A proof of the Hilton–Milner Theorem without computation

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Let $n \geq 2k \geq 4$ be integers and \mathcal{F} a family of k-subsets of $\{1, 2, \ldots, n\}$. It is called *intersecting* if $F \cap F' \neq \emptyset$ for all $F, F' \in \mathcal{F}$. It is called *non-trivial* if $\bigcap_{F \in \mathcal{F}} F = \emptyset$. Strengthening the famous Erdős–Ko–Rado Theorem Hilton and Milner proved that $|\mathcal{F}| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1$ if \mathcal{F} is non-trivial and intersecting. We provide a proof by injection of this result.

1 Introduction

Let $[n] = \{1, \ldots, n\}$ be the standard *n*-element set and $2^{[n]}$ its power set. Subsets $\mathcal{F} \subset 2^{[n]}$ are called families. For $i \in [n]$ we use the standard notations $\mathcal{F}(i) = \{F \setminus \{i\} : i \in F \in \mathcal{F}\}$ and $\mathcal{F}(\overline{i}) = \{F : i \notin F \in \mathcal{F}\}$. Note that

$$|\mathcal{F}| = |\mathcal{F}(i)| + |\mathcal{F}(\overline{i})|.$$

For a positive integer t the family \mathcal{F} is said to be t-intersecting if $|F \cap F'| \ge t$ for all $F, F' \in \mathcal{F}$. For t = 1 we use the term intersecting.

Let us recall the definition of the $S_{i,j}$ shift, an important operation on families, discovered by Erdős, Ko and Rado [EKR].

Definition 1.1. For $1 \leq i < j \leq n$ and a family $\mathcal{F} \subset 2^{[n]}$ one defines $S_{i,j}(\mathcal{F}) = \{S_{i,j}(F) : F \in \mathcal{F}\}$ where

$$S_{i,j}(F) = \begin{cases} F' \stackrel{\text{def}}{=} (F \setminus \{j\}) \cup \{i\} & \text{if } j \in F, \ i \notin F \text{ and } F' \notin \mathcal{F}, \\ F & \text{otherwise.} \end{cases}$$

From the definition $|S_{i,j}(\mathcal{F})| = |\mathcal{F}|$ and $|S_{i,j}(F)| = |F|$ should be obvious. More importantly, if \mathcal{F} is *t*-intersecting then $S_{i,j}(\mathcal{F})$ is *t*-intersecting as well. If $S_{i,j}(\mathcal{F}) = \mathcal{F}$ for all $1 \le i < j \le n$ then \mathcal{F} is called *shifted*.

Let us use the notation (a_1, a_2, \ldots, a_r) to denote the set $\{a_1, a_2, \ldots, a_r\}$ where $a_1 < a_2 < \cdots < a_r$. For two subsets $F = (a_1, \ldots, a_r)$ and $G = (b_1, \ldots, b_r)$ we say that F is smaller than G if $a_i \leq b_i$ for all $1 \leq i \leq r$. We denote this by $F \prec G$.

It is not hard to see that \mathcal{F} is shifted iff for all pairs of F, G with $F \prec G$, $G \in \mathcal{F}$ implies $F \in \mathcal{F}$. For the proof of this and many other useful properties of shifting cf. [F87].

We shall need the following simple result.

Proposition 1.2 ([F78]). $\mathcal{F} \subset 2^{[n]}$ be a shifted t-intersecting family. Then (i) and (ii) hold.

(i) For every $F \in \mathcal{F}$ there exists an integer $\ell \geq t$ such that

$$|F \cap [2\ell - t]| \ge \ell.$$

(ii) For all $F, G \in \mathcal{F}$ there exists an integer $h \ge t$ such that

$$(1.1) |F \cap [h]| + |G \cap [h]| \ge h + t.$$

Note that (1.1) implies $|F \cap G \cap [h]| \ge t$.

For $F \in \mathcal{F}$ define $\ell(F) = \{\max \ell, t \leq \ell \leq \frac{n}{2} : |F \cap [2\ell]| \geq \ell\}$. Note that if $2|F| \leq n$ then the maximality of $\ell(F)$ implies

(1.2)
$$|F \cap [2\ell(F)]| = \ell(F).$$

Let $k \ge s \ge 2$ be integers. Let $\binom{[n]}{k}$ denote the collection of all k-subsets of [n].

Example 1.3. Define $\mathcal{E}(n,k,s) = \left\{ E \in \binom{[n]}{k} : 1 \in E, E \cap [2,s+1] \neq \emptyset \right\} \cup \left\{ F \subset \binom{[2n]}{k} : [2,s+1] \subset F \right\}.$

Note that $\mathcal{E}(n,k,s)$ is intersecting, $E \cap [2,s+1] \neq \emptyset$ for all $E \in \mathcal{E}(n,k,s)$ and

$$|\mathcal{E}(n,k,s)| = \binom{n-1}{k-1} - \binom{n-s-1}{k-1} + \binom{n-s-1}{k-s}.$$

Theorem 1.4. Let $n \ge 2k \ge 2s \ge 4$. Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}$ is a shifted intersecting family satisfying $F \cap [2, s+1] \neq \emptyset$ for all $F \in \mathcal{F}$. Then

(1.3)
$$|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-s-1}{k-1} + \binom{n-s-1}{k-s}.$$

This result is somewhat technical but its proof is rather special. We are going to prove it through an explicit injection from \mathcal{F} into $\mathcal{E}(n, k, s)$.

For sets A, B let $A \triangle B$ denote their symmetric difference. Let us define the map $\alpha : \mathcal{F} \to \mathcal{E}(n, k, s)$ by

$$\alpha(F) = \begin{cases} F & \text{if } 1 \in F \text{ or if } [2, s+1] \subset F, \\ F \bigtriangleup [2\ell(F)] & \text{otherwise.} \end{cases}$$

To prove (1.3) it is sufficient to prove the following.

Proposition 1.5. The map α is an injection into $\mathcal{E}(n,k,s)$.

Let us recall two important results concerning intersecting families of k-sets.

Erdős–Ko–Rado Theorem ([EKR]). Suppose that $n \ge 2k > 0$, $\mathcal{F} \subset {\binom{[n]}{k}}$ is an intersecting family. Then

(1.4)
$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

Taking all k-sets containing a fixed element shows that (1.4) is best possible.

An intersecting family is called *non-trivial* if there is no element common to all its members. For k = 1 there is no non-trivial k-intersecting family. For k = 2 the only such family is the triangle: $\binom{[3]}{2}$.

Hilton–Milner Theorem ([HM]). Suppose that $n \ge 2k \ge 4$ and $\mathcal{F} \subset {\binom{[n]}{k}}$ is a non-trivial intersecting family. Then

(1.5)
$$|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1.$$

Recently Hurlbert and Kamat [HK] gave an injective proof for (1.4). We extend their work by providing an injective proof for (1.5). For this we need the following proposition.

Proposition 1.6 ([F87]). Suppose that $n \ge 2k \ge 4$, $\mathcal{F} \subset {\binom{[n]}{k}}$ is a non-trivial intersecting family of maximal size. Then there exists a non-trivial intersecting family $\widetilde{\mathcal{F}} \subset {\binom{[n]}{k}}$ such that $|\widetilde{\mathcal{F}}| = |\mathcal{F}|$ and $\widetilde{\mathcal{F}}$ is shifted.

Once one has Proposition 1.6, to establish (1.5) is easy. One only needs to apply the case s = k of Theorem 1.4 to the family $\widetilde{\mathcal{F}}$. Indeed, since $\widetilde{\mathcal{F}}$ is non-trivial and shifted, $[2, k+1] \in \widetilde{\mathcal{F}}$ and being intersecting $F \cap [2, k+1] \neq \emptyset$ holds for all $F \in \widetilde{\mathcal{F}}$.

Since the proof of Proposition 1.6 is quite short and somewhat hidden in [F87], we reproduce it in Section 2.

Let us mention that there are several other, known proofs of the Hilton– Milner Theorem, cf. [FF], [FT], [M] or [KZ].

2 The proof of Propositions 1.5 and 1.6

We divide the proof into two lemmas. The first shows that for $F \in \mathcal{F} \setminus \mathcal{E}(n,k,s)$ the image $\alpha(F)$ is in $\mathcal{E}(n,k,s) \setminus \mathcal{F}$.

The second shows that α is an injection.

Lemma 2.1. Suppose that $F \in \mathcal{F}(\overline{1})$ and $[2, s+1] \not\subset F$. Then (i), (ii) and (iii) hold.

(i) $1 \in \alpha(F);$ (ii) $\alpha(F) \notin \mathcal{F};$ (iii) $\alpha(F) \cap [2, s+1] \neq \emptyset.$

Proof. Recall that $\alpha(F) = F \bigtriangleup [2\ell(F)]$. As $1 \notin F$ implies $1 \in \alpha(F)$, (i) is true.

(ii) Suppose for contradiction that $\alpha(F) \in \mathcal{F}$. Apply Proposition 1.2 to F and $\alpha(F)$. By (1.2), $F \cap [2\ell(F)]$ and $\alpha(F) \cap [2\ell(F)]$ are complementary ℓ -element subsets of $[2\ell(F)]$. Consequently $h > 2\ell(F)$.

However, for $h \ge 2\ell$, $|F \cap [h]| = |\alpha(F) \cap [h]|$. Thus $2|F \cap [h]| \ge h + 1$ implies

(2.1)
$$|F \cap [h]| \ge (h+1)/2.$$

Thus for h + 1 as well

$$|F \cap [h+1]| \ge (h+1)/2$$

and we get a contradiction with the maximality of $\ell(F)$.

(iii) Define $i(F) = \min\{i : 2 \le i \le n, i \notin F\}$. As $\ell(F) \ge 2$, (1.2) implies $i(F) \le 2\ell(F)$. Also, $[2, s+1] \not\subset F$ implies $i(F) \le s+1$. Consequently $i(F) \in [2\ell(F)]$ and $i(F) \in [2, s+1]$ hold. Therefore $i(F) \in \alpha(F) \cap [2, s+1]$. \Box

Lemma 2.2. For distinct $F, F' \in \mathcal{F} \setminus \mathcal{E}(n, k, s)$ $\alpha(F) \neq \alpha(F')$ holds.

Proof. Since $F, F' \notin \mathcal{E}(n, k, s), \alpha(F) = F \triangle[2\ell(F)] \text{ and } \alpha(F') = F' \triangle[2\ell(F')].$ If $\ell(F) = \ell(F')$ then $\alpha(F) \neq \alpha(F')$ is evident from $F \neq F'$.

By symmetry suppose $\ell(F) < \ell(F')$. The maximality of $\ell(F)$ implies $|F \cap [2\ell'(F)]| < \ell'(F)$. Using $|F \cap [2\ell(F)]| = \ell(F) = |\alpha(F) \cap [2\ell(F)]|$, $|\alpha(F) \cap 2\ell'(F)| < \ell'(F) = |\alpha(F') \cap [2\ell(F')]|$ follows. This proves $\alpha(F) \neq \alpha(F')$.

Since $\alpha(F) = F$ for $F \in \mathcal{F} \cap \mathcal{E}(n, k, s)$, Lemmas 2.1 and 2.2 prove that α is an injection into $\mathcal{E}(n, k, s)$.

The proof of Proposition 1.6. Starting with a non-trivial intersecting family $\mathcal{F} \subset {[n] \choose k}$ of maximal size we can keep on applying the S_{ij} shift for various pairs until we run into trouble. The possible trouble is that $S_{ij}(\mathcal{F})$ ceases to be non-trivial, i.e., all its members contain the element *i*. Then $\{i, j\} \cap F \neq \emptyset$ must hold for all $F \in \mathcal{F}$. By symmetry let i = 1, j = 2.

The maximality of $|\mathcal{F}|$ implies that all k-sets G with $\{1,2\} \subset G \subset [n]$ are in \mathcal{F} . Therefore continuing with the $S_{a,b}$ shift for $3 \leq a < b \leq n$ will never produce a trivial intersecting family. Eventually we obtain a non-trivial intersecting family \mathcal{H} , $|\mathcal{H}| = |\mathcal{F}|$ such that $S_{a,b}(\mathcal{H}) = \mathcal{H}$ for all $3 \leq a < b \leq n$.

Consequently, both $\{1, 3, 4, \ldots, k+1\}$ and $\{2, 3, 4, \ldots, k+1\}$ are in \mathcal{H} . Since all $G \in {\binom{[n]}{k}}$ with $\{1, 2\} \subset G \subset [n]$ are unchanged under the shift $S_{a,b}$ for $3 \leq a < b \leq n$, we infer that ${\binom{[k+1]}{k}} \subset \mathcal{H}$.

Noting that $\binom{[k+1]}{k}$ is not affected by $S_{i,j}$ for $1 \leq i < j \leq n$, we can continue shifting and eventually obtain a shifted, non-trivial intersecting family of the same size.

3 Concluding remarks

For a family $\mathcal{F} \subset 2^{[n]}$ let $\Delta(\mathcal{F})$ be its maximum degree, that is, $\max_i |\mathcal{F}(i)|$. Then $\varrho(\mathcal{F}) = |\mathcal{F}| - \Delta(\mathcal{F})$ is called the *diversity* of \mathcal{F} . With this terminology, for intersecting families $\mathcal{F}, \mathcal{F} \subset {\binom{[n]}{k}}, n \geq 2k$, the Hilton–Milner Theorem shows that $\varrho(\mathcal{F}) \geq 1$ implies $|\mathcal{F}| \leq |\mathcal{E}(n,k,k)| = {\binom{n-1}{k-1}} - {\binom{n-k-1}{k-1}} + 1$. In [F87a] the author proved that $\varrho(\mathcal{F}) \geq {\binom{n-s-1}{k-s}}$ ($3 \leq s \leq k$) implies

In [F87a] the author proved that $\varrho(\mathcal{F}) \geq \binom{n-s-1}{k-s}$ $(3 \leq s \leq k)$ implies $|\mathcal{F}| \leq |\mathcal{E}(n,k,s)|$. Kupavskii and Zakharov [KZ] gave a new proof of this result. It would be desirable to have a proof by injection. Let us note that for $\mathcal{F} \subset \mathcal{G}$ necessarily $\varrho(\mathcal{F}) \leq \varrho(\mathcal{G})$ holds.

In the case of Theorem 1.4, we may replace \mathcal{F} by another family $\mathcal{G}, \mathcal{F} \subset \mathcal{G} \subset {[n] \choose k}$ where \mathcal{G} is shifted, intersecting and all $G \in {[n] \choose k}$ with $[2, s+1] \subset G$ are members of \mathcal{G} . For such a special case Theorem 1.4 provides an injective proof. However the general case seems to be harder.

The proofs in [F87a] and [KZ] rely heavily on the Kruskal–Katona Theorem (cf. [Kr], [Ka]). Therefore we feel that it would be desirable to have a proof by injection for this important result as well.

References

- [EKR] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Second Series 12 (1961), 313–320.
- [F78] P. Frankl, The Erdős–Ko–Rado Theorem is true for n = ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365–375, Colloq. Math. Soc. Jnos Bolyai 18, North-Holland, Amsterdam–New York, 1978.
- [F87] P. Frankl, The shifting technique in extremal set theory, Surveys in combinatorics 1987, pp. 81–110, London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press, Cambridge, 1987.
- [F87a] P. Frankl, Erdős–Ko–Rado theorem with conditions on the maximal degree, J. Comb. Theory, Ser. A 46 (2) (1987), 252–263.
- [FF] P. Frankl, Z. Füredi, Non-trivial intersecting families, J. Comb. Theory, Ser A 41 (1986), 150–153.
- [FT] P. Frankl, N. Tokushige, Some best possible inequalities concerning cross-intersecting families, J. Comb. Theory, Ser. A 61 (1) (1992), 87–97.
- [HM] A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18 (1967), 369–384.

- [HK] G. Hurlbert, V. Kamat, A new injective proof of the Erdős–Ko–Rado theorem, submitted.
- [Ka] G. O. H. Katona, A theorem on finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, pp. 187–207, Budapest, 1968.
- [Kr] J. B. Kruskal, The number of simplices in a complex, in: Math. Optimization Techniques, pp. 251–278, California Press, Berkeley, 1963.
- [KZ] A. Kupavskii, D. Zakharov, Regular bipartite graphs and intersecting families, to appear (in Russian).
- [M] M. Mörs, A generalization of a theorem of Kruskal, Graphs and Comb. 1 (1985), 167–183.