MULTIPLY UNION FAMILIES IN \mathbb{N}^n

PETER FRANKL, MASASHI SHINOHARA, AND NORIHIDE TOKUSHIGE

ABSTRACT. Let $A \subset \mathbb{N}^n$ be an *r*-wise *s*-union family, that is, a family of sequences with *n* components of non-negative integers such that for any *r* sequences in *A* the total sum of the maximum of each component in those sequences is at most *s*. We determine the maximum size of *A* and its unique extremal configuration provided (i) *n* is sufficiently large for fixed *r* and *s*, or (ii) n = r + 1.

1. INTRODUCTION

Let $\mathbb{N} := \{0, 1, 2, \ldots\}$ denote the set of non-negative integers, and let $[n] := \{1, 2, \ldots, n\}$. Intersecting families in $2^{[n]}$ or $\{0, 1\}^n$ are one of the main objects in extremal set theory. The equivalent dual form of an intersecting family is a union family, which is the subject of this paper. In [5] Frankl and Tokushige proposed to consider such problems not only in $\{0, 1\}^n$ but also in $[q]^n$. They determined the maximum size of 2-wise s-union families (i) in $[q]^n$ for $n > n_0(q, s)$, and (ii) in \mathbb{N}^3 for all s (the definitions will be given shortly). In this paper we extend their results and determine the maximum size and structure of r-wise s-union families in \mathbb{N}^n for the following two cases: (i) $n \ge n_0(r, s)$, and (ii) n = r+1. Much research has been done for the case of families in $\{0, 1\}^n$, and there are many challenging open problems. The interested reader is referred to [2, 3, 4, 8, 9].

For a vector $\mathbf{x} \in \mathbb{R}^n$, we write x_i or $(\mathbf{x})_i$ for the *i*th component, so $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Define the weight of $\mathbf{a} \in \mathbb{N}^n$ by

$$|\mathbf{a}| := \sum_{i=1}^{n} a_i$$

For a finite number of vectors $\mathbf{a}, \mathbf{b}, \dots, \mathbf{z} \in \mathbb{N}^n$ define the join $\mathbf{a} \lor \mathbf{b} \lor \dots \lor \mathbf{z}$ by

$$(\mathbf{a} \lor \mathbf{b} \lor \cdots \lor \mathbf{z})_i := \max\{a_i, b_i, \dots, z_i\},\$$

and we say that $A \subset \mathbb{N}^n$ is r-wise s-union if

 $|\mathbf{a}_1 \lor \mathbf{a}_2 \lor \cdots \lor \mathbf{a}_r| \leq s \text{ for all } \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \in A.$

In this paper we address the following problem.

Problem. For given n, r and s, determine the maximum size |A| of r-wise s-union families $A \subset \mathbb{N}^n$.

Date: June 3, 2016.

The third author was supported by JSPS KAKENHI 25287031.

To describe candidates A that give the maximum size to the above problem, we need some more definitions. Let us introduce a partial order \prec in \mathbb{R}^n . For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ we let $\mathbf{a} \prec \mathbf{b}$ iff $a_i \leq b_i$ for all $1 \leq i \leq n$. Then we define a *down set* for $\mathbf{a} \in \mathbb{N}^n$ by

$$\mathcal{D}(\mathbf{a}) := \{ \mathbf{c} \in \mathbb{N}^n : \mathbf{c} \prec \mathbf{a} \},$$

and for $A \subset \mathbb{N}^n$ let

$$\mathcal{D}(A) := \bigcup_{\mathbf{a} \in A} \mathcal{D}(\mathbf{a}).$$

We also introduce $\mathcal{S}(\mathbf{a}, d)$, which can be viewed as a part of sphere centered at $\mathbf{a} \in \mathbb{N}^n$ with radius $d \in \mathbb{N}$, defined by

$$\mathcal{S}(\mathbf{a},d) := \{\mathbf{a} + \boldsymbol{\epsilon} \in \mathbb{N}^n : \boldsymbol{\epsilon} \in \mathbb{N}^n, \ |\boldsymbol{\epsilon}| = d\}.$$

We say that $\mathbf{a} \in \mathbb{N}^n$ is a balanced partition, if all a_i 's are as close to each other as possible, more precisely, $|a_i - a_j| \leq 1$ for all i, j. Let $\mathbf{1} := (1, 1, \dots, 1) \in \mathbb{N}^n$.

For $r, s, n, d \in \mathbb{N}$ with $0 \le d \le \lfloor \frac{s}{r} \rfloor$ and $\mathbf{a} \in \mathbb{N}^n$ with $|\mathbf{a}| = s - rd$ let us define a family K by

$$K = K(r, n, \mathbf{a}, d) := \bigcup_{i=0}^{\lfloor \frac{d}{u} \rfloor} \mathcal{D}(\mathcal{S}(\mathbf{a} + i\mathbf{1}, d - ui)),$$
(1)

where u = n - r + 1. This is the candidate family. Intuitively K is a union of balls, and the corresponding centers and radii are chosen so that K is r-wise s-union as we will see in Claim 3 in the next section.

Conjecture. Let $r \geq 2$ and s be positive integers. If $A \subset \mathbb{N}^n$ is r-wise s-union, then

$$|A| \le \max_{0 \le d \le \lfloor \frac{s}{r} \rfloor} |K(r, n, \mathbf{a}, d)|$$

where $\mathbf{a} \in \mathbb{N}^n$ is a balanced partition with $|\mathbf{a}| = s - rd$. Moreover if equality holds, then $A = K(r, n, \mathbf{a}, d)$ for some $0 \le d \le \lfloor \frac{s}{r} \rfloor$.

We first verify the conjecture when n is sufficiently large for fixed r, s. Let \mathbf{e}_i be the *i*-th standard base of \mathbb{R}^n , that is, $(\mathbf{e}_i)_j = \delta_{ij}$. Let $\tilde{\mathbf{e}}_0 = \mathbf{0}$, and $\tilde{\mathbf{e}}_i = \sum_{j=1}^i \mathbf{e}_j$ for $1 \leq i \leq n$, e.g., $\tilde{\mathbf{e}}_n = \mathbf{1}$.

Theorem 1. Let $r \ge 2$ and s be fixed positive integers. Write s = dr + p where d and p are non-negative integers with $0 \le p < r$. Then there exists an $n_0(r, s)$ such that if $n > n_0(r, s)$ and $A \subset \mathbb{N}^n$ is r-wise s-union, then

$$|A| \leq |\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d))|.$$

Moreover if equality holds, then A is isomorphic to $\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d)) = K(r, n, \tilde{\mathbf{e}}_p, d).$

We mention that the case $A \subset \{0,1\}^n$ of Conjecture is posed in [2] and partially solved in [2, 3], and the case r = 2 of Theorem 1 is proved in [5] in a slightly stronger form. We also notice that if $A \subset \{0,1\}^n$ is 2-wise (2d + p)-union, then the Katona's *t*-intersection theorem [7] states that $|A| \leq |\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d) \cap \{0,1\}^n)|$ for all $n \geq s$.

Next we show that the conjecture is true if n = r+1. We also verify the conjecture on general n if A satisfies some additional properties described below. Let $A \subset \mathbb{N}^n$ be *r*-wise *s*-union. For $1 \leq i \leq n$ let

$$m_i := \max\{x_i : \mathbf{x} \in A\}.$$
(2)

If n - r divides $|\mathbf{m}| - s$, then we define

$$d := \frac{|\mathbf{m}| - s}{n - r} \ge 0,\tag{3}$$

and for $1 \leq i \leq n$ let

$$a_i := m_i - d, \tag{4}$$

and we assume that $a_i \ge 0$. In this case we have $|\mathbf{a}| = s - rd$. Since $|\mathbf{a}| \ge 0$ it follows that $d \le \lfloor \frac{s}{r} \rfloor$. For $1 \le i \le n$ define $P_i \in \mathbb{N}^n$ by

$$P_i := \mathbf{a} + d\mathbf{e}_i,\tag{5}$$

where \mathbf{e}_i denotes the *i*th standard base, for example, $P_2 = (a_1, a_2 + d, a_3, \dots, a_n)$.

Theorem 2. Let $A \subset \mathbb{N}^n$ be r-wise s-union. Assume that the sequences P_i are well-defined and

$$\{P_1,\ldots,P_n\} \subset A. \tag{6}$$

Then it follows that

$$|A| \le \max_{0 \le d' \le \lfloor \frac{s}{r} \rfloor} |K(r, n, \mathbf{a}', d')|,$$

where $\mathbf{a}' \in \mathbb{N}^n$ is a balanced partition with $|\mathbf{a}'| = s - rd'$. Moreover if equality holds, then $A = K(r, n, \mathbf{a}', d')$ for some $0 \le d' \le \lfloor \frac{s}{r} \rfloor$.

We will show that the assumption (6) is satisfied when n = r + 1, see Corollary 3 in the last section.

Notation: For $\mathbf{a}, \mathbf{b} \in \mathbb{N}^n$ we define $\mathbf{a} \setminus \mathbf{b} \in \mathbb{N}^n$ by $(\mathbf{a} \vee \mathbf{b}) - \mathbf{b}$, in other words, $(\mathbf{a} \setminus \mathbf{b})_i := \max\{a_i - b_i, 0\}$. The support of \mathbf{a} is defined by $\operatorname{supp}(\mathbf{a}) := \{j : a_j > 0\}$.

2. Proof of Theorem 1 — the case when n is large

Let r, s be given, and let s = dr + p, $0 \le p < r$. We consider the situation $n \to \infty$ for fixed r, s, d, and p.

Claim 1. $|\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d))| = \sum_{j=0}^p {p \choose j} {n-j+d \choose d} = (2^p/d!)n^d + O(n^{d-1}).$

Proof. By definition we have

$$\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d)) = \{\mathbf{x} + \mathbf{y} \in \mathbb{N}^n : |\mathbf{x}| \le d, \, \mathbf{y} \prec \tilde{\mathbf{e}}_p\}.$$

We rewrite the RHS by classifying vectors according to their supports. For $I \subset [p]$ let $\tilde{\mathbf{e}}_p|_I$ be the restriction of $\tilde{\mathbf{e}}_p$ to I, that is, $(\tilde{\mathbf{e}}_p|_I)_i$ is 1 if $i \in I$ and 0 otherwise, and let

$$R(I) := \{ \tilde{\mathbf{e}}_p | I + \mathbf{z} : \operatorname{supp}(\mathbf{z}) \subset I \sqcup ([n] \setminus [p]), \, |\mathbf{z}| \le d \}.$$

Then we have $\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d)) = \bigsqcup_{I \subset [p]} R(I)$. For each $I \in {[p] \choose i}$ the number of \mathbf{z} in R(I) equals the number of nonnegative integer solutions of $z_1 + z_2 + \cdots + z_{i+(n-p)} \leq d$. Thus it follows that $|R(I)| = {n-(p-i)+d \choose d}$, and

$$|\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d))| = \sum_{i=0}^p \binom{p}{i} \binom{n-(p-i)+d}{d} = \sum_{j=0}^p \binom{p}{j} \binom{n-j+d}{d}.$$

The RHS is further rewritten using $\binom{n-j+d}{d} = n^d/d! + O(n^{d-1})$ and $\sum_{j=0}^p \binom{p}{j} = 2^p$, as needed.

Let $A \subset \mathbb{N}^n$ be *r*-wise *s*-union with maximal size. So A is a down set. We will show that $|A| \leq |\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d))|$.

First suppose that there is a t with $2 \le t \le r$ such that A is t-wise (dt + p)-union, but not (t-1)-wise (d(t-1) + p)-union. In this case, by the latter condition, there are $\mathbf{b}_1, \ldots, \mathbf{b}_{t-1} \in A$ such that $|\mathbf{b}| \ge d(t-1) + p + 1$, where $\mathbf{b} = \mathbf{b}_1 \lor \cdots \lor \mathbf{b}_{t-1}$. Then, by the former condition, for every $\mathbf{a} \in A$ it follows that $|\mathbf{a} \lor \mathbf{b}| \le dt + p$, so $|\mathbf{a} \setminus \mathbf{b}| \le d - 1$. This gives us

$$A \subset \{\mathbf{x} + \mathbf{y} \in \mathbb{N}^n : |\mathbf{x}| \le d - 1, \, \mathbf{y} \prec \mathbf{b}\}.$$

There are $\binom{n+(d-1)}{d-1}$ choices for **x** satisfying $|\mathbf{x}| \leq d-1$. On the other hand, the number of **y** with $\mathbf{y} \prec \mathbf{b}$ is independent of n (so it is a constant depending on r and s only). In fact $|\mathbf{b}| \leq (t-1)s < rs$, and there are less than 2^{rs} choices for **y**. Thus we get $|A| < \binom{n+(d-1)}{d-1} 2^{rs} = O(n^{d-1})$ and we are done.

Next we suppose that

A is t-wise
$$(dt + p)$$
-union for all $1 \le t \le r$. (7)

The case t = 1 gives us $|\mathbf{a}| \leq d + p$ for every $\mathbf{a} \in A$. If p = 0, then this means that $A \subset \mathcal{D}(\mathcal{S}(\mathbf{0}, d))$, which finishes the proof for this case. So, from now on, we assume that $1 \leq p < r$. We will see that there is a u with $u \geq 1$ such that there exist $\mathbf{b}_1, \ldots, \mathbf{b}_u \in A$ satisfying

$$|\mathbf{b}| = u(d+1),\tag{8}$$

where $\mathbf{b} := \mathbf{b}_1 \vee \cdots \vee \mathbf{b}_u$. In fact we have (8) for u = 1, if otherwise $A \subset \mathcal{D}(\mathcal{S}(\mathbf{0}, d))$. On the other hand, setting $t = p + 1 \leq r$ in (7), we see that A is (p + 1)-wise ((p+1)(d+1)-1)-union, and (8) fails if u = p + 1. So we choose maximal u with $1 \leq u \leq p$ satisfying (8), and fix $\mathbf{b} = \mathbf{b}_1 \vee \cdots \vee \mathbf{b}_u$. By this maximality, for every $\mathbf{a} \in A$, it follows that $|\mathbf{a} \vee \mathbf{b}| \leq (u+1)(d+1) - 1$, and

$$|\mathbf{a} \setminus \mathbf{b}| = |\mathbf{a} \vee \mathbf{b}| - |\mathbf{b}| \le d.$$
(9)

Using (9) we have $A \subset \bigcup_{i=0}^{d} A_i$, where

$$A_i := \{ \mathbf{x} + \mathbf{y} \in A : |\mathbf{x}| = i, \, \mathbf{y} \prec \mathbf{b} \}$$

Then we have $|A_i| \leq {\binom{n+i}{i}} 2^{|\mathbf{b}|}$. Noting that $|\mathbf{b}| \leq u(d+1) < r(d+1) = O(1)$ it follows $\sum_{i=0}^{d-1} |A_i| = O(n^{d-1})$. So the size of A_d is essential.

We naturally identify $\mathbf{a} \in A$ with a subset of $[n] \times \{1, \ldots, d+p\}$. Formally let

$$\phi(\mathbf{a}) := \{(i, j) : 1 \le i \le n, 1 \le j \le a_i\},\$$

for example, if $\mathbf{a} = (1, 0, 2)$, then $\phi(\mathbf{a}) = \{(1, 1), (3, 1), (3, 2)\}$. Define m = m(d) to be r + 1 if d = 1 and dr if $d \ge 2$. We say that $\mathbf{b}' \prec \mathbf{b}$ is rich if there exist m vectors $\mathbf{c}_1, \ldots, \mathbf{c}_m$ of weight d such that $\mathbf{b}' \lor \mathbf{c}_j \in A$ for every j, and the m + 1 subsets $\phi(\mathbf{c}_1), \ldots, \phi(\mathbf{c}_m), \phi(\mathbf{b})$ are pairwise disjoint. In this case $\mathbf{b}'' \lor \mathbf{c}_j \in A$ for all $\mathbf{b}'' \prec \mathbf{b}'$ because A is a down set. This means that richness is hereditary, namely, if \mathbf{b}' is rich and $\mathbf{b}'' \prec \mathbf{b}'$, then \mathbf{b}'' is rich as well. Informally, \mathbf{b}' is rich if it can be extended to a $(|\mathbf{b}'| + d)$ -element subset of A in m ways disjointly outside \mathbf{b} . We are comparing our family A with the reference family $\mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p), d)$, and we define $\tilde{\mathbf{b}}$ which plays the role of $\tilde{\mathbf{e}}_p$ in our family, namely, let us define

$$\tilde{\mathbf{b}} := \bigvee \{ \mathbf{b}' \prec \mathbf{b} : \mathbf{b}' \text{ is rich} \}.$$

Claim 2. $|\tilde{\mathbf{b}}| \leq p$.

Proof. Suppose the contrary. Then $|\tilde{\mathbf{b}}| > p$ and we can find rich $\mathbf{b}'_1, \mathbf{b}'_2, \ldots, \mathbf{b}'_{p+1}$ (with repetition if necessary) such that $|\mathbf{b}'_1 \vee \cdots \vee \mathbf{b}'_{p+1}| \ge p+1$. Since richness is hereditary we may assume that $|\mathbf{b}'_1 \vee \cdots \vee \mathbf{b}'_{p+1}| = p+1$. Let $\mathbf{c}_1^{(i)}, \ldots, \mathbf{c}_m^{(i)}$ support the richness of \mathbf{b}'_i . By definition $\phi(\mathbf{c}_1^{(i)}), \ldots, \phi(\mathbf{c}_m^{(i)})$ and $\phi(\mathbf{b})$ are pairwise disjoint. Let $\mathbf{a}_1 := \mathbf{b}'_1 \vee \mathbf{c}_{j_1}^{(1)} \in A$, say, $j_1 = 1$. Then choose $\mathbf{a}_2 := \mathbf{b}'_2 \vee \mathbf{c}_{j_2}^{(2)}$ so that $\phi(\mathbf{c}_{j_1}^{(1)})$ and $\phi(\mathbf{c}_{j_2}^{(2)})$ are disjoint. If $i \le p$, then having $\mathbf{a}_1, \ldots, \mathbf{a}_i$ chosen, we only used idelements as $\bigcup_{l=1}^i \phi(\mathbf{c}_{j_l}^{(l)})$, which intersect at most id of $\mathbf{c}_1^{(i+1)}, \ldots, \mathbf{c}_m^{(i+1)}$. Then, since $id \le pd < rd \le m$, we still have some $\mathbf{c}_{j_{i+1}}^{(i+1)}$, which is disjoint from any already chosen vectors. So we can continue this procedure until we get $\mathbf{a}_{p+1} := \mathbf{b}'_{p+1} \vee \mathbf{c}_{j_{p+1}}^{(p+1)} \in A$ such that all $\phi(\mathbf{c}_{j_1}^{(1)}), \ldots, \phi(\mathbf{c}_{j_{p+1}}^{(p+1)})$ and $\phi(\mathbf{b})$ are disjoint. However, these vectors yield that

$$|\mathbf{a}_{1} \vee \cdots \vee \mathbf{a}_{p+1}| = |\mathbf{b}_{1}' \vee \cdots \vee \mathbf{b}_{p+1}'| + |\mathbf{c}_{j_{1}}^{(1)}| + \cdots + |\mathbf{c}_{j_{p+1}}^{(p+1)}|$$

= $(p+1) + (p+1)d = (p+1)(d+1),$

which contradicts (7) at t = p + 1.

If $\mathbf{y} \prec \mathbf{b}$ is not rich, then

$$\{\phi(\mathbf{x}): \mathbf{x} + \mathbf{y} \in A_d, |\mathbf{x}| = d\}$$

is a family of *d*-element subsets on (d+p)n vertices, which has no *m* pairwise disjoint subsets (so the matching number is m-1 or less). Thus, by the Erdős matching theorem [1], the size of this family is $O(n^{d-1})$. There are at most $2^{|\mathbf{b}|} = O(1)$ choices for non-rich $\mathbf{y} \prec \mathbf{b}$, and we can conclude that the number of vectors in A_d coming from non-rich \mathbf{y} is $O(n^{d-1})$. Then the remaining vectors in A_d come from rich $\mathbf{y} \prec \tilde{\mathbf{b}}$, and the number of such vectors is at most $2^{|\tilde{\mathbf{b}}|} \binom{n+d}{d}$. Note also that $\sum_{i=0}^{d-1} |A_i| = O(n^{d-1})$. Consequently we get

$$|A| \le 2^{|\tilde{\mathbf{b}}|} \binom{n+d}{d} + O(n^{d-1}) = (2^{|\tilde{\mathbf{b}}|}/d!) n^d + O(n^{d-1}).$$

Recall that the reference family is of size $(2^p/d!)n^d + O(n^{d-1})$, and $|\tilde{\mathbf{b}}| \leq p$ from Claim 2. So we only need to deal with the case when $|\tilde{\mathbf{b}}| = p$ and there are exactly 2^p rich sets. In other words, $\tilde{\mathbf{b}} = \tilde{\mathbf{e}}_p$ (by renaming coordinates if necessary) and every $\mathbf{b}' \prec \tilde{\mathbf{e}}_p$ is rich. We show that $A \subset \mathcal{D}(\mathcal{S}(\tilde{\mathbf{e}}_p, d))$. Suppose the contrary, then there is an $\mathbf{a} \in A$ such that $|\mathbf{a}'| \geq d+1$, where $\mathbf{a}' = \mathbf{a} \setminus \tilde{\mathbf{e}}_p$. Since A is a down set we may assume that $|\mathbf{a}'| = d+1$. Now $\tilde{\mathbf{e}}_p$ is rich and let $\mathbf{c}_1, \ldots, \mathbf{c}_m$ be vectors assured by the richness. We remark that $m - (d+1) \geq r - 1$. In fact if d = 1 then

m - (d+1) = r - 1, and if $d \ge 2$ then $m - (d+1) = (r-1)(d-1) + r - 2 \ge r - 1$. So we may assume that $\phi(\mathbf{c}_1), \ldots, \phi(\mathbf{c}_{r-1})$ are pairwise disjoint and disjoint to $\phi(\mathbf{a})$ as well. Let $\mathbf{a}_i := \tilde{\mathbf{e}}_p \lor \mathbf{c}_i \in A$ for $1 \le i \le r - 1$. Then we get

$$|\mathbf{a} \vee \mathbf{a}_{1} \vee \dots \vee \mathbf{a}_{r-1}| = |\tilde{\mathbf{e}}_{p} \vee \mathbf{a}'| + |\mathbf{c}_{1}| + \dots + |\mathbf{c}_{r-1}|$$

= $(p+d+1) + (r-1)d = dr + p + 1 = s + 1,$

which contradicts that A is r-wise s-union. This completes the proof of Theorem 1.

3. The polytope \mathbf{P} and proof of Theorem 2

Let $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ with $|\mathbf{a}| = s - rd$ for some $d \in \mathbb{N}$. We introduce a convex polytope $\mathbf{P} \subset \mathbb{R}^n$, which will play a key role in our proof. This polytope is defined by the following $n + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n-r+1}$ inequalities:

$$x_i \ge 0 \qquad \qquad \text{if } 1 \le i \le n, \tag{10}$$

$$\sum_{i \in I} x_i \le \sum_{i \in I} a_i + d \quad \text{if } 1 \le |I| \le n - r + 1, \ I \subset [n].$$
(11)

Namely,

 $\mathbf{P} := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \text{ satisfies } (10) \text{ and } (11) \}.$

Let L denote the integer lattice points in \mathbf{P} :

$$L = L(r, n, \mathbf{a}, d) := \{ \mathbf{x} \in \mathbb{N}^n : \mathbf{x} \in \mathbf{P} \}$$

Lemma 1. The two sets K (defined by (1)) and L are the same, and r-wise s-union.

Proof. This lemma is a consequence of the following three claims.

Claim 3. The set K is r-wise s-union.

Proof. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r \in K$. We show that $|\mathbf{x}_1 \vee \mathbf{x}_2 \vee \cdots \vee \mathbf{x}_r| \leq s$. We may assume that $\mathbf{x}_j \in \mathcal{S}(\mathbf{a}+i_j\mathbf{1}, d-ui_j)$, where u = n-r+1. We may also assume that $i_1 \geq i_2 \geq \cdots \geq i_r$. Let $\mathbf{b} := \mathbf{a}+i_1\mathbf{1}$. Then, informally, $|\mathbf{x} \setminus \mathbf{b}| := |(\mathbf{x} \vee \mathbf{b}) - \mathbf{b}|$ counts the excess of \mathbf{x} above \mathbf{b} , more precisely, it is $\sum_{j \in [n]} \max\{0, x_j - b_j\}$. Thus we have

$$\begin{aligned} |\mathbf{x}_1 \lor \mathbf{x}_2 \lor \cdots \lor \mathbf{x}_r| &\leq |\mathbf{b}| + \sum_{j=1}^r |\mathbf{x}_j \setminus \mathbf{b}| \\ &\leq |\mathbf{a}| + ni_1 + \sum_{j=1}^r \left((d - ui_j) - (i_1 - i_j) \right) \\ &= |\mathbf{a}| + dr + (n - r)i_1 - \sum_{j=1}^r (u - 1)i_j \\ &= s - (n - r) \sum_{j=2}^r i_j \leq s, \end{aligned}$$

as required.

Claim 4. $K \subset L$.

Proof. Let $\mathbf{x} \in K$. We show that $\mathbf{x} \in L$, that is, \mathbf{x} satisfies (10) and (11). Since (10) is clear by definition of K, we show that (11). To this end we may assume that $\mathbf{x} \in \mathcal{S}(\mathbf{a}+i\mathbf{1}, d-ui)$, where u = n-r+1 and $i \leq \lfloor \frac{d}{u} \rfloor$. Let $I \subset [n]$ with $1 \leq |I| \leq u$. Then $i|I| \leq ui$. Thus it follows

$$\sum_{j \in I} x_j \le \sum_{j \in I} a_j + i|I| + (d - ui) \le \sum_{j \in I} a_j + d,$$

which confirms (11).

Claim 5. $K \supset L$.

Proof. Let $\mathbf{x} \in L$. We show that $\mathbf{x} \in K$, that is, there exists some i' such that $0 \le i' \le \lfloor \frac{d}{n-r+1} \rfloor$ and

$$|\mathbf{x} \setminus (\mathbf{a} + i'\mathbf{1})| \le d - (n - r + 1)i'.$$

We write \mathbf{x} as

$$\mathbf{x} = (a_1 + i_1, a_2 + i_2, \dots, a_n + i_n),$$

where we may assume that $d \ge i_1 \ge i_2 \ge \cdots \ge i_n$. We notice that some i_j can be negative. Since $\mathbf{x} \in L$ it follows from (11) (a part of the definition of L) that if $1 \le |I| \le n - r + 1$ and $I \subset [n]$, then

$$\sum_{j \in I} i_j \le d.$$

Let $J := \{j : x_j \ge a_j\}$ and we argue separately by the size of |J|.

If $|J| \le n - r + 1$, then we may choose i' = 0. In fact,

$$\mathbf{x} \setminus \mathbf{a} = \max\{0, i_1\} + \max\{0, i_2\} + \dots + \max\{0, i_{n-r+1}\}$$
$$= \max\left\{\sum_{j \in I} i_j : I \subset [n-r+1]\right\} \le d.$$

If $|J| \ge n - r + 2$, then we may choose $i' = i_{n-r+2}$. In fact, by letting $i' := i_{n-r+2}$, we have

$$|\mathbf{x} \setminus (\mathbf{a} + i'\mathbf{1})| = (i_1 - i') + (i_2 - i') + \dots + (i_{n-r+1} - i')$$

$$\leq d - (n - r + 1)i'.$$

We need to check $0 \le i' \le \lfloor \frac{d}{n-r+1} \rfloor$. It follows from $|J| \ge n-r+2$ that $i' \ge 0$. Also $d \ge i_1 \ge i_2 \ge \cdots \ge i_{n-r+2}$ and $i_1 + i_2 + \cdots + i_{n-r+1} \le d$ yield $i' \le \lfloor \frac{d}{n-r+1} \rfloor$. \Box

This completes the proof of Lemma 1.

Let

$$\sigma_k(\mathbf{a}) := \sum_{K \in \binom{[n]}{k}} \prod_{i \in K} a_i$$

be the kth elementary symmetric polynomial of a_1, \ldots, a_n .

7

Lemma 2. The size of $K(r, n, \mathbf{a}, d)$ is given by

$$|K(r, n, \mathbf{a}, d)| = \sum_{j=0}^{n} {\binom{d+j}{j}} \sigma_{n-j}(\mathbf{a}) + \sum_{i=1}^{\lfloor \frac{d}{u} \rfloor} \sum_{j=u+1}^{n} \left({\binom{d-ui+j}{j}} - {\binom{d-ui+u}{j}} \right) \sigma_{n-j}(\mathbf{a}+i\mathbf{1}),$$

where u = n - r + 1. Moreover, for fixed n, r, d and $|\mathbf{a}|$, this size is maximized if and only if \mathbf{a} is a balanced partition.

Proof. For $J \subset [n]$ let $\mathbf{x}|_J$ be the restriction of \mathbf{x} to J, that is, $(\mathbf{x}|_J)_i$ is x_i if $i \in J$ and 0 otherwise.

First we count the vectors in the base layer $\mathcal{D}(\mathcal{S}(\mathbf{a}, d))$. To this end we partition this set into $\bigsqcup_{J \subset [n]} A_0(J)$, where

$$A_0(J) = \{ \mathbf{a}|_J + \mathbf{e} + \mathbf{b} : \operatorname{supp}(\mathbf{e}) \subset J, \ |\mathbf{e}| \le d, \ \operatorname{supp}(\mathbf{b}) \subset [n] \setminus J, \ b_i < a_i \text{ for } i \notin J \}$$

The number of vectors **e** with the above property is equal to the number of nonnegative integer solutions of the inequality $x_1 + x_2 + \cdots + x_{|J|} \leq d$, which is $\binom{d+|J|}{|J|}$. The number of vectors **b** is clearly $\prod_{l \in [n] \setminus J} a_l$. Thus we get

$$\sum_{J \in \binom{[n]}{j}} |A_0(J)| = \sum_{J \in \binom{[n]}{j}} \binom{d+|J|}{|J|} \prod_{l \in [n] \setminus J} a_l = \binom{d+j}{j} \sigma_{n-j}(\mathbf{a}),$$

and $|\mathcal{D}(\mathcal{S}(\mathbf{a},d))| = \sum_{j=0}^{n} {d+j \choose j} \sigma_{n-j}(\mathbf{a}).$

Next we count the vectors in the ith layer:

$$\mathcal{D}(\mathcal{S}(\mathbf{a}+i\mathbf{1},d-ui))\setminus\left(\bigcup_{j=0}^{i-1}\mathcal{D}(\mathcal{S}(\mathbf{a}+j\mathbf{1},d-uj))\right).$$

For this we partition the above set into $\bigsqcup_{J \subseteq [n]} A_i(J)$, where

$$A_i(J) = \{ (\mathbf{a} + i\mathbf{1}) | J + \mathbf{e} + \mathbf{b} : \operatorname{supp}(\mathbf{e}) \subset J, \ d - u(i - 1) - |J| < |\mathbf{e}| \le d - ui, \\ \operatorname{supp}(\mathbf{b}) \subset [n] \setminus J, \ b_l < a_l + i \text{ for } l \notin J \}.$$

In this case we need $d-u(i-1) < |J|+|\mathbf{e}|$ because the vectors satisfying the opposite inequality are already counted in the lower layers $\bigcup_{j < i} A_j(J)$. We also notice that d-u(i-1)-|J| < d-ui implies that |J| > u. So $A_i(J) = \emptyset$ for $|J| \le u$. Now we count the number of vectors \mathbf{e} in $A_i(J)$, or equivalently, the number of non-negative integer solutions of

$$d - u(i - 1) - |J| < x_1 + x_2 + \dots + x_{|J|} \le d - ui$$

This number is $\binom{d-ui+j}{j} - \binom{d-ui+u}{j}$, where j = |J|. On the other hand, the number of vectors **b** in $A_i(J)$ is $\prod_{l \in [n] \setminus J} (a_l + i)$. Consequently we get

$$\sum_{J\subset[n]} |A_i(J)| = \sum_{j=u+1}^n \left(\binom{d-ui+j}{j} - \binom{d-ui+u}{j} \right) \sigma_{n-j}(\mathbf{a}+i\mathbf{1}).$$

Summing this term over $1 \leq i \leq \lfloor \frac{d}{u} \rfloor$ we finally obtain the second term of the RHS of |K| in the statement of this lemma. Then, for fixed $|\mathbf{a}|$, the size of K is maximized when $\sigma_{n-j}(\mathbf{a})$ and $\sigma_{n-j}(\mathbf{a}+i\mathbf{1})$ are maximized. By the property of symmetric polynomials, this happens if and only if \mathbf{a} is a balanced partition, see e.g., Theorem 52 in section 2.22 of [6].

Proof of Theorem 2. Let $A \subset \mathbb{N}^n$ be an r-wise s-union with (6). For $I \subset [n]$ let

$$m_I := \max\left\{\sum_{i\in I} x_i : \mathbf{x}\in A\right\}.$$

Claim 6. If $I \subset [n]$ and $1 \leq |I| \leq n - r + 1$, then

$$m_I = \sum_{i \in I} a_i + d.$$

Proof. Choose $j \in I$. By (6) we have $P_j \in A$ and

$$m_I \ge \sum_{i \in I} (P_j)_i = \sum_{i \in I} a_i + d.$$
 (12)

We need to show that this inequality is actually an equality. Let $[n] = I_1 \sqcup I_2 \sqcup \cdots \sqcup I_r$ be a partition of [n]. Then it follows that

$$s \ge m_{I_1} + m_{I_2} + \dots + m_{I_r} \ge \sum_{i \in [n]} a_i + rd = s,$$

where the first inequality follows from the *r*-wise *s*-union property of A, and the second inequality follows from (12). Since the left-most and the right-most sides are the same *s*, we see that all inequalities are equalities. This means that (12) is equality, as needed.

By this claim if $\mathbf{x} \in A$ and $1 \leq |I| \leq n - r + 1$, then we have

$$\sum_{i \in I} x_i \le m_I = \sum_{i \in I} a_i + d.$$

This means that $A \subset L$. Finally the theorem follows from Lemmas 1 and 2.

Corollary 3. If n = r + 1, then Conjecture is true.

Proof. Let n = r + 1 and let $A \subset \mathbb{N}^{r+1}$ be r-wise s-union with maximum size. Define **m** by (2). Since n - r = 1 we can define d by (3). Then define **a** by (4). We need to verify $a_i \ge 0$ for all i. To this end we may assume that $m_1 \ge m_2 \ge \cdots \ge m_{r+1}$. Then $a_i \ge a_{r+1} = m_{r+1} - d$, so it suffices to show $m_{r+1} \ge d$. Since A is r-wise s-union it follows that $m_1 + m_2 + \cdots + m_r \le s$. This together with the definition of d implies $d = |\mathbf{m}| - s \le m_{r+1}$, as needed. So we can properly define P_i by (5).

Next we check that $\mathbf{x} \in A$ satisfies (10) and (11). By definition we have $x_i \leq m_i = a_i + d$, so we have (10). Since A is r-wise s-union, we have

$$(x_1 + x_2) + m_3 + \dots + m_{r+1} \le s,$$

or equivalently,

$$(x_1 + x_2) + (a_3 + d) + \dots + (a_{r+1} + d) \le s = |\mathbf{a}| + rd.$$

P. FRANKL, M. SHINOHARA, AND N. TOKUSHIGE

Rearranging we get $x_1 + x_2 \leq a_1 + a_2 + d$, and we get the other cases similarly, so we obtain (11). Thus $A \subset L$ and the result follows from Lemmas 1 and 2.

Acknowledgement

The authors thank the anonymous referees of European journal of combinatorics for pointing out the error in Claim 1 of the earlier version and for many helpful suggestions which improve the presentation of this paper.

References

- [1] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest., 8:93–95, 1965.
- [2] P. Frankl, Families of finite sets satisfying a union condition, Discrete Math., 26:111–118, 1979.
- [3] P. Frankl, Multiply-intersecting families, J. Combin. Theory (B) 53:195–234, 1991.
- [4] P. Frankl, N. Tokushige, On r-cross intersecting families of sets, Combinatorics, Probability & Computing, 20:749–752 2011.
- [5] P. Frankl, N. Tokushige, Intersection problems in the q-ary cube, J. Combin. Theory (A), 141:90–126, 2016.
- [6] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1934, 1952.
- [7] G. O. H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hung., 15:329–337, 1964.
- [8] N. Tokushige, Multiply-intersecting families revisited, J. Combin. Theory (B) 97:929-948, 2007.
- [9] N. Tokushige, A multiply intersecting Erdős-Ko-Rado theorem The principal case, *Discrete Mathematics*, 310:453–460, 2009.

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, H-1364 BUDAPEST, P.O.Box 127, HUNGARY *E-mail address*: peter.frankl@gmail.com

FACULTY OF EDUCATION, SHIGA UNIVERSITY, 2-5-1 HIRATSU, SHIGA 520-0862, JAPAN *E-mail address*: shino@edu.shiga-u.ac.jp

COLLEGE OF EDUCATION, RYUKYU UNIVERSITY, NISHIHARA, OKINAWA 903-0213, JAPAN *E-mail address*: hide@edu.u-ryukyu.ac.jp