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Abstract. We propose new intersection problems in the q-ary n-dimensional hy-
percube. The answers to the problems include the Katona’s t-intersection theorem
and the Erdős–Ko–Rado theorem as special cases. We solve some of the basic
cases of our problems, and for example we get an Erdős–Ko–Rado type result for
t-intersecting k-uniform families of multisets with bounded repetitions. Another
case is obtained by counting the number of lattice points in a polytope having an
intersection property.

1. Introduction

1.1. The problem and conjecture. Intersection problems in extremal set theory
typically deal with a family of subsets in the n-element set, or equivalently, a family
of n-dimensional binary sequences. Two of the most important results are perhaps
the Katona’s t-intersection theorem for non-uniform families [13], and the Erdős–Ko–
Rado theorem [7, 8, 18, 2] for uniform families. In this paper we extend such problems
by working in the space of n-dimensional q-ary sequences so that the above two
results naturally appear as special cases in our new setting. We present conjectures
concerning the extremal configurations of our problems, where a part of ball-like or
sphere-like structures appears. We then solve some of the basic cases of our problems
both in non-uniform and uniform settings.

Let N denote the set of nonnegative integers, and let n, q, s ∈ N with s ≤ (q−1)n.
Let

Xq := {0, 1, . . . , q − 1}
be the q-ary base set, and we will consider problems in the n-dimensional q-ary cube
Xn

q . We will sometimes drop q and write X for Xq if there is no confusion. For
a ∈ Rn, let ai ∈ X denote the i-th entry of a, that is, a = (a1, . . . , an). Define the
weight of a by

|a| :=
n∑

i=1

ai.

Let k ∈ N and let Xn,k
q be the collection of weight k sequences in Xn

q , that is,

Xn,k
q := {a ∈ Xn

q : |a| = k},

which we refer to as the k-uniform part of Xn
q . We remark that k > n is possible.

For a,b ∈ Rn define the join a∨b by

(a∨b)i := max{ai, bi},
1
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and we say that A ⊂ Rn is s-union if

|a∨b| ≤ s for all a,b ∈ A.

The width of A ⊂ Xn is defined to be the maximum s such that A is s-union.
In this paper we address the following problems concerning the maximum size of

s-union sets.

Problem 1. Determine

wn
q (s) := max{|A| : A ⊂ Xn

q is s-union},
wn,k

q (s) := max{|A| : A ⊂ Xn,k
q is s-union}.

It is easy to see that

wn,k
q (s) =


|Xn,k

q | if s ≥ 2k,

1 if s = k,

0 if s < k.

So when we consider wn,k
q (s) we always assume that k < s < 2k.

To describe candidates A for the w functions in Problem 1, we need some more
definitions. Let us introduce a partial order ≺ in Rn. For a,b ∈ Rn we let a ≺ b iff
ai ≤ bi for all 1 ≤ i ≤ n. Then we define a down set for a ∈ Xn by

D(a) := {c ∈ Xn : c ≺ a},
and for A ⊂ Xn let

D(A) :=
∪
a∈A

D(a).

We remark that if A ⊂ Xn has width s, then D(A) has the same width. So if
A ⊂ Xn is an extremal configuration for the problem, then A is a down set, namely,
A = D(B) for some B ⊂ Xn.

Conversely we define an up set for A ⊂ Xn
q by

Uq(A) := {c ∈ Xn
q : a ≺ c for some a ∈ A}.

We also need an important structure Sq(a, d), which can be viewed as a sphere
centered at a with radius d. Formally, for a ∈ Xn

q and d ∈ N with |a|+2d ≤ (q−1)n,
we define

Sq(a, d) = S(a, d) := {a+ ϵ ∈ Xn
q : ϵ ∈ Xn

q , |ϵ| = d}.
Notice that S(a, d) is (|a|+ d)-uniform and has width |a|+ 2d.

For given s and n we say that a ∈ Xn is an equitable (s, n)-partition, or simply,
equitable partition, if all ai’s are as close to s/n as possible, more precisely,

s = a1 + a2 + · · ·+ an, and |ai − aj| ≤ 1 for all i, j.

Let 1 := (1, 1, . . . , 1) ∈ Xn.
Before stating a construction of a large s-union set, let us begin with a small

concrete example: what is w3
5(10)? It is sometimes helpful to visualize a sequence

x ∈ Xn
q by a picture of a (q−1)×n box with |x| dots from the bottom. For example,

Figure 1 shows a picture corresponding to x = (4, 3, 3). Since |x| = 10, D(x) is 10-
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Figure 1. A picture for x = (4, 3, 3)

union, and |D(x)| = 5 · 42 = 80. This shows that w3
5(10) ≥ 80. Can we do better

than this? Actually we should start with the following 4 sequences (see Figure 2):

p1 = (4, 2, 2), p2 = (2, 4, 2), p3 = (2, 2, 4), q = (3, 3, 3).

Figure 2. Pictures for p1,p2,p3 and q

Then it is easy to see that A := {p1,p2,p3,q} is 10-union, and so is D(A). Let
us count |D(A)|. We have |D(q)| = 43 = 64. A sequence in D := D(p1) \ D(q)
has a form of (4, y, z) where 0 ≤ y, z ≤ 2, and |D| = 32 = 9. By symmetry we get
|D(A) \ D(q)| = 3 × 9 = 27. Consequently we have |D(A)| = 64 + 27 = 91. This
yields w3

5(10) ≥ 91, and this is the best we can do as we will see in the next section.
We also notice that, letting a = (2, 2, 2), it follows that {p1,p2,p3} ⊂ S5(a, 2) and
q ∈ S5(a+ 1, 0). Thus the set of 91 sequences coincides with

D(A) = D(S5(a, 2)⊔S5(a+ 1, 0)).

Figure 3 shows how these 91 integer lattice points corresponding to D(A) look like
in R3, where the hidden corner is the origin. One may recognize 64 points for D(q)
and 9 points for D(p1) \ D(q), etc.

Figure 3. The 3D view of 91 sequences
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We are ready to present an important construction of a large s-union set.

Example 1. Let n, q, s be given. For an integer d with 0 ≤ d ≤ s/2 choose an
equitable partition a ∈ Xn

q of weight s− 2d. For i ∈ N with d− (n− 1)i ≥ 0 let

Ui(d) := Sq

(
a+ i1, d− (n− 1)i

)
,

and let

An
q (d) := D

( ⌊ d
n−1

⌋∪
i=0

Ui(d)

)
.

Then An
q (d) is s-union.

Proof. Let 0 ≤ i ≤ j ≤ ⌊ d
n−1

⌋, and let b ∈ Ui(d) and c ∈ Uj(d). Then we have

|c| = |a+ j1|+ d− (n− 1)j = |a|+ d+ j,

and

|b \ c| :=
∑
1≤l≤n

max{bl − cl, 0} ≤ d− (n− 1)i− (j − i) = d− (n− 2)i− j.

Thus it follows

|b∨ c| = |c|+ |b \ c| ≤ |a|+ 2d− (n− 2)i ≤ |a|+ 2d = s.

This means that An
q (d) is s-union. □

We mention that An
q (d) has the following disjoint union decomposition, which we

will show in the next section:

An
q (d) = D(U0(d))⊔

(⊔
i≥1

Ui(d)

)
.

In particular, noting that U0(d) is (s− d)-uniform, if k ≤ s− d, then the k-uniform
part of An

q (d) is in D(U0(d)), namely An
q (d) ∩Xn,k

q = D(U0(d)) ∩Xn,k
q .

Now we state a general conjecture, which would give an answer to Problem 1.

Conjecture 1. Let n, q, s be given, and let An
q (d) ⊂ Xn

q be an s-union set defined in
Example 1. Then it follows that

wn
q (s) = max

0≤d≤s/2
|An

q (d)|.

If moreover k < s < 2k then

wn,k
q (s) = max

0≤d≤s/2
|An

q (d) ∩Xn,k
q | = max

0≤d≤s−k
|D(U0(d)) ∩Xn,k

q |.

It is sometimes convenient to consider the equivalent dual version of Problem 1.
To this purpose, for a,b ∈ Rn, define the meet a∧b ∈ Rn by

(a∧b)i := min{ai, bi},
and we say that A ⊂ Rn is t-intersecting if

|a∧b| ≥ t for all a, b ∈ A.
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Then we define

mn
q (t) := max{|A| : A ⊂ Xn

q is t-intersecting},
mn,k

q (t) := max{|A| : A ⊂ Xn,k
q is t-intersecting}.

We can relate functions w and m as we will see below. For a ∈ Xn
q define the

complement ā ∈ Xn
q by

āi := (q − 1)− ai,

and for A ⊂ Xn
q let Ā := {ā : a ∈ A}. Clearly |A| = |Ā|. Notice that

|a|+ |ā| = (q − 1)n

for every a ∈ Xn
q , and |a∨b| ≤ s is equivalent to |ā∧ b̄| ≥ (q − 1)n − s. (We may

assume that (q−1)n ≥ s whenever we consider s-union family in Xn
q .) Thus A ⊂ Xn

q

is s-union iff Ā is ((q − 1)n− s)-intersecting, and

wn
q (s) = mn

q (t) where t = (q − 1)n− s. (1)

On the other hand, if a,b ∈ Xn,k
q , then

2k = |a|+ |b| = |a∨b|+ |a∧b|,
and |a∨b| ≤ 2k − t is equivalent to |a∧b| ≥ t for 0 < t < k. Thus, for k < s < 2k,
A ⊂ Xn,k

q is s-union iff it is (2k − s)-intersecting, namely,

wn,k
q (s) = mn,k

q (t) where k < s < 2k and t = 2k − s. (2)

We need some more notation. For a,b ∈ Xn let

(a \ b)i := max{ai − bi, 0} = |a∨b| − |b|,
and the support of a be denoted by

supp(a) := {i : ai ̸= 0}.
Let us define 0, ei, ẽt ∈ Xn. Let 0 = (0, . . . , 0) be the zero sequence, ei be the i-th
standard base, e.g., e1 = (1, 0, . . . , 0), and let ẽt = (1, . . . , 1, 0, . . . , 0) be the basic
sequence of weight t, that is,

ẽt := e1 + e2 + · · ·+ et.

1.2. Easy cases, known results, and new results. We list some easy cases and
known results.

(i) wn
q (1) = |D(Sq(e1, 0))| = |{0, e1}| = 2.

(ii) wn
q (2) = |D(Sq(0, 1))| = |{0, e1, . . . , en}| = n+ 1.

(iii) w1
q(s) = |D(Sq((s), 0))| = |{(0), (1), . . . , (s)}| = s+ 1.

(iv) w2
q(2d) = |D(Sq(0, d))| = |{(i, j) : i, j ∈ Xd+1}| = (d+ 1)2.

(v) w2
q(2d+1) = |D(Sq(e1, d))| = |{(i, j) : i ∈ Xd+2, j ∈ Xd+1}| = (d+2)(d+1).

(vi) wn
2 (2d) = |D(S2(0, d))| = |{a ∈ Xn

2 : |a| ≤ d}| =
∑d

i=0

(
n
i

)
.

(vii) wn
2 (2d+ 1) = |D(S2(e1, d))|
= |{a ∈ Xn

2 : |a| ≤ d or (a1 = 1 and |a| = d+ 1)}| =
∑d

i=0

(
n
i

)
+
(
n−1
d

)
.

(viii) mn,k
2 (t) for k > t ≥ 1, n ≥ 2k−t is determined by Ahlswede and Khachatrian,

see Theorem 7.
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(ix) mn,k
q (t) for k > t ≥ 1, n ≥ 2k− t, and q ≥ k− t+2 is determined by Füredi,

Gerbner and Vizer, see Theorem 9.

We remark that the (vi) and (vii) are equivalent to the Katona’s t-intersection the-
orem [13], which states that

mn
2 (t) =

{∑n
i=l

(
n
i

)
if n+ t = 2l,∑n

i=l

(
n
i

)
+
(
n−1
l−1

)
if n+ t = 2l − 1.

Letting s = n− t and d = n− l we can rewrite the above formula using (2) as

wn
2 (s) =

{∑n
i=n−d

(
n
i

)
=

∑d
i=0

(
n
i

)
if s = 2d,∑n

i=n−d

(
n
i

)
+
(

n−1
n−d−1

)
=

∑d
i=0

(
n
i

)
+
(
n−1
d

)
if s = 2d+ 1.

In this paper we determine the functions wn
q (s) and wn,k

q (s) (or the dual functions

mn
q (t) and wn,k

q (t)) to verify Conjecture 1 in the following special cases:

(I) wn
q (s) for n = 3 and q ≥ q0(s) in Theorem 1.

(II) wn
q (s) for n > n0(s, q) in Theorem 2.

(III) wn,k
q (s) for k < s < 2k and n > n0(k, s, q) in Theorem 3.

(IV) mn
q (t) for t = 1 in Theorem 4.

(V) mn,k
q (t) for t = 1 and n ≥ max{2k − q + 2, k + 1} in Theorem 5.

(VI) mn,k
q (t) for k > t ≥ 1, n ≥ 2k − t, and q ≥ k − t+ 1 in Theorem 6.

As in (iii) and (iv) it is easy to determine wn
q (s) for n = 1, 2, and they have simple

formulas. So it is somewhat surprising that the case n = 3 is not so easy already,
and the formula for w3

q(s) is rather involved. In Section 2 we discuss how to estimate

wn
q (s) for q > q0(n, s), and we verify that w3

q(s) is given by Conjecture 1 as follows:

Theorem 1. If q − 1 ≥ 4s/5, then

w3
q(s) = max{|A3

q(d)| : 0 ≤ d ≤ 2/s},

and equality is attained only by A3
q(d) up to isomorphism (of renaming the coordi-

nates), where A3
q(d) is defined in Example 1.

We actually prove in the next section that the same holds for general n provided
additional assumptions are satisfied, see Proposition 1. (These assumptions hold
automatically for n = 3 case.) For the proof we will find the maximal s-union
polytope in Rn, and then we count the number of integer lattice points contained in
the polytope. This approach works not only to deal with pairwise s-union sets, but
also ‘r-wise’ s-union sets, see [10].

If n is large enough compared with the other parameters, then the situation become
rather simple, and we can verify Conjecture 1. For non-uniform case we show the
following in Section 3.

Theorem 2. Let s and q be fixed. If n > n0(s, q) then

wn
q (s) =

{
|D(Sq(0, d))| if s = 2d,

|D(Sq(e1, d))| if s = 2d+ 1.
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Moreover equality is attained only by D(Sq(0, d)) if s = 2d and D(Sq(e1, d)) if s =
2d+ 1 up to isomorphism.

Similarly, for the k-uniform case, we show the following in Section 4 by proving
the equivalent dual form Theorem 8.

Theorem 3. Let k, s and q be fixed with k < s < 2k. If n ≥ n0(k, s, q) then

wn,k
q (s) = |Sq(ẽ2k−s, s− k)|.

Moreover equality is attained only by Sq(ẽ2k−s, s− k) up to isomorphism.

Both proofs of the above two results are based on the so-called kernel method
introduced by Erdős, Ko, and Rado [7].

Another easy situation is 1-intersecting case, and we show the following two results
– one for non-uniform case and the other for k-uniform case in Sections 3 and 4,
respectively.

Theorem 4. For 1-intersecting families, we have

mn
q (1) =

{
|Uq(S2(0, d+ 1))| if n = 2d+ 1,

|Uq(S2(0, d+ 1) ∩Xn−1
2 )| if n = 2d+ 2.

Theorem 5. If n ≥ max{2k − q + 2, k + 1}, then

mn,k
q (1) = |Sq(e1, k − 1)|.

As we mentioned in (viii) Ahlswede and Khachatrian [2] completely determined
mn

2 (t). Recently Füredi, Gerbner and Vizer [12] observed that mn
q (t) for the case

q ≥ k− t+2 is represented by using mn
2 (t). We slightly extend this result as follows,

which will be proved in Section 4.

Theorem 6. Let k > t ≥ 1, n ≥ 2k − t, and q ≥ k − t+ 1. Then

mn,k
q (t) = max{|D(Sq(ẽt+2i, k − t− i)) ∩Xn,k

q | : i = 0, 1, . . . , (k − t)/2}.

As in [12] one can view this result as an intersection result for multisets with
bounded repetitions, or an intersection result for weighted subsets.

Finally we record the following simple fact on the number of nonnegative integer
solutions, which will be used several times in the proofs, for a proof see e.g., p. 117
in [16].

Lemma 1. Let t and d be positive integers. Then the number of nonnegative integer
solutions of x1 + x2 + · · · + xt ≤ d is

(
t+d
d

)
, and the number of nonnegative integer

solutions of x1 + x2 + · · ·+ xt = d is
(
t+d
d

)
−

(
t+d−1
d−1

)
=

(
t+d−1

d

)
.

2. s-union families for q > q0(n, s)

In this section we will determine wn
q (s) for the case n ≥ 3 and q > q0(n, s) under

two additional assumptions (see Proposition 1), and prove Theorem 1 with some
more detailed information of w3

q(s) as a function of s.
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2.1. Counting lattice points in a polytope. In this section let n ∈ N with n ≥ 3.
We recall that for x ∈ Rn we write xi for the i-th component, so

x = (x1, x2, . . . , xn) =
n∑

i=1

xiei,

where e1, . . . , en are the standard basis of Rn.
Let n, s, q be fixed positive integers with q > q0(n, s). We write Xn for Xn

q . Let
A ⊂ Xn be s-union with |A| = wn

q (s). For 1 ≤ i ≤ n let

mi := max{xi : x ∈ A}.
Let m = (m1, . . . ,mn) ∈ Xn and let m := |m|/n be the average.

If nm < s then we can increase |A| without violating s-union property. So we may
assume that nm ≥ s.

We will make three assumptions. The first one is the following.

Supposition 1. n− 2 divides nm− s.

We remark that the above supposition is automatically satisfied if n = 3. Let

d :=
nm− s

n− 2
∈ N,

which can be rewrite as s− 2d = n(m− d). Then define a = (a1, . . . , an), which will
play a role of a ‘center’ of A, by

ai := mi − d. (3)

If n = 3, then m1 +m2 +m3 = 3m = d + s, which implies mi ≥ d for all i. In fact
if m1 < d then m2 + m3 > s and this contradicts the s-union property of A. Our
second assumption is the following.

Supposition 2. ai ≥ 0 for all i = 1, 2, . . . , n.

We have

|a| =
n∑

i=1

ai =
n∑

i=1

(mi − d) = n(m− d) = s− 2d ≥ 0,

and
s = |a|+ 2d = nm− (n− 2)d, 2d ≤ s ≤ nm.

Then we define n integer lattice points P1, . . . , Pn ∈ S(a, d) by
Pi := a+ dei,

so, for example, P2 = (a1,m2, a3, . . . , an). These n points are crucial for the argument
below.

Let x ∈ A. Then, for each i = 1, 2, . . . , n, we have

xi ≥ 0, (4)

xi ≤ mi, (5)( n∑
j=1

xj

)
− xi ≤ s−mi, (6)
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where (5) follows from the definition of mi, and (6) is the consequence of the s-union
property of A. These 3n inequalities define a convex polytope P0 ⊂ Rn containing
A, namely, P0 := {x ∈ Rn : x satisfies (4),(5),(6)} ⊃ A.

If n = 3, then the polyhedronP0 is also s-union, that is, if x,y ∈ P0, then |x∨y| ≤
s. (In fact we may assume that two of max{x1, y1},max{x2, y2},max{x2, y2} come
from x, say, x1 ≥ y1, x2 ≥ y2, and |x∨y| ≤ x1 + x2 +m3. Then |x∨y| ≤ s follows
from (6).) So A is obtained by taking all integer lattice points in P0:

A = {x ∈ N3 : x ∈ P0}.
In particular, if n = 3, then P1, P2, P3 ∈ A.

On the other hand, if n ≥ 4, then the polytope P0 is not necessarily s-union in
general. It has P1, . . . , Pn as (a part of) vertices, for example, P1 comes from (5) for
i = 1 and (6) for i = 2, . . . , n. Our last assumption is the following.

Supposition 3. All P1, . . . , Pn are in A.

As we have already noticed, this supposition is satisfied when n = 3.

Claim 1. {P1, . . . , Pn} is (s− d)-uniform and has width s.

Proof. Recall S(a, d) is (|a| + d)-uniform and has width |a| + 2d. Then this claim
follows from the fact that |a| = s− 2d and Pi ∈ S(a, d). □

Another important vertex Q ∈ Rn (not necessarily in Nn) of the polytope P0 is
obtained by solving (6) for i = 1, . . . , n, that is,

Q := m− nm− s

n− 1
1 = a+

d

n− 1
1,

see Figure 4. Let T be an n-dimensional simplex spanned by the n + 1 vertices
P1, . . . , Pn and Q. From the above claim we see that P1, . . . , Pn form an (n − 1)-
dimensional regular simplex F in the hyperplane x1 + · · · + xn = s − d. Moreover,
the distance from Q to each Pi does not depend on i.

P1
P2

P3

Q

Figure 4. The polyhedron P0 for n = 3
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We are going to construct an s-union convex polytope P ⊂ P0 which defines A in
the following way:

A = {x ∈ Nn : x ∈ P}.
Informally, P will be obtained as the union of T and the down set of F.

For the defining inequalities of P we extend the definition of mi. For an index set
I ⊂ [n] with 1 ≤ |I| ≤ n− 1, let

mI := max

{∑
i∈I

xi : x ∈ A

}
,

so mi = m{i}. By definition we have
∑

i∈I xi ≤ mI for x ∈ A. The next claim shows
that all mI ’s are actually completely determined by m1, . . . ,mn.

Claim 2. For I ⊂ [n], 1 ≤ |I| ≤ n− 1, it follows

mI =
∑
i∈I

mi − (|I| − 1)d.

Proof. Let j ∈ I. By Supposition 3 we have Pj in A, and this yields

mI ≥ mj +
∑

l∈I\{j}

al =
∑
i∈I

mi − (|I| − 1)d. (7)

Similarly we have

m[n]\I ≥
∑

i∈[n]\I

mi − (n− |I| − 1)d.

Then it follows

s ≥ mI +m[n]\I ≥
∑
i∈[i]

mi − (n− 2)d = nm− (n− 2)d = s. (8)

This means that all inequalities in (8) are equalities, and thus the inequality in (7)
is also equality, which shows the claim. □

By the above claim and the definition of mI we get the following inequalities.

Claim 3. Let I ⊂ [n], 1 ≤ |I| ≤ n− 1. If x ∈ A, then∑
i∈I

xi ≤
∑
i∈I

mi − (|I| − 1)d. (9)

We notice that (5) and (6) are special cases of (9) corresponding to the cases
|I| = 1 and |I| = n − 1, respectively. Now we can define the convex polytope P
formally by (4) and (9):

P :=

x ∈ Rn :

xi ≥ 0 for i = 1, . . . , n, and∑
i∈I

xi ≤
∑
i∈I

mi − (|I| − 1)d for ∅ ̸= I ⫋ [n]

 .

So P is defined by n+ (2n − 2) inequalities. By the construction it follows

A ⊂ P.

Claim 4. The polytope P is s-union.



INTERSECTION PROBLEMS IN THE q-ARY CUBE 11

Proof. Recall from (8) that mI + m[n]\I = s for all ∅ ̸= I ⫋ [n]. If x,y ∈ P and
letting I = {i : xi ≥ yi}, then

|x∨y| =
∑
i∈I

xi +
∑

j∈[n]\I

yj ≤ mI +m[n]\I = s.

Also, noting that the width of P in the 1 direction is given by 0 and Q, we have

|x| ≤ |Q| = s− mn− s

n− 1
< s

for all x ∈ P. This completes the proof of the s-union property of P. □
Since A ⊂ P and A is size maximal, we infer that A is obtained by taking all

integer lattice points contained in P. In other words, we have the following.

Claim 5. A = {x ∈ Nn : x ∈ P}.

In the rest of this subsection we shall show that A coincides with one of An
q (d) in

Example 1. For this let Ui = Sq

(
a+ i1, d− (n− 1)i

)
and define

K := D
( ⌊ d

n−1
⌋∪

i=0

Ui

)
,

which is almost the same as An
q (d) but here the a defined by (3) is not necessarily

equitable. Then K is s-union. (Recall that in the proof that An
q (d) is s-union in

Example 1 we did not use the property that a is equitable.)

Claim 6. A ⊂ K.

Proof. Let x ∈ A. To show that x ∈ K we need to find some i′ with 0 ≤ i′ ≤ ⌊ d
n−1

⌋
such that

|x \ (a+ i′1)| ≤ d− (n− 1)i′. (10)

We write x as x = (a1+ i1, a2+ i2, . . . , an+ in), where we may assume that i1 ≥ i2 ≥
· · · ≥ in. For J ⊂ [n] it follows from aj = mj − d that∑

j∈J

xj =
∑
j∈J

(aj + ij) =
∑
j∈J

mj − |J |d+
∑
j∈J

ij.

This together with (9) yields that if 1 ≤ |J | ≤ n− 1 then∑
j∈J

ij ≤ d.

Now we verify (10). If in ≥ 0 then we set i′ = in and J = [n− 1]. Then,

|x \ (a+ i′1)| =
n∑

j=1

(ij − in) =
∑
j∈J

ij − (n− 1)in ≤ d− (n− 1)i′.

If in < 0 then let i′ = 0 and J = {j : ij ≥ 0}. It follows that

|x \ a| =
n∑

j=1

max{0, ij} =
∑
j∈J

ij.
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The RHS is ≤ d if J ̸= ∅. If J = ∅, then we have x ≺ a and |x \ a| = 0. So in both
cases we have |x \ a| ≤ d, and we are done. □

Since both K and A are s-union and A has the maximum size it follows that
|A| ≥ |K|. Thus by Claim 6 we have

A = K.

Finally we compute the size of K and show that a needs to be equitable to maximize
the size. Let

σj(a) :=
∑

J∈([n]
j )

∏
i∈J

ai

be the j-th elementary symmetric function of a1, . . . , an.

Claim 7.

|A| = |K| =
n∑

j=0

(
d+ j

j

)
σn−j(a) +

⌊ d
n−1

⌋∑
i=1

(
d− (n− 1)(i− 1)

n− 1

)
. (11)

Proof. By the definition of Ui we see that D(Ui+1) \Ui+1 ⊂ Ui for i ≥ 0. Noting also
that Ui is (|a| + d + i)-uniform we have the following disjoint union decomposition
of K = D(U0)⊔S, where S :=

⊔
i≥1 Ui.

If x ∈ D(U0) then |x \ a| ≤ d. Moreover, we have
∑

j∈Jx(xj − aj) ≤ d, where

Jx = {j : xj ≥ aj}, and xi < ai for i ̸∈ Jx. So, for each J ⊂ [n], by letting

K0(J) := {x ∈ D(U0) : Jx = J},

we have the decomposition D(U0) =
⊔

J⊂[n]K0(J). If x ∈ K0(J) then the number

of solutions of
∑

j∈J(xj − aj) ≤ d is equal to the number of nonnegative solutions of∑
j∈J yj ≤ d, which is

(
d+|J |
|J |

)
by Lemma 1. So it follows that

|K0(J)| =
(
d+ |J |
|J |

) ∏
i∈[n]\J

ai,

and

|D(U0)| =
∑
J⊂[n]

|K0(J)| =
n∑

j=0

(
d+ j

j

)
σn−j(a).

If x ∈ Ui then we can write x = a+ i1+y, where |y| = d− (n− 1)i. By Lemma 1

the number of such vectors y is
(
n+d−(n−1)i−1

d−(n−1)i

)
=

(
d−(n−1)(i−1)

n−1

)
. Thus we have

|S| =
⌊ d
n−1

⌋∑
i=1

|Ui| =
⌊ d
n−1

⌋∑
i=1

(
d− (n− 1)(i− 1)

n− 1

)
,

which completes the proof. □
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Recall that n is fixed, and d and a are determined by A. We have assumed that
|A| is maximal. In order to maximize the RHS of (11), a needs to be an equitable
partition for each d, because σi(a) is maximized when a is equitable. Then d is
chosen so that (11) (with equitable a) is maximized. We summarize what we have
shown and state the main result in this subsection:

Proposition 1. Let n and s be given, and let q > q0(n, s). If n = 3, then Con-
jecture 1 is true. If n ≥ 4 and all Suppositions 1, 2, and 3 are satisfied, then
Conjecture 1 is true.

An optimistic conjecture is the following.

Conjecture 2. All Suppositions 1, 2, and 3 are satisfied for any maximum s-union
set in Xn

q with q > q0(n, s).

We have the exact size of A by (11) which gives wn
q (s) provided q is large and

all suppositions are satisfied. We also have an upper bound for |A| under these
conditions, which is easier to compute. Namely, using (11) and

σi(a) ≤
(
n

i

)(
|a|
n

)i

=

(
n

i

)(
s− 2d

n

)i

,

we have

|A| ≤
n∑

j=0

(
d+ j

j

)(
n

j

)(
s− 2d

n

)n−j

+

⌊ d
n−1

⌋∑
i=1

(
d− (n− 1)(i− 1)

n− 1

)
. (12)

2.2. The case n = 3. Let s be fixed. From (12) with d = 3m− s we get

|A| ≤ 1

8

(
62m3 − 3m2(30s+ 13) + 6m

(
7s2 + 5s− 1

)
− 6s3 − 3s2 + 10s+ 7 + ϵ

)
where ϵ = 0 if d is odd and ϵ = 1 if d is even. Let f(m) be the RHS of the above
inequality with ϵ = 1. Since s ≥ 2d = 2(3m − s) ≥ 0 we have 3s ≥ 6m ≥ 2s. So
letting

m = ps

we have 1/3 ≤ p ≤ 1/2. In this domain f(ps) attains the maximum at p = p0 where
p0 is the smaller root of

4

3s

d

dp
f(ps) = 31s2p2 +

(
−30s2 − 13s

)
p+ 7s2 + 5s− 1, (13)

more concretely,

p0 =
30s−

√
32s(s+ 5) + 293 + 13

62s
(14)

=
15

31
− 2

√
2

31
+

(
13

62
− 5

√
2

31

)
1

s
+O(s−2).
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Namely, f(m) attains its maximum at around m ≈ 0.3926s. In this case, by taking
the polynomial remainder of f(ps) divided by the RHS of (13), we have

f(p0s) =
1

248

(
− s(32s2 + 160s+ 293)p0 + 24s3 + 148s2 + 345s+ 235

)
=

33 + 8
√
2

961
s3 +

15
(
33 + 8

√
2
)

1922
s2 +

(
5260 + 1479

√
2
)

7688
s

+
10761 + 3395

√
2

15376
+

27

512
√
2s

+O(s−2).

We can also get the exact formula. For given s and d let a be an equitable partition
with |a| = s− 2d. Let g(d) be the RHS of (11). Noting that d = 3m− s = (3p− 1)s
let d+ = ⌈(3p0 − 1)s⌉ and d− = ⌊(3p0 − 1)s⌋. Then for d ∈ N we have

g(d) ≤ max{g(d+), g(d−)}.

This shows that w3
q(s) = max{g(d+), g(d−)}, and A3

q(d
+) and A3

q(d
−) are the only

possible extremal configurations (up to isomorphism) whose size attains w3
q(s). In

some cases, including s = 2, 4, 7, 9, 16, 37, 44, 65, . . ., all of them attain the maximal
size. For example, if s = 16, then m3

q(16) = 291 = g(3) = g(2) and there are two

different extremal configurations A3
q(3) and A3

q(2) (see Figure 5), both have the same
size 291:

A3
q(3) = D

(
Sq((3, 3, 4), 3) ∪ Sq((4, 4, 5), 1)

)
,

A3
q(2) = D

(
Sq((4, 4, 4), 2) ∪ Sq((5, 5, 5), 0)

)
.

Figure 5. A3
q(3) and A3

q(2) that attain w3
q(16)

For the lower bound for q, it suffices that q − 1 ≥ m, that is, q ≥ ⌈2p0s⌉ + 1.
Consequently we get the following.
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Theorem 1 (slightly stronger version). If q ≥ ⌈2p0s⌉+1, where p0 is given in (14),
then

w3
q(s) = max{g(d+), g(d−)}

≤ ⌊f(p0s)⌋ =
33 + 8

√
2

961
s3 +O(s2).

Moreover, the only extremal configuration that attains w3
q(s) is one of (or possibly

both of) A3
q(d

+) and A3
q(d

−) (up to isomorphism).

From (14) one can show that 0.8s > ⌈2p0s⌉+ 1 for all s ≥ 1. So the above upper

bound for wn
q (s) is valid for q ≥ 4s/5. We also have 2p0s < 2(15−2

√
2)

31
s ≈ 0.785s.

Here is numeric data of wn
q (s) and its upper bound f(p0s) for 1 ≤ s ≤ 30.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w3
q(s) 2 4 8 12 20 28 39 54 69 91 113 140 173 206 248 291

⌊f(p0s)⌋ 2 4 8 13 20 29 40 54 71 91 114 141 173 208 248 293

17 18 19 20 21 22 23 24 25 26 27 28 29 30

341 399 457 526 598 677 767 857 959 1068 1182 1311 1440 1582

343 399 460 527 600 680 767 860 961 1070 1186 1311 1444 1585

3. s-union families for n > n0(s, q)

3.1. A general bound for s-union families for n large enough. Since we know
that Conjecture 1 is true for the cases (i)–(ix) in Section 1, from now on, we will
consider wn

q (s) for

n ≥ 3, s ≥ 3 and q ≥ 3.

We restate the result we are going to prove.

Theorem 2. Let s and q be fixed. If n > n0(s, q) then

wn
q (s) =

{
|D(Sq(0, d))| if s = 2d,

|D(Sq(e1, d))| if s = 2d+ 1.

Moreover equality is attained only by D(Sq(0, d)) if s = 2d and D(Sq(e1, d)) if s =
2d+ 1 up to isomorphism.

Proof. We remark that for every x ∈ Xn
q we have

|D(Sq(x, d))| ≥ |Sq(x, d)|.

Then |Sq(x, d)| is minimized when q = 2, and in this case |S2(x, d)| =
(
n−|x|

d

)
. In

particular, both D(S2(0, d)) and D(S2(e1, d)) have size Ω(nd).
Let A ⊂ Xn be s-union with |A| = wn

q (s).
First let s = 2d. We show that

A = D(Sq(0, d)) = {a ∈ Xn : |a| ≤ d}.
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To the contrary, suppose that there is an a ∈ A with |a| = d+ r for some 1 ≤ r ≤ d.
We may assume that |a| ≥ |c| for all c ∈ A and supp(a) = [t] := {1, 2, . . . , t} for
some 1 ≤ t ≤ d+ r. Then for every c ∈ A we have

c1 + c2 + · · ·+ ct ≤ |c| ≤ |a| = d+ r.

On the other hand, since a∨ c ≤ s = 2d we get

ct+1 + ct+2 + · · ·+ cn ≤ 2d− (a1 + · · ·+ at) = 2d− |a| = d− r.

Then counting the number of nonnegative integer solutions of

x1 + x2 + · · ·+ xt ≤ d+ r

and

xt+1 + xt+2 + · · ·+ xn ≤ d− r

with Lemma 1 we get

|A| ≤
(
t+ (d+ r)

d+ r

)(
(n− t) + (d− r)

d− r

)
= O(nd−r) ≤ O(nd−1),

a contradiction.
Next let s = 2d+ 1. We show that

A ∼= D(Sq(e1, d)) = {a ∈ Xn : |a| ≤ d} ∪ {a ∈ Xn : 1 ∈ supp(a), |a| = d+ 1}.

Notice that both of the two subfamilies on the RHS have size Ω(nd).
To the contrary, if there is an a ∈ A with |a| ≥ d+2, then as in the previous case

we get |A| = O(nd−1). So we may assume that |c| ≤ d + 1 for all c ∈ A. We may
further assume that there is an a ∈ A with |a| = d + 1 and supp(a) = [t] for some
1 ≤ t ≤ d+ 1. We focus on

Ad+1 := {c ∈ A : |c| = d+ 1}.

Since Ad+1 is (2d+1)-union and (d+1)-uniform, it is 1-intersecting, that is, supp(c)∩
supp(c′) ̸= ∅ for all c, c′ ∈ A. For 1 ≤ i ≤ t we define Bi ⊂ Ad+1 by

Bi := {b ∈ Ad+1 : supp(b) ∩ [t] = {i}}.

Note that if b ∈ Bi then | supp(b) ∩ [t+ 1, n]| ≤ d. We partition Ad+1 as

Ad+1 = B1 ∪B2 ∪ · · · ∪Bt ∪ F,

where

F := {f ∈ Ad+1 : | supp(f) ∩ [t]| ≥ 2}.

Note that if f ∈ F then it follows

f1 + · · ·+ ft = i,

ft+1 + · · ·+ fn = d+ 1− i
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for some 2 ≤ i ≤ d+ 1. Thus

|F | ≤
d+1∑
i=2

(
t+ i− 1

i

)(
(n− t) + (d+ 1− i)− 1

d+ 1− i

)
≤ d

(
2d+ 1

d+ 1

)(
n− t+ d− 2

d− 1

)
= O(nd−1).

Let I := {i : Bi ̸= ∅}.

Claim 8. If |I| ≥ 2, then
∑t

i=1 |Bi| = O(nd−1).

Proof. Let i, j ∈ I, i ̸= j, and let b ∈ Bi, c ∈ Bj. Since b and c intersect, that is,
supp(b) ∩ supp(c) ∩ [t+ 1, n] ̸= ∅, and

∑
j∈[t+1,n] cj = d we have that∑

{cj : j ∈ [t+ 1, n] \ supp(b)} ≤ d− 1.

Then, by Lemma 1, we have

|Bj| ≤
(
(n− t− | supp(b)|) + (d− 1)

d− 1

)(
| supp(b)|+ d

d

)
= O(nd−1).

Thus
∑t

i=1 |Bi| ≤ tmax |Bi| ≤ (d+ 1)O(nd−1) = O(nd−1). □

By the claim above, if |I| ≥ 2, then

|Ad+1| =
d∑

i=1

|Bi|+ |F | = O(nd−1),

which is a contradiction.
So we may assume that |I| = 1, say I = {1}. If there is an f ∈ F such that 1 ̸∈

supp(f), then as in the above claim we have |B1| = O(nd−1) and |Ad+1| = O(nd−1), a
contradiction. Consequently we need 1 ∈ supp(f) for all f ∈ F , and thus 1 ∈ supp(c)
for all c ∈ Ad+1. This means Ad+1 ⊂ {a ∈ Xn : 1 ∈ supp(a), |a| = d+ 1}. □

3.2. Towards a sharp lower bound of n for the case when q > q0(s).

Corollary 1. Let s be fixed. Let q−1 ≥ d if s = 2d and let q−1 ≥ d+1 if s = 2d+1.
If n > n0(s) then

wn
q (s) =



(
n+ d

d

)
if s = 2d,

(
n+ d

d

)
+

(
n+ d− 1

d

)
if s = 2d+ 1.

Proof. By Theorem 2 it suffices to show that if q − 1 ≥ d then |D(Sq(0, d))| =
(
n+d
d

)
and if q − 1 ≥ d + 1 then |D(Sq(e1, d))| =

(
n+d
d

)
+

(
n+d−1

d

)
. These identities follow

from the next claim. □
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Claim 9. For q − 1 ≥ d ≥ 0 we have

|D(Sq(0, d))| =
(
n+ d

d

)
.

For q − 2 ≥ d ≥ t ≥ 1 we have

|D(Sq(ẽt, d))| =
t∑

j=0

(
t

j

)(
n+ d− j

d

)
.

Proof. By counting the number of nonnegative integer solutions of the inequality
x1 + x2 + · · ·+ xn ≤ d, we get from Lemma 1 that

|D(Sq(0, d))| =
(
n+ d

d

)
.

Let t ≥ 1. Let J be a j-element subset in [t], and let

AJ :=

{ ∑
i∈[t]\J

ei + x : xi = 0 for j ∈ J,
∑

l∈[n]\J

xl ≤ d

}
.

In other words, if a ∈ AJ , then aj = 0 for j ∈ J , ai ≥ 1 for i ∈ [t] \ J , and
|a| ≤ d+ (t− j). Then we have a partition

D(Sq(ẽt, d)) =
∪
J⊂[t]

AJ . (15)

Now we compute |AJ |. This is the number of nonnegative solutions of the inequality∑
l∈[n]\J

xl ≤ d,

and it follows from Lemma 1 that

|AJ | =
(
(n− j) + d

d

)
. (16)

By (15) and (16) we get the desired identity. □
Now we try to find a sharp lower bound for n that guarantees the formula for

wn
q (s) in Corollary 1.

Claim 10. Let q − 1 ≥ d ≥ 3. If

n > n0 :=
(1 +

√
5)d

2
+

3

2
,

then
|D(Sq(ẽ2, d− 1))| < |D(Sq(0, d))|. (17)

Proof. By direct computation using Claim 9 we see that (17) holds iff

n2 − (d+ 3)n− d2 + 2d+ 2 ≥ 0. (18)

Solving the above inequality we get

n ≥ n0 −
1

2
√
5
+O(1/d).
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In particular, if n = n0, then the LHS of (18) is equal to (2d−1)/4, which is positive.
On the other hand, if n = n0 − 1

2
√
5
, then the LHS of (18) is equal to −1

5
. So the

minimum integer n satisfying (18) is in the interval [n0 − 1
2
√
5
, n0]. □

Claim 11. Let q − 1 ≥ d ≥ 4. If

n > n0 :=
(1 +

√
5)d

2
+ 2

then

|D(Sq(ẽ3, d− 1))| < |D(Sq(e1, d))|. (19)

Proof. By Claim 9 the LHS of (19) is(
n+ d− 4

d− 1

)
+ 3

(
n+ d− 3

d− 1

)
+ 3

(
n+ d− 2

d− 1

)
+

(
n+ d− 1

d− 1

)
.

Then we see that (19) holds iff

2n3 − (d+ 12)n2 − (3d2 − 6d− 22)n− d3 + 6d2 − 7d− 12 ≥ 0. (20)

Solving the above inequality we get

n ≥ n0 −
3√
5
+ 1 +O(1/d).

In particular, if n = n0, then the LHS of (20) is equal to d(
√
5(d− 1) + d), which is

positive. On the other hand, if n = n0 − 3√
5
+ 1, then the LHS of (20) is equal to

1
25

(
5
(
19
√
5− 52

)
d− 114

√
5 + 270

)
, which is negative. So the minimum integer n

satisfying (20) is in the interval [n0 − 3√
5
+ 1, n0]. □

The previous two claims suggest the following lower bound for n, which, if true,
would be almost sharp.

Conjecture 3. We can replace n0(s) in Corollary 1 with
(1 +

√
5)d

2
+

3

2
if s = 2d,

(1 +
√
5)d

2
+ 2 if s = 2d+ 1.

3.3. The 1-intersecting case. Recall that

Uq(A) := {c ∈ Xn
q : a ≺ c for some a ∈ A}

for A ⊂ Xn
q . We restate the result that we are going to prove.

Theorem 4. For 1-intersecting families, we have

mn
q (1) =

{
|Uq(S2(0, d+ 1))| if n = 2d+ 1,

|Uq(S2(0, d+ 1) ∩Xn−1
2 )| if n = 2d+ 2.
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The following equivalent dual form via (1) verifies the Conjecture 1 in this case.

wn
q

(
(q − 1)n− 1

)
=

{∣∣D(
Sq((q − 2)ẽn, d)

)∣∣ if n = 2d+ 1,∣∣D(
Sq((q − 2)ẽn + en, d)

)∣∣ if n = 2d+ 2.

For b ∈ 2[n] we define its Wq-weight by

Wq(b) := (q − 1)|b|,

and for B ⊂ 2[n] let

Wq(B) :=
∑
b∈B

Wq(b).

We mention that the product measure µp, where p := 1 − 1
q
∈ [1/2, 1), is obtained

by normalizing the Wq-weight, that is,

µp(b) := Wq(b)/q
n = p|b|(1− p)n−|b|.

Proof of Theorem 4. Let A ⊂ Xn
q be 1-intersecting. Then the base set

BA := {supp(a) : a ∈ A}
is also 1-intersecting (in the usual sense, that is, any two members in BA have non-
empty intersection), and |A| ≤ Wq(BA). Thus we have that

|A| ≤ max{Wq(B) : B ⊂ 2[n] is 1-intersecting}.
If q = 2, then the RHS is 2n−1, and equality holds if

B =

{
B0 := U2(S2(0, d+ 1)) for n = 2d+ 1,

B1 := U2(S2(0, d+ 1) ∩Xn−1
2 ) for n = 2d+ 2.

For q ≥ 3 we use the following Bey–Engel version of the comparison lemma (The-
orem 7 in [4]) originally due to Ahlswede and Khachatrian (Lemma 7 in [3]).

Lemma 2 (Comparison lemma). Let P be a set of points in Rn+1−t
≥0 whose coordinates

are indexed by t, t + 1, . . . , n. Let v ∈ Rn+1−t
≥0 be a given positive weight vector.

Suppose that there is some f∗ ∈ P such that the standard inner product of v and f∗

satisfies

v · f∗ = max{v · f : f ∈ P},
and for some u ∈ [t, n]

f ∗
i = 0 if t ≤ i < u,

fi ≤ f ∗
i if u ≤ i ≤ n and f ∈ P.

Let v′ ∈ Rn+1−t
≥0 be another positive weight vector with

vi
vi+1

≥ v′i
v′i+1

for i = t, . . . , n.

Then also

v′ · f∗ = max{v′ · f : f ∈ P}.
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To apply the lemma, let t = 1, let P be the set of profile vectors of 1-intersecting
families in 2[n], let f∗ be the profile vector of B = B0 or B1 according to the parity
of n. (So, for example, if n = 2d + 1, then u = d + 1 and f ∗

i =
(
n
i

)
for u ≤ i ≤ n.)

We choose v and v′ corresponding to W2 and Wq, respectively, namely, let v = 1
and define v′ by v′i = (q − 1)i. Then

vi
vi+1

= 1 >
1

q − 1
=

v′i
v′i+1

.

Thus, by the lemma, it follows that the same B (= B0 or B1) gives the maximum
Wq-weight for q ≥ 3 as well. Consequently we have |A| ≤ Wq(B) and the RHS
coincides with the RHS of the formula in the theorem. Moreover both families in the
formula (Uq(S2(0, d+ 1)) for n = 2d+1 and Uq(S2(0, d+ 1)∩Xn−1

2 ) for n = 2d+2)
are 1-intersecting, which completes the proof. □

4. k-uniform t-intersecting families

4.1. The case when t = 1 or n is large. In this section we assume that k < s < 2k.
We rewrite Conjecture 1 in terms of mn,k

q (t) using (2). Consider the situation that
Sq(a, d) is s-union. By solving

2k − t = s = |a|+ 2d

we get

d = k − t+ |a|
2

.

If b ∈ Sq(a, d) then

|b| = |a|+ d = k − t

2
+

|a|
2
,

and |b| ≥ k iff |a| ≥ t. So to ensure D(Sq(a, d))∩Xn,k
q is nonempty, we need |a| ≥ t.

Consequently Conjecture 1 is equivalent to the following.

Conjecture 4. Let 0 < t < k, and let d = k − t+|a|
2

be nonnegative integer. Then

mn,k
q (t) = max

0≤d≤k−t
{|D(Sq(a, d)) ∩Xn,k

q | : a ∈ Xn,≥t
q is an equitable partition},

where Xn,≥t
q =

∪n
j=t X

n,j
q .

Conjecture 1 is true if t = 1 as follows.

Theorem 5. If n ≥ max{2k − q + 2, k + 1}, then

mn,k
q (1) = |Sq(e1, k − 1)|.

Proof. Let n ≥ max{2k − q + 2, k + 1}. Since mn,k
q (1) = mn,k

k+1(1) for q ≥ k + 1 we
may assume that q ≤ k + 1. Then 2k − q + 2 ≥ k + 1 and we may assume that
n ≥ 2k − q + 2. Let A ⊂ Xn,k

q be 1-intersecting with |A| = mn,k
q (1). Let

Yi := {x ∈ Xn,k
q : | supp(x)| = i}.
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Then Xn,k
q =

⊔
i Yi, where ⌈ k

q−1
⌉ ≤ i ≤ k, is a partition. Since Ai := A ∩ Yi is

1-intersecting,

supp(Ai) := {supp(x) : x ∈ Ai} ⊂
(
[n]

i

)
is 1-intersecting, too.

First suppose that n ≥ 2i. Then, applying the Erdős–Ko–Rado theorem to
supp(Ai), we see that | supp(Ai)| is maximized (and thus |Ai| is maximized) when∩

x∈Ai
supp(x) ̸= ∅, say, the intersection is {1}, and this yields

|Ai| ≤ |Sq(e1, k − 1) ∩ Yi|. (21)

In particular, if n ≥ 2k, then we have n ≥ 2i and

|A| =
∑
i

|Ai| ≤
∑
i

|Sq(e1, k − 1) ∩ Yi| = |Sq(e1, k − 1)|,

as needed. So we may assume that n < 2k.
Next suppose that n < 2i. We further partition Yi into

Yi = Y 1
i ∪ · · · ∪ Y Ni

i ,

so that all distinct
(
n
i

)
supports appear exactly once in each Y l

i . Thus |Y l
i | =

(
n
i

)
and supp(Y l

i ) =
(
[n]
i

)
. Also Ni is the number of nonnegative integer solutions of

x1 + · · ·+ xi = k − i,

and Ni =
(
k−1
i−1

)
by Lemma 1. Let j := n− i < i and partition Yj similarly. We have

Nj =
(
k−1
j−1

)
, and here we need k − j ≤ (q − 1) − 1. For this inequality we use our

assumption n ≥ 2k − q + 2, in fact,

k − j = k − (n− i) ≤ k − (n− k) ≤ (q − 1)− 1.

Let Bl,l′ be a bipartite graph on Y l
i ∪ Y l′

j such that two vertices are adjacent if they

have empty intersection. Then Bl,l′ is a perfect matching. Let Al
i := A ∩ Y l

i . Then
Al

i ∪ Al′
j is an independent set in Bl,l′ . Thus we have |Al

i| + |Al′
j | ≤

(
n
i

)
for all l, l′.

Summing up this inequality over all l and l′, and dividing both sides by NiNj we get

|Ai|/Ni + |Aj|/Nj ≤
(
n

i

)
. (22)

In the same way we have |Sq(e1, k − 1) ∩ Y l
i |+ |Sq(e1, k − 1) ∩ Y l′

j | =
(
n
i

)
for all l, l′,

and

|Sq(e1, k − 1) ∩ Yi|/Ni + |Sq(e1, k − 1) ∩ Yj|/Nj =

(
n

i

)
. (23)

Since n ≥ 2j we can apply (21) to Aj to get

|Aj| ≤ |Sq(e1, k − 1) ∩ Yj|. (24)

We have Ni ≤ Nj. In fact Ni/Nj =
(
k−1
i−1

)
/
(
k−1
j−1

)
≤ 1 is equivalent to i − 1 ≥

k − j, which follows from our assumption n ≥ k + 1. Thus (22) implies that |Ai| +
|Aj| is maximized when |Aj| is maximized. In this case we have equality in (24).
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Then comparing (22) and (23) we get (21) (under the assumption that |Ai|+ |Aj| is
maximized). Consequently, if n < 2i and j = n− i then we always have

|Ai|+ |Aj| ≤ |Sq(e1, k − 1) ∩ Yi|+ |Sq(e1, k − 1) ∩ Yj|. (25)

Finally let I2 := {i : n < 2i ≤ 2k} and I1 := {i : ⌈ k
q−1

⌉ ≤ i ≤ k} \ I2. Then, by

(21) and (25), we get

|A| =
∑
i∈I1

|Ai|+
∑
i∈I2

(
|Ai|+ |An−i|

)
≤ |Sq(e1, k − 1)|,

which gives us the desired formula for mn,k
1 (1). □

We mention that if q ≥ k + 1 in Theorem 5, then |Sk−1
q (e1)| =

(
n+k−2
k−1

)
and this

case was already solved by Meagher and Purdy [17]. If q ≤ k, then the lower bound
for n in Theorem 5 is not sharp in general. For example, if q = 3, then, apparently
one can replace the lower bound for n with n ≥ 3k/2. Maybe the correct bound is

obtained by comparing the sizes of S3(e1, k − 1) and D(S3(ẽ3, k − 2)) ∩Xn,k
3 .

Conjecture 4 is also true if q = 2. In fact this case is equivalent to the Ahlswede–
Khachatrian version [2] of the Erdős–Ko–Rado [7] theorem as we will see below.

Theorem 7 ([2]). Let k > t ≥ 1 and n ≥ 2k − t. Then

mn,k
2 (t) = max{|AK(n, k, t, i)| : i = 0, 1, . . . , (k − t)/2},

where

AK(n, k, t, i) :=

{
F ∈

(
[n]

k

)
: |F ∩ [t+ 2i]| ≥ t+ i

}
.

Claim 12. Conjecture 4 is true if q = 2. Namely, if k > t ≥ 1 and n ≥ 2k− t, then

mn,k
2 (t) = max{|D(S2(ẽt+2i, k − t− i)) ∩Xn,k

2 | : i = 0, 1, . . . , (k − t)/2}. (26)

Proof. We can identify Xn,k
2 with

(
[n]
k

)
by sending x ∈ Xn,k

2 to supp(x) ∈
(
[n]
k

)
. So it

suffices to show that D(S2(a, d)) ∩ Xn,k
2 can be identified with AK(n, k, t, i), where

a = ẽt+2i and d = k − t− i.
Let c ∈ D(S2(a, d))∩Xn,k

2 . Then there is some b ∈ S2(a, d) with c ∈ D(b)∩Xn,k
2 .

Also, |b| = (t+2i)+(k−t−i) = k+i, |c| = k and |b\c| = i. Since supp(b) ⊃ [t+2i]
it follows | supp(c) ∩ [t+ 2i]| ≥ (t+ 2i)− i = t+ i. Thus supp(c) ∈ AK(n, k, t, i).

Let F ∈ AK(n, k, t, i). Since |F ∩ [t+2i]| ≥ t+ i, or equivalently, |[t+2i] \F | ≤ i,

one can find G ∈
(
[n]
k+i

)
with G ⊃ [t+2i] by adding i vertices to F . Let b, c ∈ Xn

2 be

such that supp(b) = G, supp(c) = F . Then b ∈ S2(a, d) and c ∈ D(b)∩Xn,k
2 . This

means that c ∈ D(S2(a, d)) ∩Xn,k
2 . □

If n ≥ (t + 1)(k − t + 1), then the RHS of (26) is attained by i = 0. In this case
(26) reads

mn,k
2 (t) = |S2(ẽt, k − t)| =

(
n− t

k − t

)
.

This result is due to Frankl [8] and Wilson [18].
Now we will verify that if n is large enough, then the maximum of the RHS in

Conjecture 4 is attained by a = ẽt (and thus |a| = t and d = k − t) as stated below.
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Theorem 8. Let k, t and q be fixed with 0 < t < k. If n ≥ n0(k, t, q) then

mn,k
q (t) = |Sq(ẽt, k − t)|.

Moreover equality is attained only by Sq(ẽt, k − t) up to isomorphism.

We remark that Theorem 8 is an equivalent dual form of Theorem 3 via (2).

Proof of Theorem 8. The proof given here is very similar to a proof of the Erdős–
Ko–Rado theorem for n sufficiently large, cf., [5] p. 48.

Let A ⊂ Xn,k
q be t-intersecting with |A| = mn,k

q (t). Then there are a1, a2 ∈ A such
that

|a1 ∧ a2| = t.

Let b := a1 ∧ a2. We may assume that b = (b1, . . . , bn) with |b| = t and

q − 1 ≥ b1 ≥ b2 ≥ · · · ≥ bn ≥ 0.

First suppose that b ≺ a for all a ∈ A. Then |A| is bounded from above by the
number of nonnegative solutions of an equation

x1 + · · ·+ xn = k, with bi ≤ xi < q for 1 ≤ i ≤ n,

or equivalently,

y1 + · · ·+ yn = k − t, with 0 ≤ yi < q − bi for 1 ≤ i ≤ n. (27)

Claim 13. The number of solutions of (27) is maximized when b1 = · · · = bt = 1,
and it is at most |Sq(ẽt, k − t)|.

Proof. Let b and b′ be weight t vectors with
∑j

i=1 bi ≥
∑j

i=1 b
′
i for all j. Let Y (b)

be the set of nonnegative integer solutions of (27). We prove that |Y (b)| ≤ |Y (b′)|
with equality holding iff b = b′. It suffices to consider the case b′ = b − ei + ej
where i < j, b′i ≥ b′j. Since b′i = bi − 1 and b′j = bj + 1 we have bi ≥ bj + 2. Let

Yl := {(yi, yj) ∈ Xq−bi ×Xq−bj : yi + yj = l}

and

Y ′
l := {(y′i, y′j) ∈ Xq−b′i

×Xq−b′j
: y′i + y′j = l}.

We show that |Yl| = |Y ′
l | in most cases. There are two cases that Yl ̸= Y ′

l , namely, if
l ≥ q − 1− bj then

Yl \ Y ′
l = {(l − (q − 1− bj), q − 1− bj)},

and if l ≥ q − 1− b′i = q − bi then

Y ′
l \ Yl = {(q − 1− b′i, l − (q − 1− b′i))}.

Even in these cases we have |Yl| = |Y ′
l | for l ≥ q − 1 − bj, where we used q − 1 −

bj > q − bi. But if q − bi ≤ l < q − 1 − bj, then |Y ′
l | = |Yl| + 1. This proves

|Y (b)| < |Y (b′)| ≤ Y (ẽt)|. □
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Next suppose that there is an a3 ∈ A such that b ̸≺ a3, that is,

|a3 ∧b| ≤ t− 1. (28)

For l = 0, 1, . . . , t let

Al := {a ∈ A : |a∧b| = t− l}.
Then |A| = |A0| + · · · + |At|. We will prove |A| = O(nk−t−1) by showing |Al| =
O(nk−t−1) for all l. This will complete the proof of the theorem because

|Sq(ẽt, k − t)| ≥ |S2(ẽt, k − t)| =
(
n− t

k − t

)
= Ω(nk−t).

For the case l = 0, let a ∈ A0. Then a ≻ b implies that ai ≥ bi for all 1 ≤ i ≤ n.
Moreover |a∧ a3| ≥ t and (28) yield that there is some j such that aj ≥ bj + 1
(informally, |a ∩ (a3 \ b)| ≥ 1). Let N be the number of nonnegative solutions of
equation

x1 + · · ·+ xn = k − (|b|+ 1) = k − t− 1,

we get from Lemma 1 that N =
(
(n−1)+(k−t−1)

k−t−1

)
= O(nk−t−1). Also, there are at most

|a| = k choices for this j, so we have

|A0| ≤ kN = O(nk−t−1).

Now let l ≥ 1. Fix b′ ≺ b with |b′| = t − l, and we will count the number N ′ of
a ∈ Al such that b′ = a∧b. Clearly,

|a∧b| = t− l. (29)

Since |a∧ a1| ≥ t we need

|(a∧ a1) \ b| ≥ l. (30)

In the same reason we also have

|(a∧ a2) \ b| ≥ l. (31)

So the number of a ∈ Al satisfying (29), (30) and (31), is at most the number of
nonnegative solutions of an equation

x1 + · · ·+ xn = k

with xi ≥ ci for 1 ≤ i ≤ n, where

c1 + · · ·+ cn = (t− l) + l + l = t+ l,

and the number is, by Lemma 1, at most
(
(n−1)+(k−(t+l))

k−(t+l)

)
= O(nk−t−1). There are at

most
(
t
l

)
choices for b′, and at most

(
k−t
l

)
choices for the l positions in a1 for (30),

and the same for (31), thus we get

|Al| ≤
(
t

l

)(
k − t

l

)2(
(n− 1) + (k − (t+ l))

k − (t+ l)

)
= O(nk−t−1).

This completes the proof of the theorem. □
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4.2. Intersecting families with weights for large q. We remark that if q is
large enough, then |Sq(ẽt, k − t)| does not depend on q. More precisely, if k > t and
q ≥ k − t+ 2, then |Sq(ẽt, k − t)| is the number of the solutions of an equation

x1 + · · ·+ xn = k − t,

so it follows from Lemma 1 that

|Sq(ẽt, k − t)| =
(
(n− 1) + (k − t)

k − t

)
.

If, moreover, n ≥ t(k − t) + 2, then direct computation shows that

|Sq(ẽt, k − t)| ≥ |D(Sq(ẽt+2, k − t− 1)) ∩Xn,k
q |.

This suggests that if k > t, q ≥ k − t+ 2, and n ≥ t(k − t) + 2, then

mn,k
q (t) = |Sq(ẽt, k − t)| =

(
n+ k − t− 1

k − t

)
.

Theorem 8 says that this is true if n ≥ n0(k, t, q), and in fact Füredi, Gerbner and
Vizer proved the following much stronger result, which confirms Conjecture 4 for the
case when q ≥ k − t+ 2.

Theorem 9 ([12]). Let k > t ≥ 1, n ≥ 2k − t, and q ≥ k − t+ 2. Then

mn,k
q (t) = mn+k−1,k

2 (t). (32)

We notice that the value of the RHS is given by Theorem 7. We also mention
that (32) is not necessarily true if q < k − t + 2, see the comment after the proof
of Theorem 6. We will discuss some possible extensions of Theorem 9 below by
considering intersecting families with weights.

Let

xn,k
q := |Xn,k

q |.
For B ⊂ 2[n] we define its (k, q)-weight by

W k
q (B) :=

∑
b∈B

W k
q (b),

where

W k
q (b) := #{x ∈ Xn,k

q : supp(x) = b},
or equivalently,

W k
q (b) :=

{
x
|b|,k−|b|
q−1 if |b| ≤ k,

0 otherwise.

Lemma 3 ([12]). Let k > t ≥ 1, n ≥ 2k − t, and q be arbitrary. Then

mn,k
q (t) = max{W k

q (B) : B ⊂ 2[n] is t-intersecting}.

The above lemma is proved in [12] by using a variant of shifting technique called
“down compression,” which requires n ≥ 2k − t. On the other hand, the following
lemma holds for n ≥ k − t+ 1. These two lemmas clearly imply Theorem 9.
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Lemma 4. Let k > t ≥ 1, n ≥ k − t+ 1, and q ≥ k − t+ 2. Then

max{W k
q (B) : B ⊂ 2[n] is t-intersecting} = mn+k−1,k

2 (t). (33)

Proof. If q ≥ k − t+ 2, then for b ⊂ [n] with t ≤ |b| ≤ k it follows

W k
q (b) = x

|b|,k−|b|
q−1 =

(
k − 1

k − |b|

)
.

For B ⊂ 2[n] we construct B̃ ⊂
(
[n+k−1]

k

)
by

B̃ :=

{
b ∪ b′ : b ∈ B, |b| ≤ k, b′ ∈

(
[n+ 1, n+ k − 1]

k − |b|

)}
. (34)

We are only interested in W k
q (B) and so we can neglect any subset in B of size larger

than k. Then we have

W k
q (B) =

∑
b∈B

W k
q (b) =

∑
b∈B

(
k − 1

k − |b|

)
= |B̃|. (35)

Now suppose that B ⊂ 2[n] is t-intersecting. Then B̃ ⊂
(
[n+k−1]

k

)
is t-intersecting,

too. Thus we have

|B̃| ≤ mn+k−1,k
2 (t). (36)

Moreover it follows from n ≥ k − t + 1 that n + k − 1 ≥ 2k − t, and we can apply
Theorem 7 to get

mn+k−1,k
2 (t) = max

i
|AK(n+ k − 1, k, t, i)|. (37)

Therefore, by (35), (36) and (37), we have

W k
q (B) = |B̃| ≤ max

i
|AK(n+ k − 1, k, t, i)|.

On the other hand, if

B = B(n, t, i) := {b ⊂ [n] : |b ∩ [t+ 2i]| ≥ t+ i}, (38)

then B is t-intersecting and

W k
q (B) = |B̃| = #

{
a ∈

(
[n+ k − 1]

k

)
: |a ∩ [t+ 2i]| ≥ t+ i

}
= |AK(n+ k − 1, k, t, i)|. (39)

This gives us that

max
B

W k
q (B) ≥ max

i
|AK(n+ k − 1, k, t, i)|,

which completes the proof. □

We remark that the proof above shows that the LHS of (33) is attained by one of
B(n, t, i), namely, (33) reads

mn+k−1,k
2 (t) = max

i
W k

q (B(n, k, i)). (40)
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Let us define a family in Xn,k
q corresponding to (38). So let

Aq(n, k, t, i) := D(Sq(ẽt+2i, k − t− i)) ∩Xn,k
q

= {x ∈ Xn,k
q : supp(x) ∈ B(n, t, i)}.

Then this family is t-intersecting with

|Aq(n, k, t, i)| = W k
q (B(n, t, i)). (41)

By (40) and (41) we see that (32) in Theorem 9 can be rewritten as

mn,k
q (t) = max{|Aq(n, k, t, i)| : i = 0, 1, . . . , (k − t)/2}, (42)

and we can slightly extend Theorem 9 as follows.

Theorem 6. Let k > t ≥ 1, n ≥ 2k − t, and q ≥ k − t+ 1. Then (42) holds.

Proof. Theorem 9 covers the cases q ≥ k − t+ 2.
Let q = k−t+1. We use Lemma 3. So let B ⊂ 2[n] be t-intersecting withW k

q (B) =

mn,k
q (t). We may assume that B is shifted, that is, if b ∈ B and {i, j} ∩ b = {j} for

some 1 ≤ i < j ≤ n, then (b \ {j}) ∪ {i} ∈ B. (For more details about shifting, see,
e.g., [9]).

If
∩

B = [t], then we have B = B(n, t, 0) and

W k
q (B) = W k

q (B(n, t, 0)) (43)

= #
{
(x1, . . . , xn) ∈ Xn

q : x1 + · · ·+ xn = k − t
}

=

(
n− 1 + k − t

k − t

)
− t,

where the −t in the last term comes from the vectors of type

ẽt + (k − t)ei ∈ Xn,k
k−t+2 \X

n,k
k−t+1

for i = 1, . . . , t.
Now suppose that

∩
B ̸= [t]. Then |b| ≥ t + 1 holds for all b ∈ B. Define B̃ by

(34). Since |b| ≥ t+ 1 it follows that W k
q (b) =

(
k−1
k−|b|

)
and

W k
q (B) = |B̃|. (44)

Since B̃ ⊂
(
[n+k−1]

k

)
is non-trivially t-intersecting, we can apply a result of Ahlswede

and Khachatrian from [1] with (39) to get

|B̃| ≤ max{b, |C|}, (45)

where

b := max{|AK(n+ k − 1, k, t, i)| = W k
q (B(n, t, i)) : i ≥ 1},

and

C :=

{
c ∈

(
[n+ k − 1]

k

)
: [t] ⊂ c, c∩ [t+1, k+1] ̸= ∅

}
∪
{
[k+1]\{i} : 1 ≤ i ≤ t

}
.
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It is also known that b ≤ |C| only if n + k − 1 > (t + 1)(k − t + 1) and k > 2t + 1.
But in this case direct computation shows that

|C| =
(
n+ k − t− 1

k − t

)
−
(
(n+ k − 1)− (k + 1)

k − t

)
+ t

<

(
n+ k − t− 1

k − t

)
− t = W k

q (B(n, t, 0)).

This together with (44) and (45) yields

W k
q (B) ≤ max

i≥0
W k

q (B(n, t, i)). (46)

Consequently using (41), (43) and (46) we get (42). □
As promised after stating Theorem 9 we give an example that does not satisfy

(32). Let k and t be fixed, and let q = k − t+ 1. Suppose that n is large enough so
that the RHS of (42) is attained by Aq(n, k, t, 0). Then as in the proof of Theorem 6
it follows that

mn,k
q (t) = |Aq(n, k, t, 0)| =

(
n− 1 + k − t

k − t

)
− t.

On the other hand, if n + k − 1 ≥ (t + 1)(k − t + 1), then mn+k−1,k
2 (t) =

(
n−1+k−t

k−t

)
.

Thus we have mn+k−1,k
2 (t) = mn,k

q (t)− t provided q = k − t+ 1 and n large enough.
So, (32) fails in this situation.

5. Kruskal–Katona type problem

Recall that

Xq = {0, 1, . . . , q − 1},
Xn

q = {(x1, . . . , xn) : xi ∈ Xq},
Xn,k

q = {x ∈ Xn
q : |x| = k},

where |x| = x1 + · · · + xn for x ∈ Xn
q . Let [n] := {1, 2, . . . , n}. Let [n]k denote the

set of non-decreasing sequences of length k, that is,

[n]k := {(ϵ1, ϵ2, . . . , ϵk) : 1 ≤ ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵk}.
This can be viewed as a family of multisets, and let [n]kq be the subfamily of [n]k

with multiplicity (or repetition) at most q, that is, if ϵ = (ϵ1, ϵ2, . . . , ϵk) ∈ [n]k, then
ϵ ∈ [n]kq iff

max{j : ϵi = ϵi+1 = · · · = ϵi+j for some 1 ≤ i ≤ n} ≤ q.

We identify Xn,k
q and [n]kq in the obvious way, for example,

(3, 0, 1, 2) ∈ X4,6
3 and (1, 1, 1, 3, 4, 4) ∈ [4]63

are corresponding. Clearly [n]kq = [n]kk for all q ≥ k.

We introduce a partial order (colex order) in [n]kq as follows. For distinct two

elements α = (α1, . . . , αk) and β = (β1, . . . , βk) in [n]kq , we define α ≺ β iff there is
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some i such that αi < βi and αj = βj for all i < j ≤ k. Let colex(m, [n]kq) denote the

first m elements in [n]kq with respect to the colex order.

For l < k and A ⊂ Xn,k
q we define the l-th shadow ∆l(A) of A by

∆l(A) := D(A) ∩Xn,l
q .

Conjecture 5. For l < k and A ⊂ Xn,k
q with |A| = m, we have

|∆l(A)| ≥ |∆l(colex(m, [n]kq))|.

This is known to be true when q = 2 by Kruskal [15] and Katona [14], and q ≥ k by
Clements and Lindström [6]. The Kruskal–Katona theorem has played an important
role for solving many intersection problems in 2[n], see, e.g., [11]. The authors believe
that understanding shadows in [n]kq would also be very useful for attacking Problem 1
and other extremal problems in the q-ary cube.
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