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Abstract

Let n > 2k > 4 be integers and F a family of k-subsets of
{1,2,...,n}. Tt is called intersecting if FONF' # () for all F, F' € F. It

is called non-trivial if (| F = (). Strengthening the famous Erdds—
FeF

Ko-Rado Theorem Hilton and Milner proved that |F| < (Z:%) -
(”;le) + 1 if F is non-trivial and intersecting. We provide a proof
by injection of this result.

1 Introduction

Let [n] = {1,...,n} be the standard n-element set and 2"l its power set.
Subsets F C 2[" are called families. For i € [n] we use the standard notations
F@)={F\{i}:i€e FeF}and F(i) ={F :i¢ F € F}. Note that

IFI=1F@)]+[F@)].

For a positive integer ¢ the family F is said to be t-intersecting if |[FNF'| >
t for all F, F' € F. For t = 1 we use the term intersecting.

Let us recall the definition of the .S;; shift, an important operation on
families, discovered by Erdds, Ko and Rado [EKR].

Definition 1.1. For 1 < i < j < n and a family 7 C 2" one defines
Sij(F) = {Sz](F) : F e .7:} where

s = {FEENGNULY e F igFand F ¢ F,
v F otherwise.



From the definition |S; ;(F)| = |F| and |S;;(F)| = |F| should be obvious.
More importantly, if F is ¢-intersecting then S; ;(F) is t-intersecting as well.

If S;j(F)=F forall 1 <i<j<mnthen F is called shifted.

Let us use the notation (aq,as,...,a,) to denote the set {aj,as,...,a,}
where a; < ay < .-+ < a,. For two subsets F' = (ay,...,a,) and G =
(by,...,b,) we say that F' is smaller than G if a; < b; for all 1 < i <r. We
denote this by F' < G.

It is not hard to see that F is shifted iff for all pairs of F, G with F < G,
G € F implies I' € F. For the proof of this and many other useful properties
of shifting cf. [F87].

We shall need the following simple result.

Proposition 1.2 ([F78]). F C 2" be a shifted t-intersecting family. Then

(i) and (ii) hold.
(1) For every F' € F there exists an integer { >t such that

|FN[20—t]] > ¢
(ii) For all F,G € F there exists an integer h >t such that
(1.1) |FN A+ |GNI[h]| > h+t.
Note that (1.1) implies |FF NG N [h]] > t.

For F € F define {(F) = {max(,t <{<2:|FN[20]| > (}. Note that
if 2|F| < n then the maximality of ¢(F') implies

(1.2) |F N [20(F)]| = £(F).

Let k > s > 2 be integers. Let ([z]) denote the collection of all k-subsets
of [n].
Example 1.3. Define E(n, k,s) = {E € ([Z}) 1€ EEN[2,s+1] # (Z)} U

{Fc®):s+1cr}
Note that £(n, k, s) is intersecting, EN[2,s+ 1] # () for all E € E(n, k, s)

and | . .
n — n—s— n—s—



Theorem 1.4. Let n > 2k > 2s > 4. Suppose that F C ([Z]) 1s a shifted

intersecting family satisfying F N [2,s+ 1] # 0 for all F € F. Then

()02 ()

This result is somewhat technical but its proof is rather special. We are
going to prove it through an explicit injection from F into £(n, k, s).

For sets A, B let A A B denote their symmetric difference. Let us define
the map a : F — &(n, k, s) by

(F) = F ifle Forif [2,s+ 1] CF,
| FA[2(F)] otherwise.

To prove (1.3) it is sufficient to prove the following.
Proposition 1.5. The map « is an injection into E(n, k, s).

Let us recall two important results concerning intersecting families of
k-sets.

Erdés—Ko—Rado Theorem ([EKR]). Suppose that n > 2k > 0, F C ([Z])
s an intersecting famaily. Then

(1.4) 17| < (Z:D

Taking all k-sets containing a fixed element shows that (1.4) is best pos-
sible.

An intersecting family is called non-trivial if there is no element common
to all its members. For k& = 1 there is no non-trivial k-intersecting family.
For k = 2 the only such family is the triangle: ([3]).

Hilton—Milner Theorem ([HM]). Suppose that n > 2k > 4 and F C ([Z])
18 a non-trivial intersecting family. Then

(15) !ﬂﬁ(::i)—(n;ﬁIl)Jﬂ.

Recently Hurlbert and Kamat [HK] gave an injective proof for (1.4). We
extend their work by providing an injective proof for (1.5). For this we need
the following proposition.



Proposition 1.6 ([F87]). Suppose that n > 2k > 4, F C ([Z]) is a non-
trivial intersecting family of mazximal size. Then there exists a non-trivial
intersecting family F C ([Z]) such that |F| = |F| and F is shifted.

Once one has Proposition 1.6, to establish (1.5) is easy. One only needs
to apply the case s = k of Theorem 1.4 to the family F. Indeed, since Fis
non-trivial and shifted, [2, k+ 1] € F and being intersecting F'N[2,k+1] # ()
holds for all F € F.

Since the proof of Proposition 1.6 is quite short and somewhat hidden in
[F'87], we reproduce it in Section 2.

Let us mention that there are several other, known proofs of the Hilton—
Milner Theorem, cf. [FF], [FT], [M] or [KZ].

2 The proof of Propositions 1.5 and 1.6

We divide the proof into two lemmas. The first shows that for F' € F \
E(n,k,s) the image a(F) is in E(n, k,s) \ F.
The second shows that « is an injection.

Lemma 2.1. Suppose that F € F(1) and [2,s + 1] ¢ F. Then (i), (ii) and
(iii) hold.

(i) 1 € a(F);

(i) a(F) ¢ F;

(ili) a(F) N [2, s+ 1] # 0.
Proof. Recall that o(F) = F A [2¢0(F)]. As 1 ¢ F implies 1 € «o(F), (i) is
true.

(ii) Suppose for contradiction that a(F) € F. Apply Proposition 1.2 to
F and a(F). By (1.2), F N [2¢(F)] and o(F) N [2((F)] are complementary
(-element subsets of [2¢(F")]. Consequently h > 2((F).

However, for h > 2¢, |F N [h]| = |a(F) N [h]|. Thus 2|F N [h]] > h+1
implies

(2.1) |[FN[h]] > (h+1)/2.
Thus for h + 1 as well

|IFNh+1]|>(h+1)/2



and we get a contradiction with the maximality of ¢(F').

(iii) Define ¢(F) =min{i : 2 <i <n,i ¢ F}. As {(F) > 2, (1.2) implies
i(F) <20(F). Also, [2,s+1] ¢ F implies i(F') < s+1. Consequently i(F) €
[20(F)] and i(F') € [2,s + 1] hold. Therefore i(F) € a(F) N [2,s+ 1]. O

Lemma 2.2. For distinct F, F' € F\ E(n,k,s) a(F)# a(F’) holds.

Proof. Since F, F' ¢ E(n, k,s), a(F) = FA[2((F)] and a(F') = F'A[20(F")).
If {(F) = ((F") then a(F) # a(F’) is evident from F # F.

By symmetry suppose ¢(F) < ¢(F’). The maximality of ¢(F") implies
[E 0 RCCE)| < £(F). Using |[F'0 20F)]] = ((F) = |a(F) 0 20F)]],
la(F) N 20(F)| < O(F) = |a(F") N [2¢(F")]| follows. This proves a(F) #
a(F"). O

Since a(F) = F for F € FN&E(n,k,s), Lemmas 2.1 and 2.2 prove that «
is an injection into E(n, k, s). O

The proof of Proposition 1.6. Starting with a non-trivial intersecting family
F C ([’;}) of maximal size we can keep on applying the S;; shift for various
pairs until we run into trouble. The possible trouble is that S;;(F) ceases to
be non-trivial, i.e., all its members contain the element i. Then {4, j}NF # ()
must hold for all F € F. By symmetry let : =1, j = 2.

The maximality of |F| implies that all k-sets G with {1,2} C G C [n]
are in F. Therefore continuing with the S, shift for 3 < a < b < n will
never produce a trivial intersecting family. Eventually we obtain a non-trivial
intersecting family H, |H| = |F| such that S, ,(H) = Hforall3 <a <b < n.

Consequently, both {1,3,4,...,k+ 1} and {2,3,4,...,k 4+ 1} are in H.
Since all G € ([Z]) with {1,2} C G C [n] are unchanged under the shift S,
for 3 < a < b <n, we infer that ([k;rl]) CH.

Noting that ([k;gl]) is not affected by S; ; for 1 <14 < j < n, we can con-
tinue shifting and eventually obtain a shifted, non-trivial intersecting family
of the same size. O]

3 Concluding remarks

For a family F C 2" let A(F) be its mazimum degree, that is, max | F(7)|.
Then o(F) = |F|— A(F) is called the diversity of F. With this terminology,



for intersecting families F, F C ([Z]), n > 2k, the Hilton—Milner Theorem
shows that o(F) > 1 implies |F| < |E(n, k, k)| = (77]) — (") + 1.

In [F8T7a] the author proved that o(F) > (";:1) (3 < s < k) implies
|F| < |E(n,k,s)|. Kupavskii and Zakharov [KZ] gave a new proof of this
result. It would be desirable to have a proof by injection. Let us note that
for F C G necessarily o(F) < o(G) holds.

In the case of Theorem 1.4, we may replace F by another family G, F C
g cC ([Z]) where G is shifted, intersecting and all G € <[Z]) with [2,s+1] C G
are members of G. For such a special case Theorem 1.4 provides an injective
proof. However the general case seems to be harder.

The proofs in [F87a] and [KZ] rely heavily on the Kruskal-Katona The-
orem (cf. [Kr], [Kal]). Therefore we feel that it would be desirable to have a

proof by injection for this important result as well.
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