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Two problems of P. Erdős on matchings in set families

Peter Frankl, Andrey Kupavskii∗

Abstract

The families F1, . . . ,Fs ⊂ 2[n] are called q-dependent if there are no pairwise disjoint
Fi ∈ Fi, i = 1, . . . , s, satisfying |F1 ∪ . . .∪ Fs| ≤ q. We determine max |F1|+ . . .+ |Fs|
for all values n ≥ q, s ≥ 2. The result provides a far-reaching generalization of an
important classical result of Kleitman. The uniform case F1 = . . . = Fs ⊂

([n]
k

)

of
this problem is the so-called Erdős Matching Conjecture. After more than 50 years its
full solution is still not in sight. In the present paper we provide a Hilton-Milner-type
stability theorem for it in a relatively wide range, in particular, for n ≥ (2+o(1))sk with
o(1) depending on s. This is a considerable improvement of a result due to Bollobás,
Daykin and Erdős.

We apply our results to advance in an anti-Ramsey-type problem, proposed by
Özkahya and Young. They asked for the minimum number ar(n, k, s) of colors in
the coloring of the k-element subsets of [n] that do not contain a rainbow matching

of size s, that is, s sets of different colors that are pairwise disjoint. We prove a
stability result for the problem, which allows to determine ar(n, k, s) for all k ≥ 3 and
n ≥ sk + (s− 1)(k − 1). Some other consequences of our results are presented as well.

1 Introduction

Let [n] := {1, 2, . . . , n} be the standard n-element set and 2[n] its power set. A subset
F ⊂ 2[n] is called a family. For 0 ≤ k ≤ n let

(

[n]
k

)

denote the family of all k-subsets of [n].
For a family F let ν(F) denote the maximum number of pairwise disjoint members of

F . Note that ν(F) ≤ n holds, unless ∅ ∈ F . The fundamental parameter ν(F) is called the
independence number or matching number.

Let us introduce an analogous notion for several families.

Definition 1. Suppose that F1, . . . ,Fs ⊂ 2[n], 2 ≤ s ≤ n. We say that F1, . . . ,Fs are cross-
dependent if there is no choice of F1 ∈ F1, . . . , Fs ∈ Fs such that F1, . . . , Fs are pairwise
disjoint.
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Note that ν(F) < s is equivalent to saying that F1, . . . ,Fs, where Fi := F for all i, are
cross-dependent.

Example. Let n = sm+ s− l for some l, 0 < l ≤ s. Let us define

F̃i :=

{

{F ⊂ [n] : |F | ≥ m}, 1 ≤ i < l,

{F ⊂ [n] : |F | ≥ m+ 1}, l ≤ i ≤ s.

Then F̃1, . . . , F̃s are easily seen to be cross-dependent.

The main result of the present paper is

Theorem 1. Choose integers s,m, l satisfying s ≥ 2, m ≥ 0, and 1 ≤ l ≤ s. Put n =
sm+ s− l and suppose that F1, . . . ,Fs ⊂ 2[n] are cross-dependent. Then

s
∑

i=1

|Fi| ≤ (l − 1)

(

n

m

)

+ s
∑

t≥m+1

(

n

t

)

[

=

s
∑

i=1

|F̃i|

]

. (1)

The inequality (1) extends the following important classical result of Kleitman.

Theorem (Kleitman, [14]). Let s ≥ 2 be an integer and F ⊂ 2[n] a family satisfying ν(F) <
s. Then the following holds.

If n = s(m+ 1)− 1, then |F| ≤
∑

t≥m

(

n

t

)

; (2)

if n = sm, then |F| ≤
s− 1

s

(

n

m

)

+
∑

t≥m+1

(

n

t

)

. (3)

In the case n = s(m + 1) − 1 the families F̃i from the example above are all the same
and thereby show that the bound (2) is best possible. The bound (3) is also best possible,
as shown by Kleitman’s example:

K :=
{

K ⊂ [sm] : |K| ≥ m+ 1
}

∪

(

[sm− 1]

m

)

.

(Note that
(

sm−1
m

)

= s−1
s

(

sm
m

)

.) In the case s = 2 both bounds (2) and (3) reduce to
|F| ≤ 2n−1. This easy statement was proved already by Erdős, Ko and Rado [4].

Although (2) and (3) are beautiful results, for s ≥ 3 they leave open the cases of n 6≡ 0
or −1(mod s). For s = 3 the only remaining case was solved by Quinn [17]. Most recently,
we made some further progress [8], [9].

Let us mention that, except for the case s = 3 and l = 2, the original methods of Kleit-
man could be used to prove Theorem 1. However, for that case they seem to fail. That
forced us to find a very different proof. It is given in Section 3.

Next we discuss a generalization of the notion of cross-dependence.
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Definition 2. Let 2 ≤ s ≤ n and 1 ≤ q ≤ n be fixed integers. The families F1, . . . ,Fs ⊂ 2[n]

are called q-dependent if there are no pairwise disjoint F1, . . . , Fs, where Fi ∈ Fi, satisfying
|F1 ∪ . . . ∪ Fs| ≤ q.

For q = n the notion of q-dependence reduces to that of cross-dependence. Quite sur-
prisingly, one can determine the exact maximum of |F1|+ . . .+ |Fs| for q-dependent families
F1, . . . ,Fs ⊂ 2[n] and all values of n, q, s.

Let s ≥ 2, m ≥ 0, 1 ≤ l ≤ s. If n ≥ q := sm+ s− l, then one can define

F̃n,q
i :=

{

{F ⊂ [n] : |F | ≥ m}, 1 ≤ i < l,

{F ⊂ [n] : |F | ≥ m+ 1}, l ≤ i ≤ s.
(4)

We prove the following generalization of Theorem 1.

Theorem 2. Choose integers s,m, l satisfying s ≥ 2, m ≥ 0 and 1 ≤ l ≤ s. Let q = sm+s−l
and n ≥ q. If F1, . . . , Fs ⊂ 2[n] are q-dependent, then

s
∑

i=1

|Fi| ≤ (l − 1)

(

n

m

)

+ s
n
∑

t=m+1

(

n

t

)

[

=
s
∑

i=1

|F̃n,q
i |

]

. (5)

The proof of this theorem is given in Section 3.

Hilton-Milner-type result for Erdős Matching Conjecture

The Kleitman Theorem was motivated by a conjecture of Paul Erdős. Erdős himself worked
on the uniform case, i.e., with the families F ⊂

(

[n]
k

)

. Let us make a formal definition.

Definition 3. For positive integers n, k, s satisfying s ≥ 2, n ≥ ks, define

ek(n, s) := max
{

|F| : F ⊂

(

[n]

k

)

, ν(F) < s
}

.

Note that for s = 2 the quantity ek(n, s) was determined by Erdős, Ko and Rado.

Theorem (Erdős-Ko-Rado [4]).

ek(n, 2) =

(

n− 1

k − 1

)

for n ≥ 2k. (6)

The case s ≥ 3 seems to be much harder.

There are some natural ways to construct a family A ⊂
(

[n]
k

)

, satisfying ν(A) = s for

n ≥ (s+ 1)k. Following [5], let us define the families A
(k)
i (n, s) :

A
(k)
i (n, s) :=

{

A ∈

(

[n]

k

)

:
∣

∣A ∩ [(s+ 1)i− 1]
∣

∣ ≥ i
}

, 1 ≤ i ≤ k. (7)
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Conjecture 1 (Erdős Matching Conjecture [2]). For n ≥ (s+ 1)k we have

ek(n, s+ 1) = max
{

|A
(k)
1 (n, s)|, |A

(k)
k (n, s)|

}

. (8)

The conjecture (8) is known to be true for k ≤ 3 (cf. [3], [15] and [7]). Improving earlier
results of [2], [1], [12] and [10], in [6]

ek(n, s+ 1) =

(

n

k

)

−

(

n− s

k

)

is proven for n ≥ (2s+ 1)k − s. (9)

In the case of s = 1 (that is, the case of the Erdős-Ko-Rado Theorem) one has a very useful
stability theorem due to Hilton and Milner [11]. Below we discuss one natural generalization
of the Hilton-Milner theorem to the case s > 1.

Let us define the following families.

H(k)(n, s) :=
{

H ∈

(

[n]

k

)

: H ∩ [s] 6= ∅
}

∪
{

[s+ 1, s+ k]
}

−

−
{

H ∈

(

[n]

k

)

: H ∩ [s] = {s}, H ∩ [s + 1, s+ k] = ∅
}

.

Note that ν(H(k)(n, s)) = s for n ≥ sk and

|H(k)(n, s)| =

(

n

k

)

−

(

n− s

k

)

+ 1−

(

n− s− k

k − 1

)

. (10)

The covering number τ(H) of a hypergraph is the minimum of |T | over all T satisfying
T ∩ H 6= ∅ for all H ∈ H. Recall the definition (7). If n ≥ k + s, then the equality

τ(A
(k)
1 (n, s)) = s is obvious. At the same time, if n ≥ k + s, then τ(H(k)(n, s)) = s + 1 and

τ(A
(k)
i (n, s)) > s for i ≥ 2.
Let us make the following

Conjecture 2. Suppose that F ⊂
(

[n]
k

)

satisfies ν(F) = s, τ(F) > s. Then

|F| ≤ max
{

{

|A
(k)
i (n, s)| : i = 2, . . . , k

}

, |H(k)(n, s)|
}

holds. (11)

The Hilton-Milner Theorem shows that (11) is true for s = 1.

Theorem (Hilton-Milner [11]). Suppose that n ≥ 2k and let F ⊂
(

[n]
k

)

be a family satisfying
ν(F) = 1 and τ(F) ≥ 2. Then

|F| ≤ |H(k)(n, 1)| holds.

We mention that for n > 2sk the maximum on the RHS of (11) is attained on |H(k)(n, s)|.
For n > 2k3s (11) was shown by Bollobás, Daykin and Erdős [1].

One of the main results of this paper is the proof of (11) for a much wider range.
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Theorem 3. The conjecture is true provided k ≥ 2, n ≥ (s + max{24, 2s + 2})k and for
k ≥ 3, n ≥

(

2 + o(1)
)

sk, where o(1) depends on s only. More precisely, for any G ⊂
(

[n]
k

)

with ν(G) = s < τ(G) we have |G| ≤ |H(k)(n, s)|.

We prove Theorem 3 in Section 2.
We recall the definition of the left shifting (left compression), which we would simply

refer to as shifting. For a given pair of indices i < j ∈ [n] and a set A ∈ 2[n] we define the
(i, j)-shift Si,j(A) of A in the following way.

Si,j(A) :=

{

A if i ∈ A or j /∈ A;

(A− {j}) ∪ {i} if i /∈ A and j ∈ A.

Next, we define the (i, j)-shift Si,j(F) of a family F ⊂ 2[n]:

Si,j(F) := {Si,j(A) : A ∈ F} ∪ {A : A, Si,j(A) ∈ F}.

We call a family F shifted, if Si,j(F) = F for all 1 ≤ i < j ≤ n.

Recall that F is called closed upward if for any F ∈ F all sets that contain F are also
in F . When dealing with cross-dependent and q-dependent families, we may restrict our
attention to the families that are closed upward and shifted (see, e.g. [8], Claim 17), which
we assume for the rest of the paper.

2 Proof of Theorem 3

For s = 1 the theorem follows from Hilton-Milner theorem, therefore we may assume that
s ≥ 2. Choose a number u so that

n = (u+ s− 1)(k − 1) + s + k. (12)

Consider a family G satisfying the requirements of the theorem.

The case of shifted G

First we prove Theorem 3 in the assumption that G is shifted. Following [6], we say that the
families F1, . . . ,Fs are nested, if F1 ⊃ F2 ⊃ . . . ⊃ Fs. The following lemma is the crucial
tool for the proof and may be obtained by a straightforward modification of the proof of
Theorem 3.1 from [6]:

Lemma 4 (Frankl [6]). Let N ≥ (u + s − 1)(k − 1), and suppose that F1, . . . ,Fs ⊂
(

[N ]
k−1

)

are cross-dependent and nested. Then

|F1|+ |F2|+ . . .+ |Fs−1|+ u|Fs| ≤ (s− 1)

(

N

k − 1

)

. (13)
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We use the following notation. For any p ∈ [n] and a subset Q ⊂ [1, p] define

G(Q, p) := {G \Q : G ∈ G, G ∩ [1, p] = Q}.

The first step of the proof of Theorem 3 is the following lemma.

Lemma 5. Assume that |G|−|G(∅, s)| ≤
(

n
k

)

−
(

n−s
k

)

−C for some C > 0 and that ν(G(∅, s)) =
x for some 1 ≤ x ≤ s. Then

|G| ≤

(

n

k

)

−

(

n− s

k

)

−
u− x− 1

u
C. (14)

If ν(G(∅, s)) = τ(G(∅, s)) = 1, then

|G| ≤

(

n

k

)

−

(

n− s

k

)

−
u− 1

u
C. (15)

Proof. Recall the definition of the immediate shadow

∂H :=
{

H : ∃H ′ ∈ H, H ⊂ H ′, |H ′ −H| = 1
}

. (16)

For every H ∈ ∂G(∅, s+1) we have H ∈ G({s+1}, s+1), since G is shifted. Combining this
with the inequality x|∂H| ≥ |H| from ([6], Theorem 1.2), valid for any H with ν(H) ≤ x,
we get

|G(∅, s+ 1)| ≤ x′|G({s+ 1}, s+ 1)|, (17)

where x′ = x if τ(G(∅, s)) > 1 and x′ = 0 if τ(G(∅, s)) = 1.

For any Q ⊂ [1, s + 1], |Q| ≥ 2, we have A
(k)
1 (n, s)(Q, s + 1) =

(

[s+2,n]
k−|Q|

)

, and so we

have |G(Q, s + 1)| ≤ |A
(k)
1 (n, s)(Q, s + 1)|. We also have A

(k)
1 (n, s)(∅, s + 1) = ∅ and

∑s+1
i=1 |A

(k)
1 (n, s)({i}, s+ 1)| = s

(

n−s−1
k−1

)

. Using (17) and (13), we have

|G(∅, s+ 1)|+
s+1
∑

i=1

|G({i}, s+ 1)| ≤
s
∑

i=1

|G({i}, s+ 1)|+ (x′ + 1)|G({s+ 1}, s+ 1)| ≤

≤ s

(

n− s− 1

k − 1

)

− (u− x′ − 1)|G({s+ 1}, s+ 1)|.

Thus, |A
(k)
1 (n, s)| − |G| ≥ (u− x′ − 1)|G({s+1}, s+1)|

(17)
≥ u−x′−1

x′+1
|G(∅, s)|. On the other

hand, the inequality from the formulation of the lemma tells us that |A
(k)
1 (n, s)| − |G| ≥

C − |G(∅, s)|. Adding these two inequalities (the second one taken with coefficient u−x′−1
x′+1

),

we get that |A
(k)
1 (n, s)| − |G| ≥ u−x′−1

u
C.

Therefore, to prove Theorem 3, it is sufficient to to obtain good bounds on C from the
formulation of Lemma 5. We do that in the next two propositions. We use the following
simple observation:
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Observation 6. If for some C > 0, S ⊂ [s], and B ⊂
(

[s+1,n]
k−1

)

we have
∑

i∈S

∣

∣G({i}, s)∩B
∣

∣ ≤

|S||B| − C, then both
∑

i∈S

∣

∣G({i}, s)
∣

∣ ≤ |S|
(

n−s
k−1

)

− C and |G| − |G(∅, s)| ≤
(

n
k

)

−
(

n−s
k

)

− C.

We are going to use the next proposition and lemma for the case ν(G(∅, s)) ≥ 2. Assume
that G(∅, s) contains x pairwise disjoint sets F1, . . . , Fx for some 1 ≤ x ≤ s. Put Bj := {B ∈
(

[s+1,n]
k−1

)

: B ∩ Fj = ∅}.

Proposition 7. In the assumptions above, choose a positive integer q and integers 0 =: p0 <
p1 < p2 < . . . < pq := x. Put f :=

∏q
j=1(pj − pj−1). Then for u ≥ qf we have

s
∑

i=1

∣

∣G({i}, s)
∣

∣ ≤ s

(

n− s

k − 1

)

− q
∣

∣

∣

q−1
⋂

j=0

(

pj+1
⋃

z=pj+1

Bz

)
∣

∣

∣
. (18)

Proof. Denote I({i}, s) := G({i}, s) ∩
⋂q−1

j=0

(

∪
pj+1

z=pj+1Bz

)

, i = 1, . . . , s.

Assume that |I({s−q+1}, s)| = y. Then, since I({i}, s) ⊃ I({i+1}, s) for any 0 < i < s,
we have

s
∑

i=s−q+1

|I({i}, s)| ≤ qy. (19)

Applying Observation 6 with S = [s− q + 1, s] and B =
⋂q−1

j=0

(

⋃pj+1

z=pj+1 Bz

)

, we get

s
∑

i=s−q+1

∣

∣G({i}, s)
∣

∣ ≤ q

(

n− s

k − 1

)

− q
∣

∣

∣

q−1
⋂

j=0

(

pj+1
⋃

z=pj+1

Bz

)
∣

∣

∣
+ qy. (20)

On the other hand, since |I({s− q + 1}, s)| = y, by pigeon-hole principle we have

∣

∣

∣
G({s− q + 1}, s) ∩

q−1
⋂

j=0

Bzi

∣

∣

∣
≥

y

f
for some zi ∈ [pj + 1, pj+1]. (21)

Next, the families Gz({1}, s), . . . ,Gz({s−q+1}, s), where Gz({i}, s) := G({i}, s)∩
⋂q−1

j=0 Bzi ,
are cross-dependent and nested. From (13) we get the inequality

|Gz({1}, s)|+ . . .+ |Gz({s− q}, s)|+ u|Gz({s− q + 1}, s)| ≤ (s− q)
∣

∣∩q−1
j=0Bzi

∣

∣, (22)

which, in view of (21) gives us

s−q
∑

i=1

|Gz({i}, s)| ≤ (s− q)
∣

∣∩q−1
j=0Bzi

∣

∣−
uy

f
. (23)
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Applying Observation 6 with S = [1, s− q] and B = ∩q−1
j=0Bzi , we get

s−q
∑

i=1

∣

∣G({i}, s)
∣

∣ ≤ (s− q)

(

n− s

k − 1

)

−
uy

f
. (24)

We get the statement of the proposition by summing (20) and (24) and noting that by the
assumption uy

f
≥ qy.

The following lemma is an important technical ingredient in establishing good bounds
on u for which the statement of Theorem 3 holds.

Lemma 8. Assume that ν
(

G(∅, s)
)

= x for 1 ≤ x ≤ s. Then we have

s
∑

i=1

∣

∣G({i}, s)
∣

∣ ≤ s

(

n− s

k − 1

)

− γ

(

n− k − s

k − 1

)

, (25)

where (i) γ = 4
3

for x = 2 and u ≥ 2, (ii) γ = 3
2
for x = 3 and u ≥ 4,

(iii) γ = 16
9

for x = 4, 5 and u ≥ 8, (iv) γ = 2 for x ≥ 6 and u ≥ 24,
(v) γ = Ω(x/ log2 x) for u ≥ xex.

Proof. The logic of the proofs of all five statements is similar. We combine the bounds from
Proposition 7 with different parameters to get the bound of the form β

∣

∣∪s
i=1G({i}, s)

∣

∣ ≤
βs
(

n−s
k−1

)

−
∑x

z=1 |Bz| for the smallest possible β. Then the constant γ from the statement

of Lemma 8 is defined as γ := x/β. Since |Bz| =
(

n−k−s
k−1

)

for any z, we get the statement,
as long as we can guarantee the claimed bounds on β. Therefore, we aim to find a linear
combination of equations (18) with coefficients βj, which satisfy the following two conditions:

a) the sum of the subtrahends in the RHS is at least
x
∑

z=1

|Bz|, (26)

b) β :=
∑

βj is as small as possible. (27)

We make of the following inclusion-exclusion-type decomposition:

x
∑

z=1

|Bz| = |∪x
z=1Bz|+

∑

1≤z1<z2≤x

|Bz1∩Bz2 |+2
∑

1≤z1<z2<z3≤x

|∩3
j=1Bzj |+. . .+(x−1)|∩x

j=1Bj |, (28)

where the sign ∩ stands for the intersection of precisely the corresponding Bz and exclude
the sets that belong to any other Bj . Formally, for any S ⊂ [x] we have

⋂

j∈S

Bj :=
(

⋂

j∈S

Bj

)

\
(

⋃

j∈[x]\S

Bj

)

.

All the cardinalities of the intersections in (28) are determined by the number of intersect-
ing families. The number of summands of the form |∩l

j=1Bzj | is (l−1)
(

x
l

)

for any l = 1, . . . , x.

8



We call each of the families of the form ∩l
j=1Bzj an l-intersection. For shorthand we call the

cardinality of the corresponding family the l-intersection as well.
The subtrahend in (18) also admits a decomposition into l-intersections, analogous to

(28). In the proof of each statement we guarantee (26) by finding a linear combination, in
which the number of l-intersections in the subtrahend is greater than that in (18) for each
l. We remark that the term | ∪x

z=1 Bz| is somewhat special, and it appears in each linear
combination below. Note that this expression is the subtrahend in (18) for q = 1. Finally,
we mention that for each member of the linear combination we use the following notation:
[

parameters substituted in (18); the value of the coefficient
]

.

Since the proofs of the first four statements are almost identical, we present the proofs
of the first and the fourth out of them only. We start with the statement (i). We sum up
[

q = 1; coefficient 1
]

with
[

q = 2, p1 = 1; coefficient 1
2

]

. We get an inequality

3

2

∣

∣∪s
i=1G({i}, s)

∣

∣ ≤
3

2
s

(

n− s

k − 1

)

−
∣

∣B1 ∪ B2

∣

∣−
∣

∣B1 ∩ B2

∣

∣ =
3

2

∣

∣∪s
i=1G({i}, s)

∣

∣− |B1| − |B2|.

The condition on u, imposed by the application of (18), is simply u ≥ 2. It is clear that
γ = 2

3/2
= 4

3
for this linear combination. This concludes the proof of (i).

The proof of (iv) is more cumbersome. It is sufficient to verify (iv) for x = 6. Take
the following linear combination:

[

q = 1; coefficient 1
]

,
[

q = 2, p1 = 3; coefficient 3
2

]

,
[

q = 3, p1 = 2, p2 = 4; coefficient 1
3

]

, and
[

q = 6, pi = i for i = 0, . . . , 6; coefficient 1
6

]

.
First, it is clear that for this combination we have β = 1+ 3

2
+ 1

3
+ 1

6
= 3, and γ = x/β = 2.

Moreover, it is easy to see that the condition on u, imposed by the application of (18), is
u ≥ 24 and comes from the third summand. Therefore, we are left to verify that the number
of l-intersections in the subtrahend is at least that of (28).

Excluding the first term, there are 15, 40, 45, 24, 5 i-intersections in (28) for x = 6 with
i = 2, 3, 4, 5, 6, respectively. Next, we count the number of the i-intersections in the lin-
ear combination. The term

[

q = 2, p1 = 3; coefficient 3
2

]

gives, as it is easy to check,
27, 54, 45, 18, 3 i-intersections for i = 2, 3, 4, 5, 6, respectively. For i ≤ 4 this term alone has
at least as much i-intersections as (28). It is left for us to “find” six 5-intersections and two
6-intersections in the remaining terms. Six 5-intersections and one 6-intersection are given
by
[

q = 3, p1 = 2, p2 = 4; coefficient 1
3

]

. The remaining 6-intersection (the intersection of
all families) is given by by

[

q = 6, pi = i for i = 0, . . . , 6; coefficient 1
6

]

. The proof of (iv) is
complete.

The proof of (v) is the most technical. For simplicity we assume that x = 2r for some
positive integer r. Consider the following linear combination:

[

q = 2j, pi = ix/q for i = 0, . . . , q; coefficient 4(j + 1)
]

, where j = 0, . . . , r.

For shorthand we denote the member of the linear combination with q = 2j by Mj .
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First we verify that the combination above has enough l-sets for each l. The union of all
Bz corresponds to M0. For larger l we need to do an auxiliary calculation.

What is the number of l-intersections that are contained in Mj? This is almost the same
as asking, how many different l-intersections are contained in the family

2j−1
⋂

i=0

(

(i+1)2r−j

⋃

z=i2r−j+1

Bz

)

. (29)

Assuming that l ≥ q := 2j, the l-intersections that are not contained in the family above
are exactly the ones that do not have a By with the index y ∈

[

i2r−j + 1, (i + 1)2r−j
]

for
some i = 0, . . . , q − 1 among the intersecting families. We can bound the fraction of such

l-intersections by the expression q
(

q−1
q

)l

≤ qe−l/q. For l ≥ q log(2q) =: lq this fraction

is at most 1
2
. We conclude that the family (29) contains at least 1

2

(

n
l

)

l-intersections for
l ≥ q log2(2q) = 2j(j + 1).

Since Mj has as the subtrahend the size of the family (29), multiplied by the fac-
tor 42j(j + 1), we conclude that Mj contributes at least 2j+1(j + 1)

(

n
l

)

l-intersections for
l ≥ 2j(j + 1).

Next, for each l ≥ 2 find the largest j, such that 2j(j + 1) ≤ l. It is clear that
2j+1(j + 1) > l. As we have shown above, Mj contributes at least 2j+1(j + 1)

(

n
l

)

> l
(

n
l

)

l-intersections, which is more than the number of l-intersections in (28). Thus, we have
enough l-intersections.

Second, we calculate the sum of coefficients of the members of the linear combination.
We have

β =
r
∑

i=0

4(i+ 1) = 4

(

r + 2

2

)

= O(log2 x).

Thus, γ = x/β = O(x/ log2 x).
Finally, we verify the condition on u imposed by the (18). For Mj the restriction is

u ≥ 2j
(

2r−j
)2j

= 2j+(r−j)2j . This expression is clearly maximized when j = r − 1, and in

that case we have u ≥ 2r−1+2r−1

. Thus, the condition u ≥ 22
r

= 2x is clearly sufficient.

In the case when ν(G(∅, s)) = 1 we need a proposition which is more fine-grained than
Proposition 7. For each j = 1, . . . , k + 1 define the k-sets Dj := [s + 1, s + k + 1] \ {s + j}

and the families Cj :=
{

C ∈
(

[s+1,...,n]
k−1

)

: C ∩Dj = ∅
}

.

Proposition 9. Assume that ν(G(∅, s)) = 1 and put v := max{1, k + 2− u}.
1. If τ(G(∅, s)) > 1, then

s
∑

i=1

∣

∣G({i}, s)
∣

∣ ≤ s

(

n− s

k − 1

)

− | ∪k+1
j=v Cj | (30)
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2. If τ(G(∅, s)) = 1 and for some integer t, v ≤ t ≤ k, we have |G(∅, s)| >
(

n−s−t
k−t

)

, then

s
∑

i=1

∣

∣G({i}, s)
∣

∣ ≤ s

(

n− s

k − 1

)

− | ∪k+1
j=t Cj |. (31)

Proof. 1. Since G(∅, s) is shifted and τ(G(∅, s)) > 1, the set D1 is contained in G(∅, s).
Then by shiftedness all Dj for j = 1, . . . , k + 1 are contained in G(∅, s). Arguing as in the
proof of Proposition 7, let

∣

∣

(

∪k+1
j=vCj

)

∩G({s}, s)
∣

∣ = y. Then there is an index j, v ≤ j ≤ k+1,

such that
∣

∣Cj ∩ G({s}, s)
∣

∣ ≥ y
v
≥ y

u
. The rest of the proof is the same as in Proposition 7.

2. Similarly, since G(∅, s) is shifted and |G(∅, s)| >
(

n−s−t
k−t

)

, the set Dt must be contained
in G(∅, s). Therefore, all the sets Dj for j = t, . . . , s + 1 are contained in G(∅, s) and we
conclude as before.

We go on to the proof of Theorem 3. In the case when |G(∅, s)| = 1 we get exactly the
bound stated in the theorem, since |G| = |G| − |G(∅, s)|+ 1 =

(

n
k

)

−
(

n−s
k

)

− |B1|+ 1. Thus,
for the rest of the proof we assume that |G(∅, s)| > 1.

Consider first the case ν(G(∅, s)) = τ(G(∅, s)) = 1ν(G(∅, s)) = τ(G(∅, s)) = 1ν(G(∅, s)) = τ(G(∅, s)) = 1. If 1 < |G(∅, s)| ≤
(

n−s−k+1
1

)

= n− s−

k+1, then for C from Lemma 5 have C ≥ |Ck∪Ck+1| =
(

n−k−s
k−1

)

+
(

n−k−s−1
k−2

)

. For k ≥ 4, s ≥ 2
we have

(

n− k − s− 1

k − 2

)

≥ n− s− k + 1 ≥ |G(∅, s)|,

thus the theorem holds in this case. For k = 2, 3 one can also verify that C − |G(∅, s)|+1 ≥
(

n−k−s
k−1

)

. It is straightforward but a bit technical, and we omit these considerations.
In case when |G(∅, s)| > n− s− k + 1 we use the following bound:

C ≥ | ∪k+1
j=k−1 Bj | =

(

n− k − s

k − 1

)

+ 2

(

n− k − s− 1

k − 2

)

=

=
(

1 +
2(k − 1)

n− k − s

)

(

n− k − s

k − 1

)

(12)
=
(

1 +
2

u+ s− 1

)

(

n− k − s

k − 1

)

. (32)

The last expression is at least u
u−1

(

n−k−s
k−1

)

if u+s+1
u+s−1

≥ u
u−1

, which holds in case u ≥ s + 1.
Since u ≥ s+ 1, we can apply (15) and conclude that Theorem 3 holds in this case.

Next we consider the case when ν(G(∅, s)) = 1 < τ(G(∅, s))ν(G(∅, s)) = 1 < τ(G(∅, s))ν(G(∅, s)) = 1 < τ(G(∅, s)). By analogy with (32) we get
from Proposition 9 that

C ≥ | ∪k+1
j=z Bj | =

(

1 +
min{k + 1, u}

u+ s− 1

)

(

n− k − s

k − 1

)

.

The inequality u+s−1+min{k+1,u}
u+s−1

≥ u
u−2

holds for u ≥ 2s + 4 and k ≥ 2, and we can apply
(14). It also holds for u ≥ s+ 3 and k ≥ 3.
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In the case ν(G(∅, s)) = x ≥ 2ν(G(∅, s)) = x ≥ 2ν(G(∅, s)) = x ≥ 2 we make use of Lemma 8. We are done in this case as long
as, in terms of Lemma 8,

γ ·
u− x− 1

u
≥ 1. (33)

Using the first four statements from Lemma 8, one can see that it holds provided u ≥
max{24, 2s+ 2}. Indeed, let us verify this technical claim. It is clearly sufficient to verify it
for u = max{24, 2s+ 2}.

• If x = 2, then γ = 4
3
and the left hand side of (33) is at least 4

3
21
24

≥ 1.

• If x = 3, then the LHS is at least 3
2
· 20
24

= 1.

• If x = 4, then the LHS is at least 16
9
· 19
24

> 1.

• If x = 5, then the LHS is at least 16
9
· 18
24

> 1.

• If x ≥ 6 (and s = x), then the LHS is at least 2 x+1
2x+2

= 1.

To conclude this case, we remark that the inequalities u ≥ max{24, 2s+2}, n ≥ (s+u)k, k ≥ 2
are sufficient for all the considerations above to work.

Using the fifth statement from Lemma 8, we get that (33) is satisfied for u = s + o(s).

Indeed, let u = s + δ s(log log s)2

log s
with some δ that will be determined later. If 2x + 24 ≤ s,

then the condition u ≥ s is sufficient to satisfy (33) by the previous paragraph. Thus, we
may assume that x ≥ (log s). Then, applying the fifth point of Lemma 8 with x = log s, we
get

γ ·
u− x− 1

u
≥ Ω

( log s

(log log s)2

)u− s− 1

u
= Ω

( log s

(log log s)2

)δ s(log log s)2

log s

s
> 1,

if δ is sufficiently large. Remark that for the application of Lemma 8 we need that u ≥ 2x,
which clearly holds in this case, since u ≥ s. To conclude the proof of the theorem, we
note that in the case ν(G(∅, s)) = 1 the condition u ≥ s + 3, k ≥ 3 was sufficient. Thus,
n ≥ (2s + o(s))k, k ≥ 3 is a sufficient condition in this case. The proof of Theorem 3 for
shifted families is complete.

The case of not shifted G

Consider an arbitrary family G satisfying the requirements of the theorem. Since the property
τ(G) > s is not necessarily maintained by shifting, we cannot make the family G shifted right
away. However, each (i, j)-shift, 1 ≤ i < j ≤ n, decreases τ(G) by at most 1, and so we
perform the (i, j)-shifts (1 ≤ i < j ≤ n) one by one until either G becomes shifted or
τ(G) = s+ 1. In the former case we fall into the situation of the previous subsection.

Assume w.l.o.g. that τ(G) = s + 1 and that each set from G intersects [s + 1]. Then all
families G({i}, s+1), i = 1, . . . , s+1, are nonempty. Make the family G shifted in coordinates
s+ 2, . . . , n by performing all the (i, j)-shifts for s + 2 ≤ i < j ≤ n. Denote the new family
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by G again. Since the shifts do not increase the matching number, we have ν(G) ≤ s and
τ(G) ≤ s+ 1. Each family G({i}, s+ 1) contains the set [s+ 2, s+ k].

Next, perform all possible shifts on coordinates 1, . . . , s + 1, and denote the resulting
family by G ′. We have |G ′| = |G|, ν(G ′) ≤ s, and, most importantly, G ′({i}, s+ 1) are nested
and non-empty for all i = 1, . . . , s + 1. The last claim is true due to the fact that all of the
families contained the same set before the shifting.

We can actually apply the proof of the previous subsection to G ′. Indeed, the main
consequence of the shiftedness we were using is that G ′({i}, s + 1), i = 1, . . . , s + 1, are all
non-empty and nested. We do have it for G ′. The other consequence was the bound (17),
which we do not need in this case as G ′(∅, s + 1) is empty since each set from G ′ intersects
[s+ 1]. The proof of Theorem 3 is complete.

3 Proof of Theorems 1 and 2

Proof of Theorem 1

Take s cross-dependent families F1, . . . ,Fs. For s = 2 the bound (1) states that |F1|+ |F2| ≤
2[n], which follows from the following trivial observation: if A ∈ F1, then [n] \A /∈ F2. Thus,
we may assume that s ≥ 3. Also, the case of m = 0 is very easy to verify for any s, so we
assume that m ≥ 1.

Put n = s(m+1)− l for the rest of this section. We assume that the families in question
are closed upward.

We first reduce Theorem 1 to the following statement, which proof is given at the end of
the section:

Proposition 10. For n′ = 2s′ − l′, 0 < l ≤ s′, and s′ cross-dependent families F ′
1, . . . ,F

′
s′ ⊂

(

[n′]
1

)

∪
(

[n′]
2

)

we have
s′
∑

i=1

|F ′
i | ≤ (l′ − 1)n′ + s′

(

n′

2

)

. (34)

Take s pairwise disjoint sets H1, . . . , Hs of size m − 1 at random. W.l.o.g. assume that
the s elements of [n] \ ∪s

i=1Hi form the set [2s− l]. For S ⊂ [2s− l] define Hi(S) := Hi ∪ S.

Let ∅ =: H
(0)
i ⊂ . . . ⊂ H

(m−1)
i := Hi be a randomly chosen full chain in Hi, i = 1, . . . , s.

For each value of i = 1, . . . , s, j = 0, . . . , m − 2, and S ⊂ [2s − l] define the random

variables β
(j)
i and βi(S):

β
(j)
i =

{

1 if H
(j)
i ∈ Fi,

0 if H
(j)
i /∈ Fi;

βi(S) =

{

1 if Hi(S) ∈ Fi,

0 if Hi(S) /∈ Fi.
(35)

Note that S may be the empty set. The cross-dependence of Fi implies

β1(S1)β2(S2) · . . . · βs(Ss) = 0 whenever S1, . . . , Ss ⊂ [2s− l] are pairwise disjoint. (36)
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The expectations E[β
(j)
i ],E[βi(S)] satisfy

E[β
(j)
i ] =

∣

∣Fi ∩
(

[n]
j

)
∣

∣

(

n
j

) , E[βi(S)] =

∣

∣Fi ∩
(

[n]
m−1+|S|

)
∣

∣

(

n
m−1+|S|

) . (37)

Our aim is to prove

Lemma 11. Let n = s(m + 1)− l. For every choice of H1, . . . , Hs and the full chains one
has

s
∑

i=1

[

m−2
∑

j=1

(

n

j

)

β
(j)
i +

∑

S([2s−l],|S|≤3

(

n
m−1+|S|

)

(

2s−l
|S|

) βi(S)

]

≤ s
m+2
∑

j=m+1

(

n

j

)

+ (l − 1)

(

n

m

)

. (38)

Passing to the expectations in (38), it is straightforward to see that from (37) we have

s
∑

i=1

m+2
∑

j=1

∣

∣

∣
Fi ∩

(

[n]

j

)

∣

∣

∣
≤ s

m+2
∑

j=m+1

(

n

j

)

+ (l − 1)

(

n

m

)

,

from which (1) follows.

Proof of Lemma 11. We have
∑s

i=1 βi(∅) = p
∑s

i=1 βi(∅) = p
∑s

i=1 βi(∅) = p for some 0 ≤ p ≤ s− 1. W.l.o.g. assume that
β1(∅) = . . . = βp(∅) = 1.

Assume that l/2 ≤ p ≤ s− 2l/2 ≤ p ≤ s− 2l/2 ≤ p ≤ s− 2. In this case we have s − p ≤ s − l/2 = 1
2
(2s − l). Then

∏s
i=p+1 βi(Si) = 0 for any s−p pairwise disjoint Si of cardinality two. By a simple averaging

argument we immediately get that

βi(S) = 0 for at least

(

2s− l

2

)

pairs (i, S), where |S| = 2 and i ∈ [p+ 1, s].

Since the families Fi are closed upward, we also get that

βi(S) = 0 for at least 2s− l pairs (i, S), where |S| = 1 and i ∈ [p+ 1, s].

Therefore, the left hand side of (38) is at most p
∑m−1

j=0

(

n
j

)

+ (s − 1)
∑m+1

j=m

(

n
j

)

+ s
(

n
m+2

)

.

Consider the difference between the right and the left hand side of (38). The difference is at
least

(

n

m+ 1

)

− (s− l)

(

n

m

)

− p
m−1
∑

j=0

(

n

j

)

. (39)

Next we show that this expression is always nonnegative.

For m = 0 the inequality (39) obviously holds, so we assume that m ≥ 1. Remark that
we have

(

n
m−j−1

)

(

n
m−j

) =
m− j

n−m+ j + 1
>

{

m−1
(s−1)m

for j ≥ 1,
m

(s−1)m+s−l+1
for j ≥ 0.

(40)
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We have
(

n

m+ 1

)

− (s− l)

(

n

m

)

=
(m(s− 1) + s− l

m+ 1
− (s− l)

)

(

n

m

)

=
m(l − 1)

m+ 1

(

n

m

)

. (41)

On the other hand, using (40) we may obtain that
∑m

j=1 p
(

n
m−j

)

is at most

m
∑

j=1

(s− 2)

(

n

m− j

)

≤
m(s− 1)(s− 2)

(s− 2)m+ 1

(

n

m− 1

)

≤
m(s− 1)

(s− 1)m+ s− l + 1

(

n

m

)

. (42)

It is easy to see that the right hand side of (41) is at least the right hand side of (42) for
both l = 2 and l ≥ 3, which proves (38) in this case.

If p = s− 1p = s− 1p = s− 1, then βs(S) = 0 for all S ⊂ [2s− l], |S| ≤ 3. Therefore, the left hand side of
(38) is at most (s−1)

∑m+2
j=0

(

n
j

)

, which is smaller than
(

n
m

)

+ s
(

n
m+1

)

+ s
(

n
m+2

)

for any s ≥ 3.
Indeed, the difference is

(

n

m+ 2

)

+

(

n

m+ 1

)

− (s− l)

(

n

m

)

− (s− 1)
m−1
∑

j=0

(

n

j

)

,

which by the calculations in the previous case is at least
(

n
m+2

)

−
∑m−1

j=0

(

n
j

)

. We have
(

n
m+2

)

≥
(

n
m

)

since n = s(m+1)−2 ≥ 2(m+1) for any s ≥ 3, m ≥ 1. Finally,
(

n
m

)

≥
∑m−1

j=0

(

n
j

)

by (40).

Assume that p < l/2p < l/2p < l/2. Then again
∏s

i=p+1 βi(Si) = 0 for any s − p pairwise disjoint Si.
Consider the families F ′

i := {S ⊂ [2s−l] : βi(S) = 1, |S| ≤ 2}, i = p+1, . . . , s. These families
are cross-dependent. Applying (34) to F ′

i (with n′ := 2(s−p)−(l−2p), s′ = s−p, l′ = l−2p),
we get that

s
∑

i=p+1

∣

∣

∣
F ′

i ∩

(

[2s− l]

≤ 2

)

∣

∣

∣
≤ (l − 2p− 1)(2s− l) + (s− p)

(

2s− l

2

)

.

We conclude that out of all coefficients βi(S), i = 1, . . . , s, 1 ≤ |S| ≤ 2, there are at least
(2s− l)(s− l+ p+1) that are equal to zero. The following is verified by simple calculations.

Observation 12. Let s ≥ 3, m ≥ 1. In the summation over S in (38) the coefficient in
front of βi(S1) for |S1| = 1 is not bigger than the coefficient in front of βi(S2) for |S2| = 2.

Using the observation, we get that the left hand side of (38) is at most

p

m−1
∑

j=0

(

n

j

)

+ (l − p− 1)

(

n

m

)

+ s

(

n

m+ 1

)

+ s

(

n

m+ 2

)

.

Since
(

n
m

)

≥
∑m−1

j=0

(

n
j

)

, the last expression is at most (l − 1)
(

n
m

)

+ s
(

n
m+1

)

.
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Proof of Proposition 10. The proof follows the same logic as the one given above. Choose s′

distinct elements of [n′]. W.l.o.g. assume that these elements form a set [s′]. By analogy to
(35), put βi(S) = 1 if S ∈ F ′

i and βi(S) = 0 otherwise. Similarly to (38), it is sufficient to
prove

s′
∑

i=1

[

n′βi({i}) +
n′

∑

x=s′+1

(

n′

2

)

n′ − s′
βi({i, x})

]

≤ (l′ − 1)n′ + s′
(

n′

2

)

. (43)

Assume that
∑s′

i=1 βi({i}) = p and that w.l.o.g. β1({1}) = . . . = βp({p}) = 1. If p ≤ l′ − 1,
then we are done. In the case l′ = s′ the statement of the proposition is obvious since at
least one of βi(∅) must be equal to 0. Thus, we assume that l ≤ p ≤ s′ − 1.

Recall that n′ = s′ + (s′ − l′). For any set of distinct xp+1, . . . , xs′ ∈ [s′ + 1, n′] we have
∏s′

i=p+1 βi({i, xi}) = 0. By simple averaging, there are at least n′ − s′ = s′ − l′ pairs (i, x),
i = p + 1, . . . , s′, x ∈ [s′ + 1, n′], for which we have βi({i, x}) = 0. Therefore, the left hand

side of (43) in this case does not exceed (s′ − 1)
[

(

n′

2

)

+ n′
]

, which is at most the right hand

side of (43), since
(

n′

2

)

≥ (s′ − l′)n′.

Proof of Theorem 2

We prove the theorem by double induction. We apply induction on m, and for fixed m the
induction on n. The case m = 0 of (5) is very easy to verify. The case n = q is the bound
(1).

We may assume that all the Fi are shifted. The following two families on [n − 1] are
typically defined for a family F ⊂ 2[n]:

F(n) :=
{

A− {n} : n ∈ A,A ∈ F
}

,

F(n̄) :=
{

A : n /∈ A,A ∈ F
}

.

It is clear that F1(n̄), . . . ,Fs(n̄) are q-dependent. Next we show that F1(n), . . . ,Fs(n) are
(q−s)-dependent. Assume for contradiction that F1, . . . , Fs, where Fi ∈∈ Fi(n), are pairwise
disjoint and that H := F1 ∪ . . . ∪ Fs has size at most q − s. Since n ≥ q, n − (q − s) ≥ s.
That is, we can find distinct elements x1, . . . , xs ∈ [n] − H. Since Fi are shifted, we have
Fi ∪ {xi} ∈ Fi for i = 1, . . . , s, and the sets Fi ∪ {xi} are pairwise disjoint. Their union
H ∪ {x1, . . . , xs} has the size |H|+ s ≤ q, a contradiction.

Recall the definition (4). The induction hypothesis for Fi(n̄) gives

∑

i

|Fi(n̄)| ≤
∑

i

|F̃n−1,q
i |. (44)

Applying the induction hypothesis to Fi(n) with (q − s) = s(m− 1)− l gives

∑

i

|Fi(n)| ≤
∑

i

|F̃n−1,q−s
i |. (45)
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Adding (44) and (45), we get
∑

i

|Fi| =
∑

i

(

|Fi(n)|+ |Fi(n̄)|
)

≤
∑

i

(

|F̃n−1,q
i |+ |F̃n−1,q−s

i |
)

.

We have F̃n−1,q
i = F̃n,q

i (n̄) and F̃n−1,q−s
i = F̃n,q

i (n). Thus, for any i

|F̃n−1,q
i |+ |F̃n−1,q−s

i | = |F̃n,q
i (n̄)|+ |F̃n,q

i (n)| = |F̃n,q
i |.

4 Application of Theorem 3 to an anti-Ramsey prob-

lem

Let
(

[n]
k

)

= F0∪. . .∪FM−1 be a coloring. The following quantity was studied by Özkahya and
Young [16]: the minimum value ar(n, k, s) of M such that in any coloring as above with M
colors there is a rainbow s-matching, that is, a set of s pairwise disjoint k-sets from pairwise
distinct Fi. They have conjectured that ar(n, k, s) = ek(n, s−1)+2 and proved the conjecture
for s = 3 and for n ≥ 2k3s. They also obtained the bound ar(n, k, s) ≤ ek(n, s− 1) + s for
n ≥ sk + (s− 1)(k − 1).

It is not difficult to see that ar(n, k, s) ≥ ek(n, s− 1)+ 2 for any n, k, s. Indeed, consider
the maximal family of k-sets with no (s− 1)-matching and assign a different color to each of
these sets. Next, assign the same color to all the remaining sets. This is a coloring of

(

[n]
k

)

without a rainbow matching.
In this section we state and prove a result (unfortunately, only in a certain range), which

is much stronger than the conjecture from [16]. We say that the coloring of
(

[n]
k

)

is star-

like if there exists a set Y ⊂
(

[n]
s−2

)

and a number i, 0 ≤ i ≤ M − 1, such that each set
F ∈ Fj, j ∈ {0,M − 1} − {i}, intersects Y . Clearly, each star-like coloring has at most
ek(n, s − 1) + 1 colors. For the convenience of the forthcoming formulation of the theorem
we define the quantity

h(n, k, s) := max{|F| : F ⊂

(

[n]

k

)

, ν(F) < s, τ(F) ≥ s},

which was determined for a certain range in Theorem 3.

Theorem 13. Let s ≥ 3, k ≥ 2, n ≥ 2sk be some integers. Consider a coloring of
(

[n]
k

)

into
M colors. Then either this coloring is star-like, or M ≤ h(n, k, s− 1) + s.

The aforementioned conjecture of Özkahya and Young follows from Theorem 13, once
we can apply Theorem 3 or an analogous statement. Indeed, it is shown in Theorem 3
that h(n, k, s − 1) is much smaller than ek(n, s − 1). Moreover, we do not need a precise
Hilton-Milner-type result here, so we can use a weaker form of Theorem 3 that was proven
in [8]. Theorem 5 in [8] implies, in particular, that for n ≥ sk + (s − 1)(k − 1) we have
ek(n, s− 1)− h(n, k, s− 1) ≥ 1

s

(

n−s−k+2
k−1

)

. Since for such n and k ≥ 3 we have 1
s

(

n−s−k+2
k−1

)

>
s− 2, we conclude that the conjecture is verified for this range.
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Corollary 14. We have ar(n, k, s) = ek(n, s− 1) + 2 for n ≥ sk + (s− 1)(k − 1), k ≥ 3.

Note that this is the same range in which Özkahya and Young got a weaker bound
ar(n, k, s) ≤ ek(n, s− 1) + s. We remark that the case k = 2 has already been settled for all
values of parameters (see [16] for the history of the problem).

Fix a coloring in M = h(n, k, s− 1) + s colors. We may assume that there is a rainbow
(s− 1)-matching F1, . . . , Fs−1 with, say, Fi ∈ FM−i, i = 1, . . . , s− 1.

Let Gi ∈ Fi, i = 0 . . . ,M − s, be an arbitrary system of distinct representatives of these
color classes. Note thatM−s+1 > h(n, k, s). Thus, either G := {G0, . . . , GM−s} ⊂

(

[n]
k

)

−
(

U
k

)

for a suitable U ⊂
(

[n]
n−s+2

)

, or there is an s− 1-matching, say G1, . . . , Gs−1, in G.

In the latter case we can apply the argument of Özkahya and Young: since the colors of
F1, . . . , Fs−1, G1, . . . , Gs−1 are all distinct, Hi ∩ (F1 ∪ . . .∪Fs−1) 6= ∅ holds for 1 ≤ i < s. On
the other hand, any k-set from [n] \ ∪s−1

i=1Hi ∪Fi will form a rainbow s-matching with one of
these two s− 1-matchings. Therefore, we are done in this case if n ≥ k + (2k − 1)(s− 1) =
sk + (s− 1)(k − 1).

In the former case the family G must satisfy τ(G) ≤ s − 2 for all choices of the repre-
sentatives Gi ∈ Fi. Let T := T (G) be a cover of size s − 2, that is, T ∩ G 6= ∅ for all
G ∈ G.

Claim 15. Fix N ≥ h(n, k, s−1) and pairwise disjoint families Hi, i = 0, . . . N, of k-subsets
of [n]. If for any set of representatives H := {H0, . . . , HN} with Hi ∈ Hi there is a cover
T = T (H) of size s− 2, then T is the cover for the family ∪N

i=0Hi.

Proof. Assume the contrary: that there is a set H ′ ∈ H0 such that H ′ ∩ T = ∅. The family
H′ := {H ′, H1, . . . , HN} also satisfies τ(H′) ≤ s−2, and so there is a set T ′ 6= T , |T ′| = s−2,
such that H1, . . . , HN all intersect T ′. Define m(T, T ′) :=

∣

∣{F ⊂
(

[n]
k

)

: F ∩T 6= ∅ 6= F ∩T ′}
∣

∣.
We want to show that for any distinct T, T ′ of size s − 2 the quantity m(T, T ′) is smaller
than h(n, k, s− 1). This will clearly lead to the contradiction.

Let us show that m(T, T ′) is maximal when |T ∩ T ′| = |T | − 1 = s − 3. Indeed if
|T ∩T ′| < |T |−1, then we may choose x ∈ T \T ′, y ∈ T ′\T and define T ′′ := (T−{y})∪{x}.
Let F be an arbitrary set satisfying F ∩ T 6= ∅ and F ∩ T ′ 6= ∅ and F ∩ T ′′ = ∅. This means
that F ∩ (T ′ ∪ T ′′) = {y}, F ∩ ((T − {x}) \ T ′) 6= ∅.

Setting |T ∩ T ′| = t, the number of such sets F ∈
(

[n]
k

)

is
(

n−(s−2)−1
k−1

)

−
(

n−2(s−2)+t
k−1

)

.
On the other hand, the sets F satisfying F ∩T 6= ∅, F ∩T ′′ 6= ∅, and F ∩T ; = ∅ are those

with F ∩ (T ′ ∪ T ′′) = {x}. Their number is
(

n−(s−2)−1
k−1

)

, which is clearly bigger.

Assuming that |T ∩ T ′| = s − 3, we get that m(T, T ′) =
(

n
k

)

−
(

n−(s−3)
k

)

+
(

n−(s−1)
k−2

)

.

Since h(n, k, s− 1) ≥
(

n
k

)

−
(

n−(s−2)
k

)

−
(

n−(s−2)−k
k−1

)

+ 1, we have h(n, k, s− 1)−m(T, T ′) >
(

n−(s−2)
k−1

)

−
(

n−(s−2)−k
k−1

)

> 0. This completes the proof of the claim.
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Applying Claim 15 to the first M − s color classes, we get that they all intersect the set
T of size s− 2. To complete the proof we need to show that the same holds for some M − 1
colors.

Note that since
∑M−s

i=0 |Fi| ≤
(

n
k

)

−
(

n−(s−2)
k

)

, one of the last s−1 color classes, say FM−1,

has size at least 1
s−1

(

n−s+2
k

)

.

Claim 16. In every rainbow (s− 1)-matching one of the k-sets belongs to FM−1.

Proof. Assume the contrary. Let the color classes forming the (s− 1)-matching in question
be FM−s, . . . ,FM−2. Applying Claim 15 to F0, . . . ,FM−s−1,FM−1, we find a cover T of size
s− 2 for F0 ∪ . . . ∪ FM−s−1 ∪ FM−1. We infer

M − s+
1

s− 1

(

n− s+ 2

k

)

≤ |F0 ∪ . . . ∪ FM−s−1 ∪ FM−1| ≤

(

n

k

)

−

(

n− s+ 2

k

)

. (46)

We have M − s ≥ h(n, k, s− 1) >
(

n
k

)

−
(

n−(s−3)
k

)

. Also, we have

(

n− (s− 3)

k

)

=
n− s+ 2− k

n− s− 2

(

n− (s− 2)

k

)

≥
s− 1

s

(

n− (s− 2)

k

)

,

provided n−s+2 ≥ sk. The inequalities above contradict (46), and so the claim follows.

We conclude that there is no rainbow (s− 1)-matching in F1∪ . . .∪FM−2, which implies
that there is a cover of size s− 2 for any set of distinct representatives of the color classes.
In turn, Claim 15 implies that F1 ∪ . . . ∪ FM−2 can be covered by a set T of size s− 2, i.e.,
the coloring is star-like. Theorem 13 is proved.

5 Almost matchings

Let us say that the sets F1, . . . , Fs form an almost matching if {F1, . . . , Fs} has at most one
vertex of degree greater than one and even that vertex has degree at most two.

Define

a(m, s) := max
{

|F| : F ⊂ 2[n],F contains no almost matching of size s
}

.

Since almost matching includes matching, a(m, s) ≤ e(m, s) is obvious.

Theorem 17. The inequality a(sm − 2, s) =
∑

t≥m

(

sm−2
t

)

holds for all s ≥ 2, m ≥ 1.
Moreover, the equality holds iff F = {F ⊂ [n], |F | ≥ m}.

Proof. We may suppose that F is closed upwards. Consider the families F1, . . . ,Fs, where
Fi := F for i = 1, . . . , s− 1, and Fs := ∂F ∪ {[n]}. (see (16)).

Claim 18. The families F1, . . . ,Fs are cross-dependent.
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Proof. Indeed, if F1, . . . , Fs, where Fi ∈ Fi, are pairwise disjoint, then, replacing Fs by some
F ∈ F , Fs ⊂ F, |F \ Fs| = 1, we obtain s members F1, . . . , Fs−1, F of F that are almost
disjoint.

Applying Theorem 1 yields

s
∑

i=1

|Fi| ≤

(

n

m− 1

)

+ s
∑

t≥m

(

n

t

)

. (47)

Now recall Harper’s Theorem. In the special case |F| ≥
∑n

t=m

(

n
t

)

it gives |∂F| ≥
∑n−1

t=m−1

(

n
t

)

.

Therefore, |∂F ∪ {[n]}| ≥
∑n

t=m−1

(

n
t

)

. Moreover, by Harper’s theorem, both equalities are
strict for F upward closed unless F = {F ⊂ [n] : |F | ≥ m}. Together with (47) this yields
the statement of the theorem.
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