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Abstract. Using the linear algebra method Huang and Zhao proved that if n >
2k and F is an intersecting n-vertex k-uniform hypergraph with minimum degree at
least

(
n−2
k−2

)
, then F is the star. In this note we present an elementary, combinatorial

proof of this result for the case n ≥ 3k. We also prove a vector space version of
the Huang–Zhao result along the same line as their proof.

1. Introduction

For a positive integer n let [n] = {1, 2, . . . , n}. By an n-vertex k-uniform family F
we mean F ⊂

(
[n]
k

)
. Let degF(i) := #{F ∈ F : i ∈ F} denote the degree of i ∈ [n] in

F , and let δ(F) := min{degF(i) : i ∈ [n]} denote the minimum degree of F . We say
that F is intersecting if F ∩ F ′ ̸= ∅ for all F, F ′ ∈ F . Define a star centered at i by

Sn
k (i) := {S ∈

(
[n]

k

)
: i ∈ S}.

Then Sn
k (i) is an intersecting family with |Sn

k (i)| =
(
n−1
k−1

)
and δ(Sn

k (i)) =
(
n−2
k−2

)
. The

Erdős–Ko–Rado theorem states that if n ≥ 2k+ 1 and F is an intersecting n-vertex
k-uniform family, then |F| ≤

(
n−1
k−1

)
with equality holding if and only if F = Sn

k (i)
for some i ∈ [n]. Recently Huang and Zhao proved the following.

Theorem 1 ([3]). Let n ≥ 2k + 1 and let F be an intersecting n-vertex k-uniform
family with δ(F) ≥

(
n−2
k−2

)
. Then F = Sn

k (i) for some i ∈ [n].

Their beautiful proof is based on analysis of eigenvalues of the Kneser graph. They
also use the following result from discrete geometry.

Lemma 1 ([3]). Let a, b ∈ R with a > 0. Suppose that u1, . . . , un ∈ Rn−1 satisfy

⟨ui, uj⟩ =

{
a if i = j,

b if i ̸= j,

where ⟨·, ·⟩ denotes the standard inner product. Then for every v ∈ Rn−1 there exists
i such that

⟨v, ui⟩ ≤
−1

n− 1

√
⟨v, v⟩

√
⟨ui, ui⟩.

In this note we present a completely different proof of Theorem 1 for the case
n ≥ 3k, which is elementary, and purely combinatorial. Our proof is based on a result
concerning the size of intersecting families with maximum degree constraint, see
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Theorem 4 in the next section. We also present a vector space version of Theorem 1,
whose proof is along the same lines as in [3]. To state our result we need some
definitions. Let Vn denote an n-dimensional vector space over Fq (the q-element

field). We say that a family of k-dimensional subspaces H ⊂
[
Vn

k

]
is intersecting if

dim(h ∩ h′) ≥ 1 for all h, h′ ∈ H. For a fixed line l ∈
[
Vn

1

]
we define a star centered

at l by

Sn
k [l] := {h ∈

[
Vn

k

]
: l ≤ h},

namely, Sn
k [l] is the family of all k-dimensional subspaces containing l as a subspace.

Theorem 2. Let n ≥ 2k and let H ⊂
[
Vn

k

]
be intersecting. Suppose that every line

in Vn is contained (as a subspace) in at least
[
n−2
k−2

]
members of H, that is,

#{h ∈ H : x ≤ h} ≥
[
n− 2

k − 2

]
(1)

for every x ∈
[
Vn

1

]
. Then H = Sn

k [l] for some l ∈
[
Vn

1

]
.

We invite the readers to find a purely combinatorial proof for all n > 2k in the
case of sets and possibly for vector spaces.

2. Proof of Theorem 1 for n ≥ 3k

In this section we give an elementary proof of the following slightly weaker version
of Theorem 1.

Theorem 3. Let n ≥ 3k and let F be an intersecting n-vertex k-uniform family with
δ(F) ≥

(
n−2
k−2

)
. Then F = Sn

k (i) for some i ∈ [n].

Proof. Suppose that F satisfies all the assumptions in Theorem 3. If F is trivial, that
is,

∩
F∈F F ̸= ∅, then F ⊂ Sn

k (i) for some i ∈ [n]. Since δ(F) ≥
(
n−2
k−2

)
= δ(Sn

k (i)) we
have F = Sn

k (i) as needed.
So suppose that F is non-trivial, that is,

∩
F∈F F = ∅. We will show that F cannot

satisfy some of the assumptions. We note that

∆(F) ≤
(
n− 1

k − 1

)
−

(
n− k − 1

k − 1

)
,

where ∆(F) := max{degF(i) : i ∈ [n]} denotes the maximum degree of F . In fact,
since F is non-trivial, for every i ∈ [n] there is some F ∈ F such that i ̸∈ F . Then

{{i} ∪G : G ∈
(
[n]\({i}∪F )

k−1

)
} ∩ F = ∅ because F is intersecting, and this means that

degF(i) ≤
(
n−1
k−1

)
−
(
n−k−1
k−1

)
. Let us recall the following old result.

Theorem 4 ([1]). Let F ⊂
(
[n]
k

)
be an intersecting family. Suppose that

∆(F) ≤
(
n− 1

k − 1

)
−
(
n− j − 1

k − 1

)
(2)

for some j, 2 ≤ j ≤ k, then it follows that

|F| ≤
(
n− 1

k − 1

)
−

(
n− j − 1

k − 1

)
+

(
n− j − 1

k − j

)
. (3)
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First suppose that (2) holds for j = 2. (This clearly includes the case when (2)
holds for j = 0, 1.) Then, using

(
n−1
k−1

)
=

(
n−3
k−1

)
+ 2

(
n−3
k−2

)
+
(
n−3
k−3

)
, (3) reads

|F| ≤
(
n− 1

k − 1

)
−

(
n− 3

k − 1

)
+

(
n− 3

k − 2

)
= 3

(
n− 3

k − 2

)
+

(
n− 3

k − 3

)
=

(
n− 2

k − 2

)
+ 2

(
n− 3

k − 2

)
< 3

(
n− 2

k − 2

)
, (4)

where the last inequality holds for n > k. On the other hand it follows that

k|F| =
∑
x∈[n]

degF(x) ≥ nδ(F) ≥ n

(
n− 2

k − 2

)
. (5)

By (4) and (5) we get

3k

(
n− 2

k − 2

)
> k|F| ≥ n

(
n− 2

k − 2

)
,

which implies 3k > n, a contradiction.
Next suppose that (2) holds for some j, 3 ≤ j ≤ k. Let j be the smallest value

of j such that (2) holds. (We may assume that j ≥ 3.) Then
(
n−1
k−1

)
−

(
n−j
k−1

)
< ∆(F)

implies |F| −∆(F) <
(
n−j−1
k−2

)
+
(
n−j−1
k−j

)
. Without loss of generality we may assume

that degF(n) = ∆(F) > |F| −
(
n−j−1
k−j

)
−

(
n−j−1
k−2

)
. This yields that

k|F| =
∑
i∈[n]

degF(i) = degF(n) +
∑

i∈[n−1]

degF(i) ≥ degF(n) + (n− 1)δ(F)

> |F| −
(
n− j − 1

k − j

)
−

(
n− j − 1

k − 2

)
+ (n− 1)

(
n− 2

k − 2

)
.

Using (n− 1)
(
n−2
k−2

)
= (k − 1)

(
n−1
k−1

)
and rearranging we get(

n− j − 1

k − j

)
+

(
n− j − 1

k − 2

)
> (k − 1)

((
n− 1

k − 1

)
− |F|

)
.

This together with (3) gives us(
n− j − 1

k − j

)
+

(
n− j − 1

k − 2

)
> (k − 1)

((
n− j − 1

k − 1

)
−
(
n− j − 1

k − j

))
,

that is,

k

(
n− j − 1

k − j

)
> (k − 1)

(
n− j − 1

k − 1

)
−

(
n− j − 1

k − 2

)
≥ (k − 2)

(
n− j − 1

k − 1

)
, (6)

where we need n ≥ 2k + j − 2 in the last inequality (and this follows from our
assumptions n ≥ 3k and k ≥ j). Since j ≥ 3 we have k − 2 ≥ k − j + 1, and we
deduce from (6) that

k

(
n− j − 1

k − j

)
> (k − j + 1)

(
n− j − 1

k − 1

)
.
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Multiplying both sides by (n− j)/(k(k − j + 1)), we finally get(
n− j

k − j + 1

)
>

(
n− j

k

)
,

or equivalently, 2k + 1 > n, which contradicts our assumption. □

3. Proof of Theorem 2

Proof. Let G be the q-Kneser graph defined by V (G) =
[
Vn

k

]
and xy ∈ E(G) iff

x∩ y = {0}. Let A be q−k2 times the adjacency matrix of G. Then it is known (e.g.,
[2]) that A has eigenvalues λs (s = 0, 1, . . . , k) with multiplicity ms :=

[
n
s

]
−

[
n

s−1

]
,

where

λs = (−1)sq(
s
2)−ks

[
n− k − s

k − s

]
.

Let E be the vector space of dimension
[
n
k

]
over R (with coordinates indexed by

k-dimensional subspaces of Vn). Then E has an orthogonal decomposition E =
V0 ⊕ V1 ⊕ · · · ⊕ Vk, where Vs is the eigenspace corresponding to λs.

For s = 0 we have λ0 =
[
n−k
k

]
, m0 = 1, and the corresponding eigenspace V0 is

spanned by the unit length vector v1 := 1/
√[

n
k

]
, where 1 ∈ R[

n
k] denotes the all ones

vector.
For s = 1 we have λ1 = −q−k

[
n−k−1
k−1

]
, m1 =

[
n
1

]
− 1. Let v2, . . . , v[n1]

be an

orthonormal basis of V1.
We remark that Hoffmans’s ratio bound gives a sharp upper bound for the inde-

pendence number of G, namely, if n ≥ 2k, then

α(G) ≤ −λ1

λ0 − λ1

[
n

k

]
=

[
n− 1

k − 1

]
.

We label all lines in Vn, namely, let
[
Vn

1

]
= {l1, . . . , l[n1]}, and let gi be the char-

acteristic vector of the family of k-dimensional vector space (in Vn) containing li, in
other words, gi is corresponding to the star Sn

k [li]. Then gi is contained in V0 ⊕ V1

and one can write

gi = αi1v1 + αi2v2 + · · ·+ αi[n1]
v[n1]

for i = 1, 2, . . . ,
[
n
1

]
. This yields that

αi1 = ⟨gi, v1⟩ =
[
n− 1

k − 1

]/√[
n

k

]
. (7)

We extend v1, . . . , v[n1]
to get an orthonormal basis v1, . . . , v[nk]

of E, where v[ n
s−1]+1, . . . , v[ns]

are the eigenvectors corresponding to λs. Let gH be the characteristic vector of the
family H, and we write

gH =

[nk]∑
j=1

fjvj.
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Let e := |H| denote the number of edges in H. Then we have

f1 = ⟨gH , v1⟩ = e/
√[

n
k

]
, (8)

e = ⟨gH , gH⟩ =
[nk]∑
j=1

f 2
j .

By the assumption (1) it follows that e
[
k
1

]
≥

[
n
1

][
n−2
k−2

]
, or equivalently,

e ≥ qn − 1

qk − 1

[
n− 2

k − 2

]
=: e∗.

Let F := f 2
2 + · · ·+ f 2

[n1]
. We will show the following two inequalities.

Claim 1. We have that

F ≥ qn − q

(q − 1)
[
n
k

] e (e− e∗) , (9)

with equality holding only if e− e2/
[
n
k

]
− F = 0, and also that

F ≤ (qk − 1)(qn − q)2

(q − 1)2(qn − qk)
[
n
k

] (e− e∗)
2 . (10)

By assuming the claim we can easily finish the proof of Theorem 2 as follows. By
(9) and (10) we have either

e− e∗ = 0 (11)

or

e ≤ (e− e∗)
(qk − 1)(qn − q)

(q − 1)(qn − qk)
. (12)

In the case of (11) it follows from (9) and (10) that F = 0. Moreover equality
holds in (9), and e − e2/

[
n
k

]
− F = 0, that is, e =

[
n
k

]
. But (11) implies that

e = e∗ = qk−q
qn−q

[
n
k

]
<

[
n
k

]
, a contradiction. So only (12) can happen. In this case,

after some computation, (12) yields e ≥
[
n−1
k−1

]
. On the other hand it is known, e.g.,

[2], that if n ≥ 2k, then the maximum size of intersecting families in
[
Vn

k

]
is

[
n−1
k−1

]
.

Moreover if n ≥ 2k + 1 then the star Sn
k [l] centered at some l ∈

[
Vn

1

]
is the only

optimal configuration. If n = 2k, then there are exactly two non-isomorphic optimal
configurations; one is the star and the other is

[
Y
k

]
for some Y ∈

[
Vn

2k−1

]
, see [4, 5, 6].

But the latter does not satisfy the assumption (1). Consequently the star is the only
family that satisfies all the assumptions of Theorem 2.
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Thus all we need to do is to prove Claim 1. Since H is intersecting, it follows that
⟨gH , AgH⟩ = 0. By expanding the LHS we get

0 = ⟨
[nk]∑
j=1

fjvj,
k∑

s=0

λs

[ns]∑
j=[ n

s−1]+1

fjvj⟩

=
k∑

s=0

λs

[ns]∑
j=[ n

s−1]+1

f 2
j

=

[
n− k

k

]
f 2
1 − q−k

[
n− k − 1

k − 1

]
F +

k∑
s=2

λs

[ns]∑
j=[ n

s−1]+1

f 2
j .

Using (8) we have that

0 =

[
n− k

k

]
e2/

[
n

k

]
− qk − 1

qn − qk

[
n− k

k

]
F +

k∑
s=2

λs

[ns]∑
j=[ n

s−1]+1

f 2
j . (13)

To estimate the last term of (13) we first note that

k∑
s=2

[ns]∑
j=[ n

s−1]+1

f 2
j =

[nk]∑
j=1

f 2
j − f 2

1 − F = e− e2/
[
n
k

]
− F. (14)

We also have that if s ≥ 2 then

λs ≥ −q3−3k

[
n− k − 3

k − 3

]
> − qk − q

qn − qk

[
n− k

k

]
.

This together with (14) yields

k∑
s=2

λs

[ns]∑
j=[ n

s−1]+1

f 2
j ≥ − qk − q

qn − qk

[
n− k

k

] (
e− e2/

[
n
k

]
− F

)
, (15)

where equality holds only when e − e2/
[
n
k

]
− F = 0. By (13) and (15) with some

computation we get (9) with equality holding only if e− e2/
[
n
k

]
− F = 0.

Our aim is to show that gH = gi for some i (and e =
[
n−1
k−1

]
). If this happens, then

the LHS of (14) vanishes, and we get F = e− e2/
[
n
k

]
= qn−qk

qn−1

[
n−1
k−1

]
=: F∗. This value

is useful to check the sharpness of (9) and (10). In fact if e =
[
n−1
k−1

]
, then the RHS

of both (9) and (10) coincides with F∗.
Next we prove (10). For i = 1, 2, . . . ,

[
n
1

]
, let

ui := (αi2, αi3, . . . , αi[n1]
) ∈ R[

n
1]−1.
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We will verify that these vectors ui satisfy the assumptions in Lemma 1, namely, we
need to check that ⟨ui, ui⟩ is independent of i, and ⟨ui, uj⟩ (i ̸= j) is independent of
the choice of i, j.

We have that

⟨ui, ui⟩ = α2
i2 + · · ·+ α2

i[n1]

=

[n1]∑
j=1

α2
ij − α2

i1

= ⟨gi, gi⟩ − ⟨gi, v1⟩2

=

[
n− 1

k − 1

]
−

[
n− 1

k − 1

]2/[n
k

]
=

(qk − 1)(qn − qk)

(qn − 1)2

[
n

k

]
.

Let i ̸= j. Noting that

⟨gi, gj⟩ = ⟨
∑

αilvl,
∑

αjlvl⟩ =
∑

αilαjl = αi1αj1 + ⟨ui, uj⟩

we have that

⟨ui, uj⟩ = ⟨gi, gj⟩ − αi1αj1 = ⟨gi, gj⟩ − ⟨gi, v1⟩⟨gj, v1⟩ =
[
n− 2

k − 2

]
−
[
n− 1

k − 1

]2/[n
k

]
.

Thus we can apply Lemma 1 to v := (f2, . . . , f[n1]
), and there exists an i such that

⟨v, ui⟩ ≤ − 1[
n
1

]
− 1

√
⟨ui, ui⟩

√
⟨v, v⟩.

Recall that ⟨v, v⟩ =
∑[n1]

j=2 f
2
j = F . Then we can rewrite the inequality as

[n1]∑
j=2

fjαij ≤ − q − 1

qn − q

√
(qk − 1)(qn − qk)

(qn − 1)2

[
n

k

]√
F.

Note that the RHS is negative or zero. (So is the LHS.) Thus we obtain

F ≤

 [n1]∑
j=2

fjαij


2 /((q − 1)2(qk − 1)(qn − qk)

(qn − q)2(qn − 1)2

[
n

k

])
. (16)

To estimate
∑

fjαij we first use the assumption (1) on the minimum degree. Then
we have ⟨gH , gi⟩ ≥

[
n−2
k−2

]
. By expanding ⟨gH , gi⟩ = ⟨

∑
fjvj,

∑
αijvj⟩ we get

[nk]∑
j=1

fjαij ≥
[
n− 2

k − 2

]
.
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Next we use (7) and (8) to get f1αi1 = e
[
n−1
k−1

]
/
[
n
k

]
= qk−1

qn−1
e. Consequently we have

[n1]∑
j=2

fjαij =

[n1]∑
j=1

fjαij − f1αi1 ≥
[
n− 2

k − 2

]
− qk − 1

qn − 1
e = −qk − 1

qn − 1
(e− e∗).

Substituting this into (16) we finally have

F ≤
(
qk − 1

qn − 1
(e− e∗)

)2 /((q − 1)2(qk − 1)(qn − qk)

(qn − q)2(qn − 1)2

[
n

k

])
=

(qk − 1)(qn − q)2

(q − 1)2(qn − qk)
[
n
k

] (e− e∗)
2 ,

which proves (10). This completes the proof of Claim 1 and Theorem 2. □
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[2] P. Frankl, R. M. Wilson. The Erdős–Ko–Rado theorem for vector spaces. J. Combin. Theory
(A), 43 (1986) 228–236.

[3] H. Huang, Y. Zhao. Degree versions of the Erdős-Ko-Rado Theorem and Erdős hypergraph
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