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Abstract

In this paper we study a question related to the classical Erdős–Ko–Rado theorem,
which states that any family of 𝑘-element subsets of the set [𝑛] = {1, . . . , 𝑛} in which
any two sets intersect, has cardinality at most

(︀
𝑛−1
𝑘−1

)︀
.

We say that two non-empty families are 𝒜,ℬ ⊂
(︀[𝑛]
𝑘

)︀
are 𝑠-cross-intersecting, if for

any 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ we have |𝐴 ∩ 𝐵| ≥ 𝑠. In this paper we determine the maximum of
|𝒜|+ |ℬ| for all 𝑛. This generalizes a result of Hilton and Milner, who determined the
maximum of |𝒜|+ |ℬ| for nonempty 1-cross-intersecting families.

MSc classification: 05D05

1 Introduction

Let [𝑛] = {1, . . . , 𝑛} be an 𝑛-element set and for 0 ≤ 𝑘 ≤ 𝑛 let
(︀
[𝑛]
𝑘

)︀
denote the collection of

all its 𝑘-element subsets. Let further 2[𝑛] denote the power set. Any subset ℱ ⊂ 2[𝑛] is called
a set family or family for short. The following classical result is one of the cornerstones of
extremal set theory. If 𝐹 ∩ 𝐹 ′ ̸= ∅ for all 𝐹, 𝐹 ′ ∈ ℱ , then ℱ is called intersecting.

Theorem 1 (Erdős, Ko, and Rado [1]). If 𝒜 ⊂
(︀
[𝑛]
𝑘

)︀
is intersecting and 𝑛 ≥ 2𝑘, then

|𝒜| ≤
(︀
𝑛−1
𝑘−1

)︀
holds.

This is one of the first results in extremal set theory and probably the first result about
intersecting families.

Numerous results extended the Erdős–Ko–Rado theorem in different ways. One of the
directions was to study non-trivial intersecting families, that is, excluding the obvious exam-
ples of intersecting families of sets that all contain a fixed element. Note that the family of
all sets containing a single element has the size matching the bound from the EKR theorem.
Probably, the most known result in this direction is the Hilton–Milner theorem [4], which
gives the maximum size of a non-trivial intersecting family.
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In the same paper Hilton and Milner dealt with pairs of cross-intersecting families. We
call 𝒜,ℬ ⊂ 2[𝑛] cross-intersecting, if for every 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ we have 𝐴 ∩ 𝐵 ̸= ∅. They
proved the following inequality:

Theorem 2. [Hilton and Milner [4]] Let 𝒜,ℬ ⊂
(︀
[𝑛]
𝑘

)︀
be non-empty cross-intersecting fami-

lies with 𝑛 ≥ 2𝑘. Then |𝒜|+ |ℬ| ≤
(︀
𝑛
𝑘

)︀
−
(︀
𝑛−𝑘
𝑘

)︀
+ 1.

This inequality was generalized by Frankl and Tokushige [3] to the case 𝒜 ⊂
(︀
[𝑛]
𝑎

)︀
,

ℬ ⊂
(︀
[𝑛]
𝑏

)︀
with 𝑎 ̸= 𝑏, and with more general constraints on the sizes of 𝒜,ℬ. A simple

proof of the theorem above may be found in [2].
We say that two families 𝒜,ℬ ⊂ 2[𝑛] are 𝑠-cross-intersecting, if for any 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ we

have |𝐴 ∩ 𝐵| ≥ 𝑠. In this paper we prove the following generalization of the Hilton–Milner
theorem. Define the family 𝒞 = {𝐶 ⊂

(︀
[𝑛]
𝑘

)︀
: |𝐶 ∩ [𝑘]| ≥ 𝑠}.

Theorem 3. Let 𝑘 > 𝑠 ≥ 1 be integers. Suppose that 𝒜,ℬ ⊂
(︀
[𝑛]
𝑘

)︀
are non-empty 𝑠-cross-

intersecting families. Then for 𝑛 > 2𝑘 − 𝑠 we have

max
𝒜,ℬ

|𝒜|+ |ℬ| = |𝒞|+ 1. (1)

2 Preliminaries

We start with the following auxiliary statement, which is of independent interest. Consider
a bipartite graph 𝐻 with parts 𝑉1, 𝑉2 and a group of automorphisms Γ, where Γ is acting on
𝑉1 and 𝑉2 but respects the parts (that is, ∀𝛾 ∈ Γ and 𝑣 ∈ 𝑉𝑖 𝛾(𝑣) ∈ 𝑉𝑖 holds). Let 𝑇1, . . . , 𝑇𝑝

and 𝑆1, . . . , 𝑆𝑞 be the orbits of the action of Γ, with 𝑉1 = 𝑇1⊔ . . .⊔𝑇𝑝 and 𝑉2 = 𝑆1⊔ . . .⊔𝑆𝑞.

Lemma 4. There exists an independent set 𝐼 in 𝐻 of maximal cardinality, such that for
any 𝑖 either 𝐼 ⊃ 𝑇𝑖 or 𝐼 ∩ 𝑇𝑖 = ∅ and for any 𝑗 either 𝐼 ⊃ 𝑆𝑗 or 𝐼 ∩ 𝑆𝑗 = ∅.

Make an auxiliary bipartite graph 𝑊 on the set of vertices {𝑇1, . . . , 𝑇𝑝} and {𝑆1, . . . , 𝑆𝑞}
and with edges between 𝑇𝑖 and 𝑆𝑗 iff there is at least one edge connecting a vertex of 𝑇𝑖 to
a vertex of 𝑆𝑗. Put weights |𝑇𝑖|, |𝑆𝑗| on the vertices 𝑇𝑖, 𝑆𝑗, correspondingly.

Let 𝐵 ⊂ 𝑉1 ∪ 𝑉2 be an independent set in 𝐻 and define 𝛽𝑖 = |𝐵 ∩ 𝑇𝑖|/|𝑇𝑖|, 𝛽𝑝+𝑗 =
|𝐵 ∩ 𝑆𝑗|/|𝑆𝑗| for 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞.

Claim 5. If there is an edge between 𝑇𝑖 and 𝑆𝑗 in 𝑊 then

𝛽𝑖 + 𝛽𝑝+𝑗 ≤ 1. (2)

Proof. Just note that Γ is transitive on both 𝑇𝑖 and 𝑆𝑗. Therefore, 𝑇𝑖, 𝑆𝑗 induce a biregular
bipartite graph (i.e., degree is constant on each side) with nonzero degrees. The inequality (2)
follows easily from the aforementioned regularity, since among the neighbors of a 𝛽𝑖-fraction
of the vertices from 𝑇𝑖 there is at least a 𝛽𝑖-fraction of the vertices from 𝑆𝑗.
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We call any nonnegative vector (𝛽1, . . . , 𝛽𝑝+𝑞) satisfying (2) a fractional independent set.
Note that each vector corresponding to an independent set in 𝑊 is a fractional independent
set with coordinates from {0, 1}.

Proof of Lemma 4. We take a fractional independent set v := (𝛽1, . . . , 𝛽𝑝+𝑞) in 𝑊 with
maximal weight

∑︀𝑝
𝑖=1 𝛽𝑖|𝑇𝑖| +

∑︀𝑞
𝑗=1 𝛽𝑝+𝑗|𝑆𝑗|. The vector u := (1 − 𝛽1, . . . , 1 − 𝛽𝑝+𝑞) is a

minimal weight fractional vertex cover (that is, for each each edge (𝑇𝑖, 𝑆𝑗) ∈ 𝑊 we have
u𝑖 + u𝑝+𝑗 ≥ 1). It is a standard result in combinatorial optimization that there exists
a minimal weight fractional vertex cover u in 𝑊 with integral coordinates (see, e.g., [5]).
Thus, there exists a maximal weight fractional independent set v in 𝑊 with all coordinates
integral. This fractional independent set corresponds to the desired independent set in the
graph 𝐻.

We recall the definition of the left shifting (left compression), which we would simply
refer to as shifting. For a given pair of indices 𝑖 < 𝑗 ∈ [𝑛] and a set 𝐴 ∈ 2[𝑛] we define
the (𝑖, 𝑗)-shift 𝑆𝑖,𝑗(𝐴) of 𝐴 in the following way. If 𝑖 ∈ 𝐴 or 𝑗 /∈ 𝐴, then 𝑆𝑖,𝑗(𝐴) = 𝐴. If
𝑗 ∈ 𝐴, 𝑖 /∈ 𝐴, then 𝑆𝑖,𝑗(𝐴) := (𝐴−{𝑗})∪{𝑖} that is, 𝑆𝑖,𝑗(𝐴) is obtained from 𝐴 by replacing
element 𝑗 with element 𝑖.

Next, we define the (𝑖, 𝑗)-shift 𝑆𝑖,𝑗(ℱ) of a family ℱ ⊂ 2[𝑛]:

𝑆𝑖,𝑗(ℱ) := {𝑆𝑖,𝑗(𝐴) : 𝐴 ∈ ℱ} ∪ {𝐴 : 𝐴, 𝑆𝑖,𝑗(𝐴) ∈ ℱ}.
We call a family ℱ shifted, if 𝑆𝑖,𝑗(ℱ) = ℱ for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

3 Proof of Theorem 3

We assume that 𝑠 ≥ 2, as the case 𝑠 = 1 is covered by Theorem 2. Recall that 𝒞 = {𝐶 ⊂(︀
[𝑛]
𝑘

)︀
: |𝐶 ∩ [𝑘]| ≥ 𝑠}. It is not hard to see that if 𝒜,ℬ are s-cross-intersecting, then so

are 𝑆𝑖,𝑗(𝒜), 𝑆𝑖,𝑗(ℬ). Therefore, we may w.l.o.g. assume that 𝒜,ℬ are shifted and thus both
contain [𝑘]. It is obvious that in any case |𝒜| + |ℬ| ≤ 2|𝒞|, since 𝒜,ℬ ⊂ 𝒞. Consider a
bipartite graph 𝐺 = (𝒞 − {[𝑘]}, 𝒞 − {[𝑘]}, 𝐸) with two copies 𝒞1, 𝒞2 of 𝒞 − {[𝑘]} as parts
and with two sets 𝐶1, 𝐶2 ∈ 𝒞 from different parts being connected by an edge if and only if
|𝐶1 ∩𝐶2| < 𝑠. Our goal is to show that the maximum independent set in 𝐺 has size |𝒞| − 1.
Indeed, it is clear that |𝒜 − {[𝑘]}|+ |ℬ − {[𝑘]}| ≤ 𝛼(𝐺) and in that case we get the desired
bound |𝒜|+ |ℬ| ≤ |𝒞|+ 1.

One way to show that 𝐺 does not have independent sets larger than its parts is to exhibit
a perfect matching in 𝐺. We were unable to do it in general. We are going to circumvent
this problem by doing something different. We cover the vertices of a certain weighted graph
directly related to 𝐺 by disjoint edges and paths of even vertex length in such a way that
the total weight of any independent set in any of these graphs is at most half of the total
weight of the set of vertices of that subgraph.
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We consider the following group of isomorphisms Γ, acting on [𝑛] (and on the vertex set
of 𝐺). Γ is a product of two groups, one consists of all permutations of [𝑘] and the other one
consists of all permutations of [𝑘 + 1, 𝑛]. Each of the parts of 𝐺 splits into orbits 𝒞𝑗

𝑖 , where
𝑗 = 1, 2 and corresponds to the index of the part, and 𝑖 = 𝑠, . . . , 𝑘− 1 and indicates the size
of the intersection of sets from 𝒞𝑗

𝑖 with [𝑘]: 𝒞𝑗
𝑖 = {𝐶 ∈

(︀
[𝑛]
𝑘

)︀
: |𝐶 ∩ [𝑘]| = 𝑖}. We refer to these

orbits as 𝒞𝑖 if we think of them as set families.
Take an independent set 𝐵 in 𝐺 of largest size. Using Lemma 4, we may w.l.o.g. assume

that for each 𝑗, 𝑖 either 𝐵 ⊃ 𝒞𝑗
𝑖 or 𝐵 ∩ 𝒞𝑗

𝑖 = ∅. Consider an auxiliary weighted graph 𝑊 as
in the proof of Lemma 4. That is, the vertices of 𝑊 are 𝒞𝑗

𝑖 and the vertices from different
parts are connected iff there are two sets from the corresponding orbits that intersect in less
than 𝑠 elements. We also put weights on each vertex of 𝑊 equal to the cardinality of the
corresponding orbit. Thus, in view of Lemma 4, it is enough for us to show that one part of
𝑊 has the same weight as the heaviest independent set in 𝑊 .

Put 𝑛 = 2𝑘 − 𝑠 + 1 + 𝑙, where 𝑙 ≥ 0. It is easy to check that 𝒞1
𝑖 is connected to 𝒞2

𝑡

with 𝑡 ∈ {𝑘 − 𝑖 − 𝑙, . . . , 𝑘 − 𝑖 + 𝑠 − 1} ∩ {𝑠, . . . , 𝑘 − 1}. Next we study the weights of
the interconnected vertices. We call the value of 𝑖 meaningful if the resulting indices of all
families depending on 𝑖 lie in the set {𝑠, . . . , 𝑘− 1}. We need the following technical lemma.

Lemma 6. 1. |𝒞𝑖| ≥ |𝒞𝑘−𝑖+𝑠−1| iff 𝑠 ≤ 𝑖 ≤ (𝑘 + 𝑠− 1)/2.
2. |𝒞⌊ 𝑘−𝑙

2
⌋−𝑖| ≤ |𝒞⌊ 𝑘+𝑠−1

2
⌋+𝑖| for all meaningful positive integer values of 𝑖.

Proof. The proof of the lemma is just a careful algebraic manipulation. We remark that for
the first reading one may omit all the integer parts in the computations below to make the
verification easier.

1. Assume 𝑖 ≤ (𝑘 + 𝑠 − 1)/2. We have |𝒞𝑖| =
(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑘−𝑖

)︀
, |𝒞𝑘−𝑖+𝑠−1| =

(︀
𝑘

𝑘−𝑖+𝑠−1

)︀(︀
𝑛−𝑘
𝑖−𝑠+1

)︀
.

Therefore,

|𝒞𝑖|
|𝒞𝑘−𝑖+𝑠−1|

=
(𝑖− 𝑠+ 1)!2(𝑘 − 𝑖+ 𝑠− 1)!(𝑛− 𝑘 − 𝑖+ 𝑠− 1)!

(𝑘 − 𝑖)!2𝑖!(𝑛− 2𝑘 + 𝑖)!
=

(𝑘 − 𝑖+ 𝑠− 1) · · · (𝑘 − 𝑖+ 1)

𝑖 · · · (𝑖− 𝑠+ 2)
· (𝑛− 𝑘 − 𝑖+ 𝑠− 1) · · · (𝑛− 2𝑘 + 𝑖+ 1)

(𝑘 − 𝑖) · · · (𝑖− 𝑠+ 2)
≥ 1,

because 𝑘−𝑖+𝑠−1 ≥ 𝑖 since 𝑖 ≤ (𝑘+𝑠−1)/2, and 𝑛−𝑘−𝑖+𝑠−1 ≥ 𝑘−𝑖 since 𝑛 ≥ 2𝑘−𝑠+1.

2. Assume first that ⌊𝑘−𝑙
2
⌋ ≥ ⌈𝑘−𝑠+1

2
⌉. We have

|𝒞⌊ 𝑘+𝑠−1
2

⌋+𝑖|
|𝒞⌊ 𝑘−𝑙

2
⌋−𝑖|

=
(⌈𝑘+𝑙

2
⌉+ 𝑖)!2(⌊𝑘−𝑙

2
⌋ − 𝑖)!(𝑛− 𝑘 − ⌈𝑘+𝑙

2
⌉ − 𝑖)!

(⌈𝑘−𝑠+1
2

⌉ − 𝑖)!2(⌊𝑘+𝑠−1
2

⌋+ 𝑖)!(𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉+ 𝑖)!
=

(⌊𝑘−𝑙
2
⌋ − 𝑖) · · · (⌈𝑘−𝑠+1

2
⌉ − 𝑖+ 1)

(⌊𝑘+𝑠−1
2

⌋+ 𝑖) · · · (⌈𝑘+𝑙
2
⌉+ 𝑖+ 1)

·
(⌈𝑘+𝑙

2
⌉+ 𝑖) · · · (⌈𝑘−𝑠+1

2
⌉ − 𝑖+ 1)

(𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉+ 𝑖) · · · (𝑛− 𝑘 − ⌈𝑘+𝑙
2
⌉ − 𝑖+ 1)

=: (*).

We note that 𝑛 = 2𝑘 − 𝑠 + 1 + 𝑙, and therefore 𝑛 − 𝑘 − ⌈𝑘−𝑠+1
2

⌉ + 𝑖 = ⌊𝑘−𝑠+1
2

⌋ + 𝑙 + 𝑖 ≤
(⌈𝑘+𝑙

2
⌉+ 𝑖)− ⌈ 𝑠−1−𝑙

2
⌉.
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(*) ≥
(⌊𝑘−𝑙

2 ⌋ − 𝑖) · · · (⌈𝑘−𝑠+1
2 ⌉ − 𝑖+ 1)

(⌊𝑘+𝑠−1
2 ⌋+ 𝑖) · · · (⌈𝑘+𝑙

2 ⌉+ 𝑖+ 1)
·

(⌈𝑘+𝑙
2 ⌉+ 𝑖) · · · (⌈𝑘+𝑙

2 ⌉+ 𝑖− ⌈ 𝑠−1−𝑙
2 ⌉+ 1)

(𝑛− 𝑘 − ⌈𝑘+𝑙
2 ⌉+ ⌈ 𝑠−1−𝑙

2 ⌉ − 𝑖) · · · (𝑛− 𝑘 − ⌈𝑘+𝑙
2 ⌉ − 𝑖+ 1)

In the first fraction the number of factors in both denominator and numerator is the same
and is ⌊𝑘−𝑙

2
⌋− ⌈𝑘−𝑠+1

2
⌉, which is at most ⌈ 𝑠−1−𝑙

2
⌉. The ratio of the 𝑗+1-st factors in the first

fraction, that is, the expression
⌊ 𝑘−𝑙

2
⌋−𝑖−𝑗

⌊ 𝑘+𝑠−1
2

⌋+𝑖−𝑗
for 𝑗 ∈ {0, . . . , ⌈ 𝑠−1−𝑙

2
⌉− 1} is at most 1 and thus

does not increase as 𝑗 increases.
In the second fraction the number of factors in both the numerator and denomina-

tor is ⌈ 𝑠−1−𝑙
2

⌉. Similarly to the first fraction, the expression
⌈ 𝑘+𝑙

2
⌉+𝑖−𝑗

𝑛−𝑘−⌈ 𝑘+𝑙
2

⌉+⌈ 𝑠−1−𝑙
2

⌉−𝑖−𝑗
for 𝑗 ∈

{0, . . . , ⌈ 𝑠−1−𝑙
2

⌉ − 1} is at least 1 and thus does not decrease as 𝑗 increases. Therefore, the
product of these two fractions is at least(︃

⌈𝑘−𝑠+1
2

⌉ − 𝑖

⌈𝑘+𝑙
2
⌉+ 𝑖

)︃⌈ 𝑠−1−𝑙
2

⌉(︃
⌈𝑘+𝑙

2
⌉+ 𝑖

𝑛− 𝑘 − ⌈𝑘+𝑙
2
⌉+ ⌈ 𝑠−1−𝑙

2
⌉ − 𝑖

)︃⌈ 𝑠−1−𝑙
2

⌉

=

(︃
⌈𝑘−𝑠+1

2
⌉ − 𝑖

𝑘 − 𝑠+ 𝑙 + 1− ⌈𝑘+𝑙
2
⌉+ ⌈ 𝑠−1−𝑙

2
⌉ − 𝑖

)︃⌈ 𝑠−1−𝑙
2

⌉

≥ 1.

The last inequality holds since without integer parts the denominator is equal to the enu-
merator, and the possible gain because of the integer parts in the denominator is at most 1/2.
However, both numbers are integer, thus the denominator is not bigger than the enumerator.

Assume now that ⌊𝑘−𝑙
2
⌋ < ⌈𝑘−𝑠+1

2
⌉.

|𝒞⌊ 𝑘+𝑠−1
2

⌋+𝑖|
|𝒞⌊ 𝑘−𝑙

2
⌋−𝑖|

=
(⌈𝑘+𝑙

2
⌉+ 𝑖)!2(⌊𝑘−𝑙

2
⌋ − 𝑖)!(𝑛− 𝑘 − ⌈𝑘+𝑙

2
⌉ − 𝑖)!

(⌈𝑘−𝑠+1
2

⌉ − 𝑖)!2(⌊𝑘+𝑠−1
2

⌋+ 𝑖)!(𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉+ 𝑖)!
=

(⌈𝑘+𝑙
2
⌉+ 𝑖) · · · (⌊𝑘+𝑠−1

2
⌋+ 𝑖+ 1)

(⌈𝑘−𝑠+1
2

⌉ − 𝑖) · · · (⌊𝑘−𝑙
2
⌋ − 𝑖+ 1)

·
(⌈𝑘+𝑙

2
⌉+ 𝑖) · · · (⌈𝑘−𝑠+1

2
⌉ − 𝑖+ 1)

(𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉+ 𝑖) · · · (𝑛− 𝑘 − ⌈𝑘+𝑙
2
⌉ − 𝑖+ 1)

=: (*).

We note that 𝑛 = 2𝑘 − 𝑠+ 1 + 𝑙, and therefore 𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉+ 𝑖 = ⌊𝑘−𝑠+1
2

⌋+ 𝑙 + 𝑖 ≤
(⌈𝑘+𝑙

2
⌉+ 𝑖) + ⌊ 𝑙−𝑠+1

2
⌋.

(*) ≥
(⌈𝑘+𝑙

2
⌉+ 𝑖) · · · (⌊𝑘+𝑠−1

2
⌋+ 𝑖+ 1)

(⌈𝑘−𝑠+1
2

⌉ − 𝑖) · · · (⌊𝑘−𝑙
2
⌋ − 𝑖+ 1)

·

(⌈𝑘−𝑠+1
2

⌉+ ⌊ 𝑙−𝑠+1
2

⌋ − 𝑖) · · · (⌈𝑘−𝑠+1
2

⌉ − 𝑖+ 1)

(𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉+ 𝑖) · · · (𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉ − ⌊ 𝑙−𝑠+1
2

⌋+ 𝑖+ 1)
.
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Bounding the two fractions similarly to how it was done in the previous case, one can see
that this expression is at least(︃

⌈𝑘+𝑙
2
⌉+ 𝑖+ 1

⌈𝑘−𝑠+1
2

⌉ − 𝑖+ 1

)︃⌊ 𝑙−𝑠+1
2

⌋(︃
⌈𝑘−𝑠+1

2
⌉ − 𝑖+ 1

𝑛− 𝑘 − ⌈𝑘−𝑠+1
2

⌉ − ⌊ 𝑙−𝑠+1
2

⌋+ 𝑖+ 1

)︃⌊ 𝑙−𝑠+1
2

⌋

=

(︃
⌈𝑘+𝑙

2
⌉+ 𝑖+ 1

𝑘 − 𝑠+ 𝑙 + 1− ⌈𝑘−𝑠+1
2

⌉ − ⌊ 𝑙−𝑠+1
2

⌋+ 𝑖+ 1

)︃⌊ 𝑙−𝑠+1
2

⌋

≥ 1.

As in the previous case, in the last fraction the denominator is equal to the enumerator if one
removes all integer parts, and as in the previous case we conclude that the last inequality is
valid.

The next crucial step is to decompose the graph 𝑊 into symmetric chains of even length.
Let (𝑗, �̄�) = (1, 2) or (2, 1). We know that 𝒞𝑗

𝑖 is connected to 𝒞 �̄�
𝑘+𝑠−1−𝑖 for all 𝑖. We call

these edges edges of the first type. Next, 𝒞𝑗
𝑖 is connected to 𝒞 �̄�

𝑖 if ⌈𝑘−𝑙
2
⌉ ≤ 𝑖 < 𝑘+𝑠−1

2
. We

call these edges edges of the second type. Finally, 𝒞𝑗

⌊ 𝑘−𝑙
2

⌋−𝑖
is connected to 𝒞 �̄�

⌊ 𝑘+𝑠−1
2

⌋+𝑖
for each

meaningful 𝑖 ≥ 1 and 𝑠 ≥ 2. We call these edges edges of the third type.
We claim that the graph 𝑊 is decomposed into paths of even length using the three

types of edges above. See Fig. 1, where the two parts are represented by two horizontal lines
of points, and the values near the points indicate the size of the intersection of the sets of
the corresponding family with [𝑘]. The arrows on the edges indicate the direction from the
vertex of smaller weight to the vertex of larger weight. The black two-directional edges are
the edges of the second type and connect the vertices of the same weight. The vertical edges
are the edges of the first type, and the other edges are the edges of the third type.

The middle vertical line corresponds to the size of the intersection with [𝑘] equal to 𝑘+𝑠−1
2

in both parts. The two dashed lines correspond to the intersection size ⌈𝑘−𝑙
2
⌉ for one of the

parts. Between these two lines each vertex has an edge of the second type. Note that the
starting vertex of the edges of the third type is always outside the region bounded between
the two dashed lines. The edges of the third type may or may not intersect the dashed lines,
but they never intersect the black line.
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Figure 1. Decomposition of the graph 𝑊 into symmetric chains.

In the middle of each path 𝑃 there is an edge of the second type, connecting two vertices
of the same weight. Due to Lemma 6, for each path the weight of the vertex does not
decrease as we move along the path towards the middle edge of the second type. Therefore,
it is easy to see that any independent set in 𝑃 has weight less than or equal to the half of
the weight of 𝑃 . This means that any independent set in 𝑊 cannot have weight bigger than
the half of the weight of 𝑊 . This concludes the proof of Theorem 3.
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