A proof of the Hilton-Milner Theorem without computation

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Let $n \geq 2 k \geq 4$ be integers and \mathcal{F} a family of k-subsets of $\{1,2, \ldots, n\}$. It is called intersecting if $F \cap F^{\prime} \neq \emptyset$ for all $F, F^{\prime} \in \mathcal{F}$. It is called non-trivial if $\bigcap_{F \in \mathcal{F}} F=\emptyset$. Strengthening the famous Erdős-Ko-Rado Theorem Hilton and Milner proved that $|\mathcal{F}| \leq\binom{ n-1}{k-1}-$ $\binom{n-k-1}{k-1}+1$ if \mathcal{F} is non-trivial and intersecting. We provide a proof by injection of this result.

1 Introduction

Let $[n]=\{1, \ldots, n\}$ be the standard n-element set and $2^{[n]}$ its power set. Subsets $\mathcal{F} \subset 2^{[n]}$ are called families. For $i \in[n]$ we use the standard notations $\mathcal{F}(i)=\{F \backslash\{i\}: i \in F \in \mathcal{F}\}$ and $\mathcal{F}(\bar{i})=\{F: i \notin F \in \mathcal{F}\}$. Note that

$$
|\mathcal{F}|=|\mathcal{F}(i)|+|\mathcal{F}(\bar{i})|
$$

For a positive integer t the family \mathcal{F} is said to be t-intersecting if $\left|F \cap F^{\prime}\right| \geq$ t for all $F, F^{\prime} \in \mathcal{F}$. For $t=1$ we use the term intersecting.

Let us recall the definition of the $S_{i, j}$ shift, an important operation on families, discovered by Erdős, Ko and Rado [EKR].

Definition 1.1. For $1 \leq i<j \leq n$ and a family $\mathcal{F} \subset 2^{[n]}$ one defines $S_{i, j}(\mathcal{F})=\left\{S_{i, j}(F): F \in \mathcal{F}\right\}$ where

$$
S_{i, j}(F)= \begin{cases}F^{\prime} \stackrel{\text { def }}{=}(F \backslash\{j\}) \cup\{i\} & \text { if } j \in F, i \notin F \text { and } F^{\prime} \notin \mathcal{F}, \\ F & \text { otherwise }\end{cases}
$$

From the definition $\left|S_{i, j}(\mathcal{F})\right|=|\mathcal{F}|$ and $\left|S_{i, j}(F)\right|=|F|$ should be obvious. More importantly, if \mathcal{F} is t-intersecting then $S_{i, j}(\mathcal{F})$ is t-intersecting as well.

If $S_{i, j}(\mathcal{F})=\mathcal{F}$ for all $1 \leq i<j \leq n$ then \mathcal{F} is called shifted.
Let us use the notation $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ to denote the set $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ where $a_{1}<a_{2}<\cdots<a_{r}$. For two subsets $F=\left(a_{1}, \ldots, a_{r}\right)$ and $G=$ $\left(b_{1}, \ldots, b_{r}\right)$ we say that F is smaller than G if $a_{i} \leq b_{i}$ for all $1 \leq i \leq r$. We denote this by $F \prec G$.

It is not hard to see that \mathcal{F} is shifted iff for all pairs of F, G with $F \prec G$, $G \in \mathcal{F}$ implies $F \in \mathcal{F}$. For the proof of this and many other useful properties of shifting cf. [F87].

We shall need the following simple result.
Proposition 1.2 ([F78]). $\mathcal{F} \subset 2^{[n]}$ be a shifted t-intersecting family. Then (i) and (ii) hold.
(i) For every $F \in \mathcal{F}$ there exists an integer $\ell \geq t$ such that

$$
|F \cap[2 \ell-t]| \geq \ell
$$

(ii) For all $F, G \in \mathcal{F}$ there exists an integer $h \geq t$ such that

$$
\begin{equation*}
|F \cap[h]|+|G \cap[h]| \geq h+t . \tag{1.1}
\end{equation*}
$$

Note that (1.1) implies $|F \cap G \cap[h]| \geq t$.
For $F \in \mathcal{F}$ define $\ell(F)=\left\{\max \ell, t \leq \ell \leq \frac{n}{2}:|F \cap[2 \ell]| \geq \ell\right\}$. Note that if $2|F| \leq n$ then the maximality of $\ell(F)$ implies

$$
\begin{equation*}
|F \cap[2 \ell(F)]|=\ell(F) \tag{1.2}
\end{equation*}
$$

Let $k \geq s \geq 2$ be integers. Let $\binom{[n]}{k}$ denote the collection of all k-subsets of $[n]$.

Example 1.3. Define $\mathcal{E}(n, k, s)=\left\{E \in\binom{[n]}{k}: 1 \in E, E \cap[2, s+1] \neq \emptyset\right\} \cup$ $\left\{F \subset\binom{[2 n]}{k}:[2, s+1] \subset F\right\}$.

Note that $\mathcal{E}(n, k, s)$ is intersecting, $E \cap[2, s+1] \neq \emptyset$ for all $E \in \mathcal{E}(n, k, s)$ and

$$
|\mathcal{E}(n, k, s)|=\binom{n-1}{k-1}-\binom{n-s-1}{k-1}+\binom{n-s-1}{k-s}
$$

Theorem 1.4. Let $n \geq 2 k \geq 2 s \geq 4$. Suppose that $\mathcal{F} \subset\binom{[n]}{k}$ is a shifted intersecting family satisfying $F \cap[2, s+1] \neq \emptyset$ for all $F \in \mathcal{F}$. Then

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-s-1}{k-1}+\binom{n-s-1}{k-s} \tag{1.3}
\end{equation*}
$$

This result is somewhat technical but its proof is rather special. We are going to prove it through an explicit injection from \mathcal{F} into $\mathcal{E}(n, k, s)$.

For sets A, B let $A \triangle B$ denote their symmetric difference. Let us define the $\operatorname{map} \alpha: \mathcal{F} \rightarrow \mathcal{E}(n, k, s)$ by

$$
\alpha(F)= \begin{cases}F & \text { if } 1 \in F \text { or if }[2, s+1] \subset F, \\ F \triangle[2 \ell(F)] & \text { otherwise } .\end{cases}
$$

To prove (1.3) it is sufficient to prove the following.
Proposition 1.5. The map α is an injection into $\mathcal{E}(n, k, s)$.
Let us recall two important results concerning intersecting families of k-sets.
Erdős-Ko-Rado Theorem ([EKR]). Suppose that $n \geq 2 k>0, \mathcal{F} \subset\binom{[n]}{k}$ is an intersecting family. Then

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-1}{k-1} \tag{1.4}
\end{equation*}
$$

Taking all k-sets containing a fixed element shows that (1.4) is best possible.

An intersecting family is called non-trivial if there is no element common to all its members. For $k=1$ there is no non-trivial k-intersecting family. For $k=2$ the only such family is the triangle: $\binom{[3]}{2}$.
Hilton-Milner Theorem ([HM]). Suppose that $n \geq 2 k \geq 4$ and $\mathcal{F} \subset\binom{[n]}{k}$ is a non-trivial intersecting family. Then

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1 \tag{1.5}
\end{equation*}
$$

Recently Hurlbert and Kamat [HK] gave an injective proof for (1.4). We extend their work by providing an injective proof for (1.5). For this we need the following proposition.

Proposition 1.6 ([F87]). Suppose that $n \geq 2 k \geq 4, \mathcal{F} \subset\binom{[n]}{k}$ is a nontrivial intersecting family of maximal size. Then there exists a non-trivial intersecting family $\widetilde{\mathcal{F}} \subset\binom{[n]}{k}$ such that $|\widetilde{\mathcal{F}}|=|\mathcal{F}|$ and $\widetilde{\mathcal{F}}$ is shifted.

Once one has Proposition 1.6, to establish (1.5) is easy. One only needs to apply the case $s=k$ of Theorem 1.4 to the family $\widetilde{\mathcal{F}}$. Indeed, since $\widetilde{\mathcal{F}}$ is non-trivial and shifted, $[2, k+1] \in \widetilde{\mathcal{F}}$ and being intersecting $F \cap[2, k+1] \neq \emptyset$ holds for all $F \in \widetilde{\mathcal{F}}$.

Since the proof of Proposition 1.6 is quite short and somewhat hidden in [F87], we reproduce it in Section 2.

Let us mention that there are several other, known proofs of the HiltonMilner Theorem, cf. [FF], [FT], [M] or [KZ].

2 The proof of Propositions 1.5 and 1.6

We divide the proof into two lemmas. The first shows that for $F \in \mathcal{F} \backslash$ $\mathcal{E}(n, k, s)$ the image $\alpha(F)$ is in $\mathcal{E}(n, k, s) \backslash \mathcal{F}$.

The second shows that α is an injection.
Lemma 2.1. Suppose that $F \in \mathcal{F}(\overline{1})$ and $[2, s+1] \not \subset F$. Then (i), (ii) and (iii) hold.
(i) $1 \in \alpha(F)$;
(ii) $\alpha(F) \notin \mathcal{F}$;
(iii) $\alpha(F) \cap[2, s+1] \neq \emptyset$.

Proof. Recall that $\alpha(F)=F \triangle[2 \ell(F)]$. As $1 \notin F$ implies $1 \in \alpha(F)$, (i) is true.
(ii) Suppose for contradiction that $\alpha(F) \in \mathcal{F}$. Apply Proposition 1.2 to F and $\alpha(F)$. By (1.2), $F \cap[2 \ell(F)]$ and $\alpha(F) \cap[2 \ell(F)]$ are complementary ℓ-element subsets of $[2 \ell(F)]$. Consequently $h>2 \ell(F)$.

However, for $h \geq 2 \ell,|F \cap[h]|=|\alpha(F) \cap[h]|$. Thus $2|F \cap[h]| \geq h+1$ implies

$$
\begin{equation*}
|F \cap[h]| \geq(h+1) / 2 \tag{2.1}
\end{equation*}
$$

Thus for $h+1$ as well

$$
|F \cap[h+1]| \geq(h+1) / 2
$$

and we get a contradiction with the maximality of $\ell(F)$.
(iii) Define $i(F)=\min \{i: 2 \leq i \leq n, i \notin F\}$. As $\ell(F) \geq 2$, (1.2) implies $i(F) \leq 2 \ell(F)$. Also, $[2, s+1] \not \subset F$ implies $i(F) \leq s+1$. Consequently $i(F) \in$ $[2 \ell(F)]$ and $i(F) \in[2, s+1]$ hold. Therefore $i(F) \in \alpha(F) \cap[2, s+1]$.

Lemma 2.2. For distinct $F, F^{\prime} \in \mathcal{F} \backslash \mathcal{E}(n, k, s) \quad \alpha(F) \neq \alpha\left(F^{\prime}\right)$ holds.
Proof. Since $F, F^{\prime} \notin \mathcal{E}(n, k, s), \alpha(F)=F \triangle[2 \ell(F)]$ and $\alpha\left(F^{\prime}\right)=F^{\prime} \triangle\left[2 \ell\left(F^{\prime}\right)\right]$. If $\ell(F)=\ell\left(F^{\prime}\right)$ then $\alpha(F) \neq \alpha\left(F^{\prime}\right)$ is evident from $F \neq F^{\prime}$.

By symmetry suppose $\ell(F)<\ell\left(F^{\prime}\right)$. The maximality of $\ell(F)$ implies $\left|F \cap\left[2 \ell^{\prime}(F)\right]\right|<\ell^{\prime}(F)$. Using $|F \cap[2 \ell(F)]|=\ell(F)=|\alpha(F) \cap[2 \ell(F)]|$, $\left|\alpha(F) \cap 2 \ell^{\prime}(F)\right|<\ell^{\prime}(F)=\left|\alpha\left(F^{\prime}\right) \cap\left[2 \ell\left(F^{\prime}\right)\right]\right|$ follows. This proves $\alpha(F) \neq$ $\alpha\left(F^{\prime}\right)$.

Since $\alpha(F)=F$ for $F \in \mathcal{F} \cap \mathcal{E}(n, k, s)$, Lemmas 2.1 and 2.2 prove that α is an injection into $\mathcal{E}(n, k, s)$.

The proof of Proposition 1.6. Starting with a non-trivial intersecting family $\mathcal{F} \subset\binom{[n]}{k}$ of maximal size we can keep on applying the $S_{i j}$ shift for various pairs until we run into trouble. The possible trouble is that $S_{i j}(\mathcal{F})$ ceases to be non-trivial, i.e., all its members contain the element i. Then $\{i, j\} \cap F \neq \emptyset$ must hold for all $F \in \mathcal{F}$. By symmetry let $i=1, j=2$.

The maximality of $|\mathcal{F}|$ implies that all k-sets G with $\{1,2\} \subset G \subset[n]$ are in \mathcal{F}. Therefore continuing with the $S_{a, b}$ shift for $3 \leq a<b \leq n$ will never produce a trivial intersecting family. Eventually we obtain a non-trivial intersecting family $\mathcal{H},|\mathcal{H}|=|\mathcal{F}|$ such that $S_{a, b}(\mathcal{H})=\mathcal{H}$ for all $3 \leq a<b \leq n$.

Consequently, both $\{1,3,4, \ldots, k+1\}$ and $\{2,3,4, \ldots, k+1\}$ are in \mathcal{H}. Since all $G \in\binom{[n]}{k}$ with $\{1,2\} \subset G \subset[n]$ are unchanged under the shift $S_{a, b}$ for $3 \leq a<b \leq n$, we infer that $\binom{[k+1]}{k} \subset \mathcal{H}$.

Noting that $\binom{[k+1]}{k}$ is not affected by $S_{i, j}$ for $1 \leq i<j \leq n$, we can continue shifting and eventually obtain a shifted, non-trivial intersecting family of the same size.

3 Concluding remarks

For a family $\mathcal{F} \subset 2^{[n]}$ let $\triangle(\mathcal{F})$ be its maximum degree, that is, $\max _{i}|\mathcal{F}(i)|$. Then $\varrho(\mathcal{F})=|\mathcal{F}|-\triangle(\mathcal{F})$ is called the diversity of \mathcal{F}. With this terminology,
for intersecting families $\mathcal{F}, \mathcal{F} \subset\binom{[n]}{k}, n \geq 2 k$, the Hilton-Milner Theorem shows that $\varrho(\mathcal{F}) \geq 1$ implies $|\mathcal{F}| \leq|\mathcal{E}(n, k, k)|=\binom{n-1}{k-1}-\binom{n-k-1}{k-1}+1$.

In [F87a] the author proved that $\varrho(\mathcal{F}) \geq\binom{ n-s-1}{k-s}(3 \leq s \leq k)$ implies $|\mathcal{F}| \leq|\mathcal{E}(n, k, s)|$. Kupavskii and Zakharov [KZ] gave a new proof of this result. It would be desirable to have a proof by injection. Let us note that for $\mathcal{F} \subset \mathcal{G}$ necessarily $\varrho(\mathcal{F}) \leq \varrho(\mathcal{G})$ holds.

In the case of Theorem 1.4, we may replace \mathcal{F} by another family $\mathcal{G}, \mathcal{F} \subset$ $\mathcal{G} \subset\binom{[n]}{k}$ where \mathcal{G} is shifted, intersecting and all $G \in\binom{[n]}{k}$ with $[2, s+1] \subset G$ are members of \mathcal{G}. For such a special case Theorem 1.4 provides an injective proof. However the general case seems to be harder.

The proofs in [F87a] and [KZ] rely heavily on the Kruskal-Katona Theorem (cf. $[\mathrm{Kr}],[\mathrm{Ka}]$). Therefore we feel that it would be desirable to have a proof by injection for this important result as well.

References

[EKR] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Second Series 12 (1961), 313-320.
[F78] P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365-375, Colloq. Math. Soc. Jnos Bolyai 18, North-Holland, Amsterdam-New York, 1978.
[F87] P. Frankl, The shifting technique in extremal set theory, Surveys in combinatorics 1987, pp. 81-110, London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press, Cambridge, 1987.
[F87a] P. Frankl, Erdős-Ko-Rado theorem with conditions on the maximal degree, J. Comb. Theory, Ser. A 46 (2) (1987), 252-263.
[FF] P. Frankl, Z. Füredi, Non-trivial intersecting families, J. Comb. Theory, Ser A 41 (1986), 150-153.
[FT] P. Frankl, N. Tokushige, Some best possible inequalities concerning cross-intersecting families, J. Comb. Theory, Ser. A 61 (1) (1992), 87-97.
[HM] A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18 (1967), 369-384.
[HK] G. Hurlbert, V. Kamat, A new injective proof of the Erdős-Ko-Rado theorem, submitted.
[Ka] G. O. H. Katona, A theorem on finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, pp. 187-207, Budapest, 1968.
[Kr] J. B. Kruskal, The number of simplices in a complex, in: Math. Optimization Techniques, pp. 251-278, California Press, Berkeley, 1963.
[KZ] A. Kupavskii, D. Zakharov, Regular bipartite graphs and intersecting families, to appear (in Russian).
[M] M. Mörs, A generalization of a theorem of Kruskal, Graphs and Comb. 1 (1985), 167-183.

