A structural result for 3-graphs

by P. Frankl (Rényi Institute, Budapest, Hungary)

Abstract. Suppose that $\mathcal{F} \subset {\binom{[n]}{3}}$ contains no three sets whose intersection is empty and their union has size at most 6. We prove a structure theorem for such families which easily implies the best possible bound, $|\mathcal{F}| \leq {\binom{n-1}{2}}$.

Let $[n] = \{1, 2, ..., n\}$. For an integer $k, 0 \le k \le n$ let $\binom{[n]}{k}$ denote the collection of all k-element subsets of [n]. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called a k-graph.

Definition 1. The k-element sets A, B, C are called a **Katona-triple** if both $A \cap B \cap C = \emptyset$ and $|A \cup B \cup C| \le 2k$ hold.

Let m(n,k) denote the maximum of $|\mathcal{F}|$ for $\mathcal{F} \subset {\binom{[n]}{k}}$ over all \mathcal{F} without a Katona-triple.

For $n < \frac{3}{2}k$, $A \cap B \cap C \neq \emptyset$ for all choices of A, B, $C \in \binom{[n]}{k}$. Consequently, $m(n,k) = \binom{n}{k}$ holds.

For $\frac{3}{2}k \leq n \leq 2k$ the second condition, $|A \cup B \cup C| \leq 2k$ is satisfied automatically. Thus $m(n,k) = \binom{n-1}{k-1}$ follows from the following.

Theorem 1 (Frankl [Fra76], 1976). Let $r \geq 3$ be an integer, $n \geq \frac{r}{r-1}k$ and suppose that $\mathcal{F} \subset {[n] \choose k}$ is r-wise intersecting. That is, $F_1 \cap \ldots F_r \neq \emptyset$ for all $F_1, \ldots, F_r \in \mathcal{F}$. Then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.\tag{1}$$

Moreover, in case of equality, for some fixed element $x \in [n]$ one has $\mathcal{F} = \left\{ F \in {[n] \choose k} : x \in F \right\}.$

Remark 1. The statement about uniqueness was not stated in [Fra76] but it is proved, e. g., in [Fra87].

What happens for n > 2k? This was a problem asked by Katona and answered by Frankl and Füredi [FF83] who proved the following result.

Theorem 2 ([FF83], 1983). Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}$, \mathcal{F} contains no Katona-triple and $n > k^2 + 3k$. Then (1) holds and the only optimal family is the star.

Frankl and Füredi conjectured that the same holds true for all n > 2k as well. They proved it in [FF83] for k = 3 and claim it for k = 4, 5 (without proof). Mubayi [Mub06] proved this conjecture for all k and n > 2k via an entirely different proof. For four and more sets cf. [Mub07] and [MR09]. Our aim is to use a different approach and derive (1) in the first non-trivial case, k = 3 from a structure theorem.

Definition 2. Let $\mathcal{F} \subset 2^{[n]}$ be a family, $F \in \mathcal{F}$. The subset $G \subset F$ is called **unique** if there is no different $F' \in \mathcal{F}$ with $G \subset F'$.

Theorem 3 (Bollobás [Bol65], 1963). Suppose that for every member H of the family $\mathcal{H} \subset 2^{[n]}, G(H) \subset H$ is a unique subset. Then

$$\sum_{H \in \mathcal{H}} \frac{1}{\binom{n-|H-G(H)|}{|G(H)|}} \le 1$$
(2)

holds.

Since for an antichain \mathcal{H} and for all $H \in \mathcal{H}$ the choice G(H) = H provides a unique subset, (2) generalizes the famous LYM-inequality.

Corollary 1. Suppose that $\mathcal{H} \subset {\binom{[n]}{k}}$ and every $H \in \mathcal{H}$ has a unique (k-1)-subset $G(H) \subset H$. Then

$$|\mathcal{H}| \le \binom{n-1}{k-1} \tag{3}$$

holds.

Indeed, for such H, G(H) each term in (2) is exactly $\frac{1}{\binom{n-1}{k-1}}$.

One can show that equality is possible only for the full star of a fixed vertex. Let us mention that (3) can be proved without using (2). One proof is using linear independence. Another one is using a weight function w(H, G) for all pairs $G \subset H \in \mathcal{H}$, |G| = k - 1. Assigning weights 1 to (H, G) for G = G(H) and $\frac{1}{n-k+1}$ for $G \neq G(H)$ assures that for $G \in {[n] \choose k-1}$

$$\sum_{H \in \mathcal{H}} w(H,G) \le 1$$

and (3) follows by simple calculation.

Let us state our main result.

Theorem 4. Suppose that $\mathcal{F} \subset {\binom{[n]}{3}}$ contains no Katona-triple. Then \mathcal{F} can be partitioned into two families \mathcal{H} and \mathcal{B} and the ground set [n] into two disjoint subsets Y and Z such that

- $\mathcal{H} \subset {Y \choose 3}$ and every $H \in \mathcal{H}$ contains a unique 2-element set,
- $\mathcal{B} \subset {\binom{Z}{3}}$ and \mathcal{B} is the vertex-disjoint union of $\frac{|Z|}{4}$ complete 3-graphs on 4 vertices.

Proof of the theorem:

Let us define

$$\mathcal{H} = \left\{ H \in \mathcal{F} : \exists G = G(H) \in {\binom{[n]}{2}} \text{ such that } G \text{ is unique} \right\}.$$

Set $\mathcal{B} = \mathcal{F} - \mathcal{H}$. Note that for all $B \in \mathcal{B}$ and every $b \in B$, there exists F = F(B, b), $F \neq B$ such that $(B - \{b\})$ is contained in F. A priori there might be several choices for such an F. However we prove the following.

Lemma 1. For every $B \in \mathcal{B}$ there exists an element $c \in ([n] - B)$ such that

$$F(B,b) = (B - \{b\}) \cup \{c\}$$

holds for each $b \in B$.

Proof: Let $B = \{b_1, b_2, b_3\}$ and let c_1, c_2, c_3 be such that $F(B, b_i) = (B - b_i) \cup \{c_i\}$ holds. Note that

$$F(B, b_1) \cup F(B, b_2) \cup F(B, b_3) = \{b_1, b_2, b_3\} \cup \{c_1, c_2, c_3\},\$$

i. e., it consist of at most six elements. Since it is not a Katona-triple, the intersection of these three sets is non-empty. Let c denote the common element. Then $c = c_i$, i = 1, 2, 3 and the uniqueness of the choice of c_i follows. By the lemma every $B \in \mathcal{B}$ gives rise to a complete 3-graph on four vertices (with vertex set $B \cup \{c\}$). Since every 2-subset of a complete 3-graph on four vertices is contained in two edges, $(B - \{b_i\}) \cup \{c\}$ is in \mathcal{B} for all i = 1, 2, 3.

The following lemma was essentially proved already in [FF83].

Lemma 2. If $F, F' \in \mathcal{F}$ satisfy $F \cap F' = \{y\}$ for some $y \in [n]$ then $(F' - \{y\})$ is a unique subset.

Proof: Suppose the contrary and let $F'' \in \mathcal{F}$ satisfy $F' \neq F''$ and $(F' - \{y\}) \subset F''$. Then $y \notin F''$ implies that $F \cap F' \cap F'' = \emptyset$. Since $F \cup F' \cup F'' = F \cup F' \cup (F'' - F')$, the size of the union is at most six. That is F, F', F'' form a Katona-triple, a contradiction.

Let $D \in {\binom{[n]}{4}}$ satisfy that ${\binom{D}{3}} \subset \mathcal{F}$. Let us prove the following.

Proposition 1. For every $F \in \mathcal{F}$ either $F \subset D$ or $F \cap D = \emptyset$ holds.

Proof: Suppose $F \not\subset D$. If $|F \cap D| = 1$ or 2 then we have exactly two choices for $B \in {D \choose 3}$ satisfying $|F \cap B| = 1$. Setting F' = B and using $B \in \mathcal{B}$ this contradicts Lemma 2. The only remaining possibility is $F \cap D = \emptyset$.

To conclude the proof of the theorem just let Z be the union of all $D \in {\binom{[n]}{4}}$ with ${\binom{D}{3}} \subset \mathcal{F}$, and set Y = ([n] - Z).

In view of the Bollobás Theorem,

$$|\mathcal{F}| \le \binom{|Y|-1}{2} + 4 \cdot \left\lfloor \frac{|Z|}{4} \right\rfloor \le \binom{|Y|-1}{2} + n - |Y|.$$

For $n \ge 5$ the right hand side is maximized for |Y| = n and its maximal value is $\binom{n-1}{2}$.

It would be interesting to find a structure theorem for k-graphs with $k \ge 4$ without Katona-triples that implies the $\binom{n-1}{k-1}$ upper bound, i. e., $m(n,k) = \binom{n-1}{k-1}$.

References

- [Bol65] B. Bollobás. On generalized graphs. Acta. Math. Acad. Sci. Hungar., 16: 447–452, 1965.
- [FF83] P. Frankl and Z. Füredi. A new generalisation of the Erdős–Ko–Rado Theorem. Combinatorica, 3:341–349, 1983.
- [Fra76] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory Ser. A., 20:1–11, 1976.
- [Fra87] P. Frankl. The shifting technique in extremal set theory. Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 123, 1987.
- [MR09] D. Mubayi and R. Ramadurai. Set systems with union and intersection constraints. J. Combin. Theory Ser. B, 99 no. 3:639–642, 2009.
- [Mub06] D. Mubayi. Erdős–Ko–Rado for three sets. J. Combin. Theory Ser. A, 113:547–550, 2006.
- [Mub07] D. Mubayi. An intersection theorem for four sets. *Adv. Math.*, 215 no. 2:601–615, 2007.