non-trivial case, $k=3$ from a structure theorem.

Definition 2. Let $\mathcal{F} \subset 2^{[n]}$ be a family, $F \in \mathcal{F}$. The subset $G \subset F$ is called unique if there is no different $F^{\prime} \in \mathcal{F}$ with $G \subset F^{\prime}$.

Theorem 3 (Bollobás [Bol65], 1963). Suppose that for every member H of the family $\mathcal{H} \subset 2^{[n]}, G(H) \subset H$ is a unique subset. Then

$$
\begin{equation*}
\sum_{H \in \mathcal{H}} \frac{1}{\binom{n-|H-G(H)|}{|G(H)|}} \leq 1 \tag{2}
\end{equation*}
$$

holds.

Since for an antichain \mathcal{H} and for all $H \in \mathcal{H}$ the choice $G(H)=H$ provides a unique subset, (2) generalizes the famous LYM-inequality.

Corollary 1. Suppose that $\mathcal{H} \subset\binom{[n]}{k}$ and every $H \in \mathcal{H}$ has a unique $(k-1)$-subset $G(H) \subset H$. Then

$$
\begin{equation*}
|\mathcal{H}| \leq\binom{ n-1}{k-1} \tag{3}
\end{equation*}
$$

holds.

Indeed, for such $H, G(H)$ each term in (2) is exactly $\frac{1}{\binom{n-1}{k-1} \text {. }}$.
One can show that equality is possible only for the full star of a fixed vertex. Let us mention that (3) can be proved without using (2). One proof is using linear independence. Another one is using a weight function $w(H, G)$ for all pairs $G \subset H \in \mathcal{H}$, $|G|=k-1$. Assigning weights 1 to (H, G) for $G=G(H)$ and $\frac{1}{n-k+1}$ for $G \neq G(H)$ assures that for $G \in\binom{[n]}{k-1}$

$$
\sum_{H \in \mathcal{H}} w(H, G) \leq 1
$$

and (3) follows by simple calculation.
Let us state our main result.

Theorem 4. Suppose that $\mathcal{F} \subset\binom{[n]}{3}$ contains no Katona-triple. Then \mathcal{F} can be partitioned into two families \mathcal{H} and \mathcal{B} and the ground set $[n]$ into two disjoint subsets Y and Z such that

- $\mathcal{H} \subset\binom{Y}{3}$ and every $H \in \mathcal{H}$ contains a unique 2 -element set,
- $\mathcal{B} \subset\binom{Z}{3}$ and \mathcal{B} is the vertex-disjoint union of $\frac{|Z|}{4}$ complete 3 -graphs on 4 vertices.

Proof of the theorem:

Let us define

$$
\mathcal{H}=\left\{H \in \mathcal{F}: \exists G=G(H) \in\binom{[n]}{2} \text { such that } G \text { is unique }\right\} .
$$

Set $\mathcal{B}=\mathcal{F}-\mathcal{H}$. Note that for all $B \in \mathcal{B}$ and every $b \in B$, there exists $F=F(B, b)$, $F \neq B$ such that $(B-\{b\})$ is contained in F. A priori there might be several choices for such an F. However we prove the following.

Lemma 1. For every $B \in \mathcal{B}$ there exists an element $c \in([n]-B)$ such that

$$
F(B, b)=(B-\{b\}) \cup\{c\}
$$

holds for each $b \in B$.

Proof: Let $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ and let c_{1}, c_{2}, c_{3} be such that $F\left(B, b_{i}\right)=\left(B-b_{i}\right) \cup\left\{c_{i}\right\}$ holds. Note that

$$
F\left(B, b_{1}\right) \cup F\left(B, b_{2}\right) \cup F\left(B, b_{3}\right)=\left\{b_{1}, b_{2}, b_{3}\right\} \cup\left\{c_{1}, c_{2}, c_{3}\right\},
$$

i. e., it consist of at most six elements. Since it is not a Katona-triple, the intersection of these three sets is non-empty. Let c denote the common element. Then $c=c_{i}, i=1,2,3$ and the uniqueness of the choice of c_{i} follows.

By the lemma every $B \in \mathcal{B}$ gives rise to a complete 3 -graph on four vertices (with vertex set $B \cup\{c\}$). Since every 2 -subset of a complete 3 -graph on four vertices is contained in two edges, $\left(B-\left\{b_{i}\right\}\right) \cup\{c\}$ is in \mathcal{B} for all $i=1,2,3$.

The following lemma was essentially proved already in [FF83].
Lemma 2. If $F, F^{\prime} \in \mathcal{F}$ satisfy $F \cap F^{\prime}=\{y\}$ for some $y \in[n]$ then $\left(F^{\prime}-\{y\}\right)$ is a unique subset.

Proof: Suppose the contrary and let $F^{\prime \prime} \in \mathcal{F}$ satisfy $F^{\prime} \neq F^{\prime \prime}$ and $\left(F^{\prime}-\{y\}\right) \subset F^{\prime \prime}$. Then $y \notin F^{\prime \prime}$ implies that $F \cap F^{\prime} \cap F^{\prime \prime}=\emptyset$. Since $F \cup F^{\prime} \cup F^{\prime \prime}=F \cup F^{\prime} \cup\left(F^{\prime \prime}-F^{\prime}\right)$, the size of the union is at most six. That is $F, F^{\prime}, F^{\prime \prime}$ form a Katona-triple, a contradiction.

Let $D \in\binom{[n]}{4}$ satisfy that $\binom{D}{3} \subset \mathcal{F}$. Let us prove the following.
Proposition 1. For every $F \in \mathcal{F}$ either $F \subset D$ or $F \cap D=\emptyset$ holds.

Proof: Suppose $F \not \subset D$. If $|F \cap D|=1$ or 2 then we have exactly two choices for $B \in\binom{D}{3}$ satisfying $|F \cap B|=1$. Setting $F^{\prime}=B$ and using $B \in \mathcal{B}$ this contradicts Lemma 2. The only remaining possibility is $F \cap D=\emptyset$.

To conclude the proof of the theorem just let Z be the union of all $D \in\binom{[n]}{4}$ with $\binom{D}{3} \subset \mathcal{F}$, and set $Y=([n]-Z)$.

In view of the Bollobás Theorem,

$$
|\mathcal{F}| \leq\binom{|Y|-1}{2}+4 \cdot\left\lfloor\frac{|Z|}{4}\right\rfloor \leq\binom{|Y|-1}{2}+n-|Y| .
$$

For $n \geq 5$ the right hand side is maximized for $|Y|=n$ and its maximal value is $\binom{n-1}{2}$.

It would be interesting to find a structure theorem for k-graphs with $k \geq 4$ without Katona-triples that implies the $\binom{n-1}{k-1}$ upper bound, i. e., $m(n, k)=\binom{n-1}{k-1}$.

References

[Bol65] B. Bollobás. On generalized graphs. Acta. Math. Acad. Sci. Hungar., 16: 447-452, 1965.
[FF83] P. Frankl and Z. Füredi. A new generalisation of the Erdős-Ko-Rado Theorem. Combinatorica, 3:341-349, 1983.
[Fra76] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory Ser. A., 20:1-11, 1976.
[Fra87] P. Frankl. The shifting technique in extremal set theory. Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 123, 1987.
[MR09] D. Mubayi and R. Ramadurai. Set systems with union and intersection constraints. J. Combin. Theory Ser. B, 99 no. 3:639-642, 2009.
[Mub06] D. Mubayi. Erdős-Ko-Rado for three sets. J. Combin. Theory Ser. A, 113:547-550, 2006.
[Mub07] D. Mubayi. An intersection theorem for four sets. Adv. Math., 215 no. 2:601-615, 2007.

