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Abstract. Suppose that F ⊂
(

[n]
3

)
contains no three sets whose intersection is

empty and their union has size at most 6. We prove a structure theorem for such
families which easily implies the best possible bound, |F| ≤

(
n−1

2

)
.
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Let [n] = {1, 2, . . . , n}. For an integer k, 0 ≤ k ≤ n let
(

[n]
k

)
denote the collection

of all k-element subsets of [n]. A family F ⊂
(

[n]
k

)
is called a k-graph.

Definition 1. The k-element sets A, B, C are called a Katona-triple if both
A ∩B ∩ C = ∅ and |A ∪B ∪ C| ≤ 2k hold.

Let m(n, k) denote the maximum of |F| for F ⊂
(

[n]
k

)
over all F without a

Katona-triple.

For n < 3
2k, A ∩ B ∩ C 6= ∅ for all choices of A, B, C ∈

(
[n]
k

)
. Consequently,

m(n, k) =
(

n
k

)
holds.

For 3
2k ≤ n ≤ 2k the second condition, |A∪B ∪C| ≤ 2k is satisfied automati-

cally. Thus m(n, k) =
(

n−1
k−1

)
follows from the following.

Theorem 1 (Frankl [Fra76], 1976). Let r ≥ 3 be an integer, n ≥ r
r−1k and suppose

that F ⊂
(

[n]
k

)
is r-wise intersecting. That is, F1∩. . . Fr 6= ∅ for all F1, . . . , Fr ∈ F .

Then
|F| ≤

(
n− 1
k − 1

)
. (1)

Moreover, in case of equality, for some fixed element x ∈ [n] one has
F =

{
F ∈

(
[n]
k

)
: x ∈ F

}
.

Remark 1. The statement about uniqueness was not stated in [Fra76] but it is
proved, e. g., in [Fra87].

What happens for n > 2k? This was a problem asked by Katona and answered
by Frankl and Füredi [FF83] who proved the following result.

Theorem 2 ([FF83], 1983). Suppose that F ⊂
(

[n]
k

)
, F contains no Katona-triple

and n > k2 + 3k. Then (1) holds and the only optimal family is the star.

Frankl and Füredi conjectured that the same holds true for all n > 2k as well.
They proved it in [FF83] for k = 3 and claim it for k = 4, 5 (without proof). Mubayi
[Mub06] proved this conjecture for all k and n > 2k via an entirely different proof.
For four and more sets cf. [Mub07] and [MR09].

2



Our aim is to use a different approach and derive (1) in the first non-trivial
case, k = 3 from a structure theorem.

Definition 2. Let F ⊂ 2[n] be a family, F ∈ F . The subset G ⊂ F is called
unique if there is no different F ′ ∈ F with G ⊂ F ′.

Theorem 3 (Bollobás [Bol65], 1963). Suppose that for every member H of the
family H ⊂ 2[n], G(H) ⊂ H is a unique subset. Then

∑
H∈H

1(
n−|H−G(H)|
|G(H)|

) ≤ 1 (2)

holds.

Since for an antichain H and for all H ∈ H the choice G(H) = H provides a
unique subset, (2) generalizes the famous LYM-inequality.

Corollary 1. Suppose that H ⊂
(

[n]
k

)
and every H ∈ H has a unique (k−1)-subset

G(H) ⊂ H. Then

|H| ≤
(

n− 1
k − 1

)
(3)

holds.

Indeed, for such H, G(H) each term in (2) is exactly 1
(n−1

k−1)
.

One can show that equality is possible only for the full star of a fixed vertex. Let
us mention that (3) can be proved without using (2). One proof is using linear inde-
pendence. Another one is using a weight function w(H, G) for all pairs G ⊂ H ∈ H,
|G| = k−1. Assigning weights 1 to (H, G) for G = G(H) and 1

n−k+1 for G 6= G(H)
assures that for G ∈

(
[n]

k−1

)
∑

H∈H
w(H, G) ≤ 1

and (3) follows by simple calculation.

Let us state our main result.
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Theorem 4. Suppose that F ⊂
(

[n]
3

)
contains no Katona-triple. Then F can be

partitioned into two families H and B and the ground set [n] into two disjoint
subsets Y and Z such that

• H ⊂
(

Y
3

)
and every H ∈ H contains a unique 2-element set,

• B ⊂
(

Z
3

)
and B is the vertex-disjoint union of |Z|4 complete 3-graphs on 4

vertices.

Proof of the theorem:

Let us define

H =
{

H ∈ F : ∃G = G(H) ∈
(

[n]
2

)
such that G is unique

}
.

Set B = F−H. Note that for all B ∈ B and every b ∈ B, there exists F = F (B, b),
F 6= B such that (B−{b}) is contained in F . A priori there might be several choices
for such an F . However we prove the following.

Lemma 1. For every B ∈ B there exists an element c ∈ ([n]−B) such that

F (B, b) = (B − {b}) ∪ {c}

holds for each b ∈ B.

Proof: Let B = {b1, b2, b3} and let c1, c2, c3 be such that F (B, bi) = (B− bi)∪{ci}
holds. Note that

F (B, b1) ∪ F (B, b2) ∪ F (B, b3) = {b1, b2, b3} ∪ {c1, c2, c3},

i. e., it consist of at most six elements. Since it is not a Katona-triple, the inter-
section of these three sets is non-empty. Let c denote the common element. Then
c = ci, i = 1, 2, 3 and the uniqueness of the choice of ci follows.
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By the lemma every B ∈ B gives rise to a complete 3-graph on four vertices
(with vertex set B ∪ {c}). Since every 2-subset of a complete 3-graph on four
vertices is contained in two edges, (B − {bi}) ∪ {c} is in B for all i = 1, 2, 3.

The following lemma was essentially proved already in [FF83].

Lemma 2. If F , F ′ ∈ F satisfy F ∩F ′ = {y} for some y ∈ [n] then (F ′−{y}) is
a unique subset.

Proof: Suppose the contrary and let F ′′ ∈ F satisfy F ′ 6= F ′′ and (F ′−{y}) ⊂ F ′′.
Then y 6∈ F ′′ implies that F ∩F ′∩F ′′ = ∅. Since F ∪F ′∪F ′′ = F ∪F ′∪ (F ′′−F ′),
the size of the union is at most six. That is F, F ′, F ′′ form a Katona-triple, a
contradiction.

Let D ∈
(

[n]
4

)
satisfy that

(
D
3

)
⊂ F . Let us prove the following.

Proposition 1. For every F ∈ F either F ⊂ D or F ∩D = ∅ holds.

Proof: Suppose F 6⊂ D. If |F ∩D| = 1 or 2 then we have exactly two choices for
B ∈

(
D
3

)
satisfying |F ∩B| = 1. Setting F ′ = B and using B ∈ B this contradicts

Lemma 2. The only remaining possibility is F ∩D = ∅.

To conclude the proof of the theorem just let Z be the union of all D ∈
(

[n]
4

)
with

(
D
3

)
⊂ F , and set Y = ([n]− Z). �

In view of the Bollobás Theorem,

|F| ≤
(
|Y | − 1

2

)
+ 4 ·

⌊
|Z|
4

⌋
≤
(
|Y | − 1

2

)
+ n− |Y |.

For n ≥ 5 the right hand side is maximized for |Y | = n and its maximal value is(
n−1

2

)
.

It would be interesting to find a structure theorem for k-graphs with k ≥ 4
without Katona-triples that implies the

(
n−1
k−1

)
upper bound, i. e., m(n, k) =

(
n−1
k−1

)
.
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