
UNIFORM EVENTOWN PROBLEMS
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ABSTRACT. Let n ≥ k ≥ l ≥ 2 be integers, and let F be a family of k-element subsets
of an n-element set. Suppose that l divides the size of the intersection of any two (not
necessarily distinct) members in F . We prove that the size of F is at most

(⌊n/l⌋
k/l

)
provided

n is sufficiently large for fixed k and l.

1. INTRODUCTION

Let F = {F1, . . . ,Fm} be a family of subsets of [n] := {1,2, . . . ,n}. Suppose that

|Fi ∩Fj| is even for all i, j, (1)

including the case i= j. Then the so-called Eventown Theorem claims that m≤ 2⌊n/2⌋, see
Berlekamp[2] and Graver[12]. (See also Babai–Frankl[1] and Matoušek[14] for related
problems including the oddtown theorem.) Let A1 ∪ ·· · ∪A⌊n/2⌋ ⊂ [n] be a disjoint union
of 2-element sets (so |Ai|= 2 for all i), and consider a family{∪

i∈I

Ai : I ⊂ [⌊n/2⌋]
}
,

which we will call an “atomic construction.” Then this family has size 2⌊n/2⌋ and satisfies
the property (1). For n ≥ l ≥ 2 let m(n, l) denote the maximum size of a family F ⊂ 2[n]

such that |F ∩F ′| ≡ 0 (mod l) for all F,F ′ ∈ F . Then the Eventown Theorem and the
atomic construction show that

m(n,2) = 2⌊n/2⌋.

A similar atomic constructions using l-element subsets shows m(n, l) ≥ 2⌊n/l⌋, but this
lower bound coincides with m(n, l) only when l = 2. In fact, for l ≥ 3 Frankl and Odlyzko[7]
found a construction showing

m(n, l)≥ (8l)⌊n/(4l)⌋

if an Hadamard matrix of order 4l exists, and m(n, l)≥ 28⌊n/(4l)⌋ in general.
In this paper we consider the corresponding problems in k-uniform families. So let

mk(n, l) be the maximum size of a family F ⊂
([n]

k

)
such that |F ∩F ′| ≡ k (mod l) for all

F,F ′ ∈ F . We will show that

mk(n, l) =
(
⌊(n− r)/l⌋
(k− r)/l

)
(2)

if n> n0(k, l) and k ≡ r (mod l) where 0≤ r < l. Unlike the non-uniform case, the atomic
constructions attain mk(n, l) for all l (if n is large enough).
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To state our main result more precisely, we need some definitions. Let n ≥ k > 0 and
let L ⊂ [0,k− 1] := {0,1, . . . ,k− 1}. We say that F ⊂

([n]
k

)
is an (n,k,L)-system, or an

L-system for short, if |F ∩F ′| ∈ L for all distinct F,F ′ ∈ F . (Note that k ̸∈ L. See [8] or
[18] for more about L-systems in general.) Let m(n,k,L) denote the maximum size of an
(n,k,L)-system. Let lN= {0, l,2l, . . .} denote the set of all nonnegative multiples of l, and
for i ∈ Z let L+ i = {l + i : l ∈ L}∩N be a translation of L. Notice that negative integers
are deleted in this translation, e.g., if L = {0,3,6,9}, then L−4 = {2,5}.

Theorem 1. Let n ≥ k ≥ l > r ≥ 0 be integers, and let L = lN∩ [0,k−1−r]. If n ≥ n0(k, l)
and l|k, then

m(n+ r,k+ r,L+ r) =
(
⌊n/l⌋
k/l

)
. (3)

Moreover an (n+ r,k+ r,L+ r)-system with the maximum size is uniquely determined (up
to isomorphism).

Letting n′ = n+r, k′ = k+r, L′ = L+r in (3) we have m(n′,k′,L′) =
(⌊(n′−r)/l⌋

(k′−r)/l

)
. Moreover

(assuming l|k) we also have mk′(n′, l) = m(n′,k′,L′). So (3) coincides with (2).
Deza, Erdős, and Frankl[6] proved that if n is sufficiently large for fixed k and L, then

m(n,k,L)≤ ∏
l∈L

n− l
k− l

. (4)

We remark that Theorem 1 for the case r = 0 and l|n follows from the above result.
Recently Tasaki[16, 17] observed that the problem of classifying all maximal antipo-

dal sets in the oriented real Grassmann manifold consisting of oriented real vector sub-
spaces of dimension k in Rn can be reduced to the problem of classifying all maximal
(n,k,2)-system, and, among other results, he showed m4(n,2) =

(⌊n/2⌋
2

)
for n ≥ 12, and

m5(n,2) =
(⌊(n−1)/2⌋

2

)
for n ≥ 87. In this paper we also consider m6(n,2) using the linear

programming bound, and we will show the following.

Theorem 2. If n ≥ 26 and L = {0,2,4}, then

m6(n,2) = m(n,6,L)≤ n(n−2)(n−4)
6 ·4 ·2

. (5)

We remark that Theorem 2 verifies (4) for this case. If n = 2a is even, then (5) reads
m6(2a,L)≤

(a
3

)
, which is a special case of Theorem 1. The point is that the lower bound

for n in Theorem 2 is much smaller than that of Theorem 1 or (4). We will comment on
this at the end of the next section.

Finally we mention that some lower bound for n is necessary in Theorem 1.

Theorem 3. For every a ≥ 2 one has m2a(4a,2)>
(2a

a

)
.

Proof. Let H = { /0, [8]}∪F0 ⊂ 2n be the set of codewords in the [8,4] binary Hamming
code. Then F0 is an (8,4,2N)-system of size 14. Let G ⊂ 2[9,4a] be the atomic construc-
tion with |G |= 22a−4. Now we construct a (4a,2a,2N)-system

F := {G∪H ∈
(
[4a]
2a

)
: G ∈ G ,H ∈ G }.
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Then it follows

|F |=
(

2a−4
a

)
+14

(
2a−4
a−2

)
+

(
2a−4
a−4

)
.

A simple computation shows that

|F |/
(

2a
a

)
=

4a2 −6a+3
4a2 −8a+3

> 1

for all a ≥ 2. □
It is also readily seen that m2a+1(4a+1,2)>

(2a
a

)
for all a ≥ 2.

The authors do not know any general lower bound for m(n,k,L), but there is a conjecture
due to Füredi[10] which would give a strong lower bound for m(n,k,L) (if true) in terms
of the so-called rank of (n,k,L)-systems. See [8, 15, 18] for more details on this subject.

2. PROOF OF THEOREM 1

For the proof we will need the following lemma.

Lemma 4 (Deza–Erdős–Frankl[6]). Let F be an (n,k,L)-system with b = |L| and r =
minL. If n > n1(k,L) and |F | ≥ Ω(nb−1), then there exists an r-element set A such that
A ⊂ F holds for all F ∈ F .

Notation. For F ⊂ 2[n] and A ⊂ [n] let F (A) := {F \A : A ⊂ F ∈ F}. For x ∈ [n] we
write F (x) for F ({x}).

Proof of Theorem 1. Let n = la+ q, k = lb (0 ≤ q < l). First we verify the lower bound
for the case r = 0 by constructing an (n,k,L)-system Fn,k with size

(a
b

)
=
(⌊n/l⌋

k/l

)
. For this,

let [n] = A1 ⊔A2 ⊔·· ·⊔Aa be a partition, where Ai = [(i−1)l +1, il], and define

Fn,k :=
{⊔

i∈I

Ai : I ⊂
([a]

b

)}
.

This example shows that m(n,k,L)≥ |Fn,k|=
(⌊n/l⌋

k/l

)
= Θ(nb). For the cases r > 0 let

Fn+r,k+r := {F ∪ [n+1,n+ r] : F ∈ Fn,k},

which is an (n+ r,k+ r,L+ r)-system with |Fn+r,k+r|= |Fn,k|= Θ(nb).
Now suppose that F is an (n+ r,k+r,L+r)-system of size |F |= m(n+ r,k+r,L+r),

where |L + r| = b. By (4) it follows |F | = O(nb). Since |F | ≥ |Fn+r,k+r| we have
|F | = Θ(nb). Then, by Lemma 4, there is an r-element set A which is contained in all
F ∈ F . In this case F (A) is an (n,k,L)-system. Consequently we have

m(n,k,L)≥ |F (A)|= |F |= m(n+ r,k+ r,L+ r)≥ |Fn+r,k+r|= |Fn,k|.

Thus to conclude m(n,k,L) = m(n+ r,k+ r,L+ r) = |Fn,k| it suffices to show |Fn,k| ≥
m(n,k,L). Namely, the cases r > 0 are reduced to the case r = 0.

So let F be one of the largest (n,k,L)-system (thus |F | ≥ |Fn,k|), and we are going to
show |F | ≤ |Fn,k|. We say that A ∈

∪
i≥l

([n]
i

)
is an atom of F if

either A ⊂ F or A∩F = /0 for any F ∈ F , (6)
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and moreover A is inclusion maximal with this property (6). Notice that atoms are pairwise
disjoint. In fact if both A and A′ satisfy (6) with A∩A′ ̸= /0, then A∪A′ also satisfies (6). Let
A ⊂

([n]
l

)
be the set of atoms of size l, and let X1 ⊂ [n] be the union of all atoms in A . Then

we have a partition X1 = A1 ⊔A2 ⊔·· ·⊔At , where Ai ∈ A and t = |A |. Let X0 = [n]\X1,
FX1 = {F ∈ F : F ⊂ X1}, and FX0 = F \FX1 . Then |X1| = lt and |X0| = n− lt. By
definition if F ∈FX1 then it can be uniquely partitioned into b atoms as F = Ai1 ⊔·· ·⊔Aib .
Recall that n = la+q and q < l. So t ≤ a and |FX1| ≤

(t
b

)
≤

(a
b

)
= |Fn,k|. If X0 = /0 then

|F |= |FX1|, and we are done. Now assume that X0 ̸= /0. For each x ∈ X0 we will examine
the size of F (x).

Claim 5. It follows |F (x)|= O(nb−2) for x ∈ X0.

Proof. Let x ∈ X0. First suppose that there is an atom A ⊂ X0 with x ∈ A. Then c := |A|> l
(otherwise A∈A and A⊂X1) and |F (x)|= |F (A)|. Since F (A) is an (n−c,k−c,L−c)-
system with |L− c| ≤ b− 2 we have |F (A)| = O(nb−2) by (4). Next suppose that there
is no atoms containing x. Recall that F (x) is an (n− 1,k − 1,L′)-system where L′ =
L− 1 has size b− 1 and minL′ = l − 1. Let

∩
F (x) =

∩
G∈F (x)G. If |

∩
F (x)| < l − 1,

then we have |F (x)| = o(nb−2) by Lemma 4. So suppose |
∩

F (x)| ≥ l − 1. Choose
Y ⊂

∩
F (x) with |Y | = l − 1. Then, for all F ∈ F with x ∈ F , it follows Y ⊂ F . But

{x}∪Y is not contained in atoms, and there is F1 ∈ F such that x ̸∈ F1 and F1 ∩Y ̸= /0.
In this case if x ∈ F ∈ F then |F ∩ F1| ≥ l, and if G ∈ F (x) then G ∩ (F1 \Y ) ̸= /0.
For z ∈ F1 \Y let Wz = {x}∪Y ∪{z}. Then F (Wz) is an (n− l − 1,k− l − 1,L′)-system
where L′ = L− l − 1 has size b− 2, and (4) yields |F (Wz)| = O(nb−2). Thus we get
|F (x)| ≤ ∑z∈F1\Y |F (Wz)| = |F1 \Y |O(nb−2) = O(nb−2), which completes the proof of
Claim 5. □

Let m := |X0|= n− lt ≥ q. It follows from Claim 5 that

|FX0| ≤ ∑
x∈X0

|F (x)|= |X0|O(nb−2) = O(mnb−2).

On the other hand it follows |FX1| ≤
(t

b

)
, where t = |A |= (n−m)/l. Therefore we have(

(n−q)/l
b

)
=

(
a
b

)
= |Fn,k| ≤ |F |= |FX1 |+ |FX0 |

≤
(
(n−m)/l

b

)
+O(mnb−2). (7)

We compare the coefficients of nb and nb−1 on both sides of (7). Recall that q ≤ m ≤ n.
If m ≥ Ω(n), then the coefficient of nb in the RHS is clearly smaller than that in the LHS,
and (7) fails. If m = o(n), then the O(mnb−2) term in the RHS does not affect nb and nb−1

terms. In this case, by comparing the nb−1 term on both sides, we see from (7) that m = q,
namely, t = a. Thus we have |X0| = q < l and |X1| = la. Since |F ∩X1| is a multiple of
l for every F ∈ F it follows that |F ∩X0| is also a multiple of l, namely, |F ∩X0| = 0.
Consequently we have F = FX1 , then |F | = |Fn,k| follows from (7). This completes
the proof for the inequality |F | ≤ |Fn,k|. Moreover, our proof also shows that if equality
holds, then F is isomorphic to Fn,k if r = 0, and thus isomorphic to Fn,k,r if r ≥ 0. This
completes the proof of Theorem 1. □
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We did not attempt to reduce the lower bound n0(k, l) for n in the above proof. We
used (4) and Lemma 4, which already require n ≥ n1(k,L)≥ 2kk3. But we believe the true
lower bound n0(k, l) is much smaller, perhaps polynomial in k.

3. PROOF OF THEOREM 2

Let k = 2t be even, and let L = {0,2, . . . ,k − 2}. First we recall a general method
(see Delsarte[5], Wilson[19]) to obtain an upper bound for m(n,k,L). Let G = (V,E) be
a Kneser graph corresponding to (n,k,L)-system, namely, let V =

([n]
k

)
and xy ∈ E iff

|x∩ y| ̸∈ L. Let us define a pseudo-adjacency matrix M for G. So let M = (mxy) be an(n
k

)
×
(n

k

)
matrix indexed by V whose (x,y)-entry is defined by

mxy :=

{
a j if |x∩ y|= j ∈ {1,3, . . . ,k−1},
0 if |x∩ y| ∈ L∪{k}= {0,2, . . . ,k},

(8)

where a1,a3, . . . ,ak−1 = a2t−1 are t variables. If we substitute some real values into these
t variables, then M becomes a real symmetric matrix. Let λmax (resp. λmin) be the largest
(resp. least) eigenvalue of the resulting matrix. Suppose moreover that the all-ones vector
is contained in the λmax-eigenspace of M. Then the independence number α(G) of G is
bounded in terms of λmax and λmin:

α(G)≤ −λmin

λmax −λmin

(
n
k

)
. (9)

This is a generalization of Hoffman’s ratio bound due (among others) to Delsarte[4] (see
also [13], §3.5 of [3], §9.6 of [11]). On the other hand, every independent set in G is an
(n,k,L)-system, and it follows

m(n,k,L)≤ α(G).

Thus to get a better upper bound for m(n,k,L) we need to find specific values for ai’s so
that the ratio bound, the RHS of (9), is minimized. In particular, if

−λmin

λmax −λmin

(
n
k

)
=

n!!(
(n− k)!!

)
(k!!)

(10)

holds, then we would get m(2a,2t,L) =
(a

t

)
.

To determine the values of ai’s we do some “reverse engineering,” c.f., Friedgut[9]. For
0 ≤ i ≤ k let Bi be an

(n
k

)
×
(n

k

)
matrix whose (x,y)-entry is given by

(|y\x|
i

)
. It is known

that B0, . . . ,Bk form a basis of the Bose–Mesner algebra of Johnson scheme, in particular,
these matrices are simultaneously diagonalizable, and the eigenvalues of B f are given by

µ f (e) = (−1)e
(

k− e
f − e

)(
n− f − e

k− e

)
for e = 0,1, . . . ,k,

see e.g., [19] for the proof of this fact.
We will choose bi for i = 0, . . . ,k so that

M =
k

∑
i=0

biBi.
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To this end, by (8), we consider k+1 equations for j = 0, . . . ,k:

k− j

∑
i=0

bi

(
k− j

i

)
=

{
a j if j ∈ {1,3, . . . ,k−1},
0 otherwise.

(11)

We have t + (k + 1) variables: a1,a3, . . . ,a2t−1, and b0,b1, . . . ,bk. So we need t more
equations. For this we normalize M so that

a1 = 1. (12)

Also we require that there is only one negative value in the eigenvalues of M:

λ2 = λ4 = · · ·= λ2t , (13)

where

λe =
k

∑
i=0

biµi(e). (14)

Consequently we have (k+ 1)+ t equations with the same number of unknowns. By
solving this system of equations (11), (12), and (13), we determine all values of unknowns
and eigenvalues. Then the question is whether these values satisfy (10) or not. We will
shortly see that they do satisfy (10) if k = 6 and n ≥ 26. Some numerical experiments
suggest that most likely this is the case for all even k if n is relatively large (but the lower
bound for n seems much smaller than n0(k, l) in Theorem 1).

Proof of Theorem 2. Let n ≥ 26, k = 6, and L = {0,2,4}. We follow the method explained
above. By solving the system of equations, we get all b0,b1, . . . ,b6, and

a1 = 1, a3 =
(n−12)(n−22)

8(n−18)
, a5 =

(n−10)(n−16)
8

.

Then the eigenvalues of M are given by (14):

λ0 =
(n−12)(n−6)

(
n2 −3n+5

)(
3n2 −86n+536

)
60(n−18)

,

λ1 =
n6 −63n5 +1465n4 −16110n3 +89944n2 −262752n+385920

120(n−18)
,

λ2 = λ4 = λ6 =−
(n−12)

(
3n2 −86n+536

)
4(n−18)

,

λ3 =
n5 −49n4 +872n3 −6380n2 +12720n+29952

48(n−18)
,

λ5 =
n4 −50n3 +912n2 −7376n+22464

8(n−18)
.

Finally it follows from a direct computation that if n = 6,7,8, or n ≥ 26, then λmax = λ0
and λmin = λ2. This gives us (10), which completes the proof. □
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In the same way one can verify (10) in the following cases:

k = 4 and n ≥ 12,
k = 6 and n = 6,7,8, or n ≥ 26,
k = 8 and n = 12,31,32,33, or n ≥ 47,
k = 10 and n = 10,11,12, or 57 ≤ n ≤ 66, or n ≥ 78.

Namely, in the above cases we have

m(n,k,2N∩ [k−1])≤ n!!(
(n− k)!!

)
(k!!)

.

In particular,

m(2a,k,{0,2,4, . . .}) =
(

a
k/2

)
follows if k = 8 and a ≥ 24, or k = 10 and a ≥ 39.
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