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Abstract

Let n ≥ 2k ≥ 4 be integers and F a family of k-subsets of
{1, 2, . . . , n}. It is called intersecting if F ∩F ′ 6= ∅ for all F, F ′ ∈ F . It
is called non-trivial if

⋂
F∈F

F = ∅. Strengthening the famous Erdős–

Ko–Rado Theorem Hilton and Milner proved that |F| ≤
(
n−1
k−1
)
−(

n−k−1
k−1

)
+ 1 if F is non-trivial and intersecting. We provide a proof

by injection of this result.

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set and 2[n] its power set.
Subsets F ⊂ 2[n] are called families. For i ∈ [n] we use the standard notations
F(i) = {F \ {i} : i ∈ F ∈ F} and F(i) = {F : i /∈ F ∈ F}. Note that

|F| = |F(i)|+ |F(i)|.

For a positive integer t the family F is said to be t-intersecting if |F∩F ′| ≥
t for all F, F ′ ∈ F . For t = 1 we use the term intersecting.

Let us recall the definition of the Si,j shift, an important operation on
families, discovered by Erdős, Ko and Rado [EKR].

Definition 1.1. For 1 ≤ i < j ≤ n and a family F ⊂ 2[n] one defines
Si,j(F) =

{
Si,j(F ) : F ∈ F

}
where

Si,j(F ) =

{
F ′

def
= (F \ {j}) ∪ {i} if j ∈ F, i /∈ F and F ′ /∈ F ,

F otherwise.
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From the definition
∣∣Si,j(F)

∣∣ = |F| and
∣∣Si,j(F )

∣∣ = |F | should be obvious.
More importantly, if F is t-intersecting then Si,j(F) is t-intersecting as well.

If Si,j(F) = F for all 1 ≤ i < j ≤ n then F is called shifted.
Let us use the notation (a1, a2, . . . , ar) to denote the set {a1, a2, . . . , ar}

where a1 < a2 < · · · < ar. For two subsets F = (a1, . . . , ar) and G =
(b1, . . . , br) we say that F is smaller than G if ai ≤ bi for all 1 ≤ i ≤ r. We
denote this by F ≺ G.

It is not hard to see that F is shifted iff for all pairs of F,G with F ≺ G,
G ∈ F implies F ∈ F . For the proof of this and many other useful properties
of shifting cf. [F87].

We shall need the following simple result.

Proposition 1.2 ([F78]). F ⊂ 2[n] be a shifted t-intersecting family. Then
(i) and (ii) hold.

(i) For every F ∈ F there exists an integer ` ≥ t such that

|F ∩ [2`− t]| ≥ `.

(ii) For all F,G ∈ F there exists an integer h ≥ t such that

(1.1) |F ∩ [h]|+ |G ∩ [h]| ≥ h+ t.

Note that (1.1) implies |F ∩G ∩ [h]| ≥ t.

For F ∈ F define `(F ) =
{

max `, t ≤ ` ≤ n
2

: |F ∩ [2`]| ≥ `
}

. Note that
if 2|F | ≤ n then the maximality of `(F ) implies

(1.2) |F ∩ [2`(F )]| = `(F ).

Let k ≥ s ≥ 2 be integers. Let
(
[n]
k

)
denote the collection of all k-subsets

of [n].

Example 1.3. Define E(n, k, s) =
{
E ∈

(
[n]
k

)
: 1 ∈ E,E ∩ [2, s+ 1] 6= ∅

}
∪{

F ⊂
(
[2n]
k

)
: [2, s+ 1] ⊂ F

}
.

Note that E(n, k, s) is intersecting, E ∩ [2, s+ 1] 6= ∅ for all E ∈ E(n, k, s)
and

|E(n, k, s)| =
(
n− 1

k − 1

)
−
(
n− s− 1

k − 1

)
+

(
n− s− 1

k − s

)
.
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Theorem 1.4. Let n ≥ 2k ≥ 2s ≥ 4. Suppose that F ⊂
(
[n]
k

)
is a shifted

intersecting family satisfying F ∩ [2, s+ 1] 6= ∅ for all F ∈ F . Then

(1.3) |F| ≤
(
n− 1

k − 1

)
−
(
n− s− 1

k − 1

)
+

(
n− s− 1

k − s

)
.

This result is somewhat technical but its proof is rather special. We are
going to prove it through an explicit injection from F into E(n, k, s).

For sets A,B let A4B denote their symmetric difference. Let us define
the map α : F → E(n, k, s) by

α(F ) =

{
F if 1 ∈ F or if [2, s+ 1] ⊂ F,

F 4 [2`(F )] otherwise.

To prove (1.3) it is sufficient to prove the following.

Proposition 1.5. The map α is an injection into E(n, k, s).

Let us recall two important results concerning intersecting families of
k-sets.

Erdős–Ko–Rado Theorem ([EKR]). Suppose that n ≥ 2k > 0, F ⊂
(
[n]
k

)
is an intersecting family. Then

(1.4) |F| ≤
(
n− 1

k − 1

)
.

Taking all k-sets containing a fixed element shows that (1.4) is best pos-
sible.

An intersecting family is called non-trivial if there is no element common
to all its members. For k = 1 there is no non-trivial k-intersecting family.
For k = 2 the only such family is the triangle:

(
[3]
2

)
.

Hilton–Milner Theorem ([HM]). Suppose that n ≥ 2k ≥ 4 and F ⊂
(
[n]
k

)
is a non-trivial intersecting family. Then

(1.5) |F| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Recently Hurlbert and Kamat [HK] gave an injective proof for (1.4). We
extend their work by providing an injective proof for (1.5). For this we need
the following proposition.
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Proposition 1.6 ([F87]). Suppose that n ≥ 2k ≥ 4, F ⊂
(
[n]
k

)
is a non-

trivial intersecting family of maximal size. Then there exists a non-trivial
intersecting family F̃ ⊂

(
[n]
k

)
such that |F̃ | = |F| and F̃ is shifted.

Once one has Proposition 1.6, to establish (1.5) is easy. One only needs

to apply the case s = k of Theorem 1.4 to the family F̃ . Indeed, since F̃ is
non-trivial and shifted, [2, k+1] ∈ F̃ and being intersecting F ∩ [2, k+1] 6= ∅
holds for all F ∈ F̃ .

Since the proof of Proposition 1.6 is quite short and somewhat hidden in
[F87], we reproduce it in Section 2.

Let us mention that there are several other, known proofs of the Hilton–
Milner Theorem, cf. [FF], [FT], [M] or [KZ].

2 The proof of Propositions 1.5 and 1.6

We divide the proof into two lemmas. The first shows that for F ∈ F \
E(n, k, s) the image α(F ) is in E(n, k, s) \ F .

The second shows that α is an injection.

Lemma 2.1. Suppose that F ∈ F(1) and [2, s + 1] 6⊂ F . Then (i), (ii) and
(iii) hold.

(i) 1 ∈ α(F );
(ii) α(F ) /∈ F ;

(iii) α(F ) ∩ [2, s+ 1] 6= ∅.

Proof. Recall that α(F ) = F 4 [2`(F )]. As 1 /∈ F implies 1 ∈ α(F ), (i) is
true.

(ii) Suppose for contradiction that α(F ) ∈ F . Apply Proposition 1.2 to
F and α(F ). By (1.2), F ∩ [2`(F )] and α(F ) ∩ [2`(F )] are complementary
`-element subsets of [2`(F )]. Consequently h > 2`(F ).

However, for h ≥ 2`, |F ∩ [h]| = |α(F ) ∩ [h]|. Thus 2|F ∩ [h]| ≥ h + 1
implies

(2.1) |F ∩ [h]| ≥ (h+ 1)/2.

Thus for h+ 1 as well

|F ∩ [h+ 1]| ≥ (h+ 1)/2
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and we get a contradiction with the maximality of `(F ).
(iii) Define i(F ) = min{i : 2 ≤ i ≤ n, i /∈ F}. As `(F ) ≥ 2, (1.2) implies

i(F ) ≤ 2`(F ). Also, [2, s+1] 6⊂ F implies i(F ) ≤ s+1. Consequently i(F ) ∈
[2`(F )] and i(F ) ∈ [2, s+ 1] hold. Therefore i(F ) ∈ α(F ) ∩ [2, s+ 1].

Lemma 2.2. For distinct F, F ′ ∈ F \ E(n, k, s) α(F ) 6= α(F ′) holds.

Proof. Since F, F ′ /∈ E(n, k, s), α(F ) = F4[2`(F )] and α(F ′) = F ′4[2`(F ′)].
If `(F ) = `(F ′) then α(F ) 6= α(F ′) is evident from F 6= F ′.

By symmetry suppose `(F ) < `(F ′). The maximality of `(F ) implies
|F ∩ [2`′(F )]| < `′(F ). Using |F ∩ [2`(F )]| = `(F ) = |α(F ) ∩ [2`(F )]|,
|α(F ) ∩ 2`′(F )| < `′(F ) = |α(F ′) ∩ [2`(F ′)]| follows. This proves α(F ) 6=
α(F ′).

Since α(F ) = F for F ∈ F ∩E(n, k, s), Lemmas 2.1 and 2.2 prove that α
is an injection into E(n, k, s). �

The proof of Proposition 1.6. Starting with a non-trivial intersecting family
F ⊂

(
[n]
k

)
of maximal size we can keep on applying the Sij shift for various

pairs until we run into trouble. The possible trouble is that Sij(F) ceases to
be non-trivial, i.e., all its members contain the element i. Then {i, j}∩F 6= ∅
must hold for all F ∈ F . By symmetry let i = 1, j = 2.

The maximality of |F| implies that all k-sets G with {1, 2} ⊂ G ⊂ [n]
are in F . Therefore continuing with the Sa,b shift for 3 ≤ a < b ≤ n will
never produce a trivial intersecting family. Eventually we obtain a non-trivial
intersecting familyH, |H| = |F| such that Sa,b(H) = H for all 3 ≤ a < b ≤ n.

Consequently, both {1, 3, 4, . . . , k + 1} and {2, 3, 4, . . . , k + 1} are in H.
Since all G ∈

(
[n]
k

)
with {1, 2} ⊂ G ⊂ [n] are unchanged under the shift Sa,b

for 3 ≤ a < b ≤ n, we infer that
(
[k+1]
k

)
⊂ H.

Noting that
(
[k+1]
k

)
is not affected by Si,j for 1 ≤ i < j ≤ n, we can con-

tinue shifting and eventually obtain a shifted, non-trivial intersecting family
of the same size.

3 Concluding remarks

For a family F ⊂ 2[n] let 4(F) be its maximum degree, that is, max
i
|F(i)|.

Then %(F) = |F|−4(F) is called the diversity of F . With this terminology,
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for intersecting families F , F ⊂
(
[n]
k

)
, n ≥ 2k, the Hilton–Milner Theorem

shows that %(F) ≥ 1 implies |F| ≤ |E(n, k, k)| =
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1.

In [F87a] the author proved that %(F) ≥
(
n−s−1
k−s

)
(3 ≤ s ≤ k) implies

|F| ≤ |E(n, k, s)|. Kupavskii and Zakharov [KZ] gave a new proof of this
result. It would be desirable to have a proof by injection. Let us note that
for F ⊂ G necessarily %(F) ≤ %(G) holds.

In the case of Theorem 1.4, we may replace F by another family G, F ⊂
G ⊂

(
[n]
k

)
where G is shifted, intersecting and all G ∈

(
[n]
k

)
with [2, s+ 1] ⊂ G

are members of G. For such a special case Theorem 1.4 provides an injective
proof. However the general case seems to be harder.

The proofs in [F87a] and [KZ] rely heavily on the Kruskal–Katona The-
orem (cf. [Kr], [Ka]). Therefore we feel that it would be desirable to have a
proof by injection for this important result as well.
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