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Families with no s pairwise disjoint sets

Peter Frankl, Andrey Kupavskii∗

Abstract

For integers n ≥ s ≥ 2 let e(n, s) denote the maximum of |F| where F is a family
of subsets of an n-element set and F contains no s pairwise disjoint members. Half
a century ago, solving a conjecture of Erdős, Kleitman determined e(sm − 1, s) and
e(sm, s) for all m, s ≥ 1. During the years very little progress in the general case was
made.

In the present paper we state a general conjecture concerning the value of e(sm−
l,m) for 1 < l < s and prove its validity for s > s0(l,m). For l = 2 we determine the
value of e(sm− 2,m) for all s ≥ 5.

Some related results shedding light on the problem from a more general context are
proved as well.

1 Introduction

Let [n] := {1, 2, . . . , n} be the standard n-element set and 2[n] its power set. A subset
F ⊂ 2[n] is called a family. For 0 ≤ k ≤ n we use the notation

(
[n]
k

)
:= {H ⊂ [n] : |H| = k}.

The maximum number of pairwise disjoint members of a family F is denoted by ν(F)
and called the matching number of F . Note that ν(F) ≤ n unless ∅ ∈ F .

Two of the important classical results in extremal set theory are concerning the matching
number.

Definition 1. For n ≥ s ≥ 2 define

e(n, s) := max
{
|F| : F ⊂ 2[n], ν(F) < s

}
.

Definition 2. For positive integers n, k, s ≥ 2, n ≥ ks define

ek(n, s) := max
{

|F| : F ⊂

(
[n]

k

)

, ν(F) < s
}

.

For s = 2 both e(n, s) and ek(n, s) were determined by Erdős, Ko and Rado.
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Theorem (Erdős-Ko-Rado [4]).

e(n, 2) = 2n−1, (1)

ek(n, 2) =

(
n− 1

k − 1

)

for n ≥ 2k. (2)

For m =
⌈
n+1
s

⌉
the family

(
[n]

≥ m

)

:= {H ⊂ [n] : |H| ≥ m}

does not contain s pairwise disjoint sets. Erdős conjectured that for n = sm− 1 one cannot
do any better. Half a century ago Kleitman proved this conjecture and determined e(sm, s)
as well.

Theorem (Kleitman [14]).

e(sm− 1, s) =
∑

m≤t≤sm−1

(
sm− 1

t

)

, (3)

e(sm, s) =

(
sm− 1

m

)

+
∑

m+1≤t≤sm

(
sm

t

)

. (4)

Note that e(sm, s) = 2e(sm − 1, s). In general, e(n + 1, s) ≥ 2e(n, s) is obvious, and,
since the constructions of families that match the bounds are easy to provide, (3) follows
from (4). For s = 2 both formulae give 2n−1, the easy-to-prove bound (1). In the case s = 3
there is just one case not covered by the Kleitman Theorem, namely n ≡ 1 (mod 3). This
was the subject of the PhD dissertation of Quinn [16]. In it a very long, tedious proof for
the following equality is provided:

e(3m+ 1, 3) =

(
3m

m− 1

)

+
∑

m+1≤t≤3m+1

(
3m+ 1

t

)

. (5)

Unfortunately, this result was never published and no further progress was made on the
determination of e(n, s).

Let us first make a general conjecture.

Definition 3. Let n = sm+ s− l, 0 < l ≤ s. Set

P(s,m, l) :=
{
P ⊂ 2[n] : |P |+ |P ∩ [l − 1]| ≥ m+ 1

}
,

Claim. ν(P(s,m, l)) < s.
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Proof. Assume that P1, . . . , Ps ∈ P(s,m, l) are pairwise disjoint. Then

|P1|+ . . .+ |Ps| = |P1 ∪ . . . ∪ Ps| ≤ n = sm+ s− l

and
|P1 ∩ [l − 1]|+ . . .+ |Ps ∩ [l − 1]| ≤

∣
∣[l − 1]

∣
∣ = l − 1

hold. However, adding these two inequalities, the left hand side is at least s(m + 1) while
the right hand side is s(m+ 1)− 1, a contradiction.

Conjecture 1. Suppose that s ≥ 2, m ≥ 1, and n = sm+ s− l for some 0 < l ≤ ⌈ s
2
⌉. Then

e(sm+ s− l, s) = |P(s,m, l)| holds. (6)

Let us mention that for l = 1 the formula (6) reduces to (3) and for s = 3, l = 2 it is
equivalent to (5). Unfortunately, Conjecture 1 does not cover the whole range of parame-
ters m, s, l. We discuss reasons for that and give a “meta-conjecture” for all values of the
parameters in Section 5.

Our main result is the proof of Conjecture 1 in a relatively wide range.

Theorem 1. e(sm+ s− l, s) = |P(s,m, l)| holds for

(i) l = 2 and s ≥ 5, and l = 2, s = 4 for even m,

(ii) m = 1,

(iii) s ≥ lm+ 3l + 3.

The proof of this theorem is given in Sections 3 and 4. The proof of (ii) is very easy,
but it illustrates our approach for the proof of (iii), so we give it in the beginning of Section
4. We discuss possible generalizations and open problems in Section 5. We remark that
in [9] we give the proof of Conjecture 1 for l = 2 and s = 3, 4. This, together with (i),
completely covers the case l = 2 of the conjecture (and gives an alternate proof of Quinn’s
result). The methods used in [9] are different from the ones used in the present paper, and
the proofs in are quite long and technical, so we decided to present them in a separate paper.

The problems of determining e(n, s) and ek(n, s) are, in fact, closely interconnected. In
the proof of Theorem 1 we are going to use some results concerning the uniform case. Thus,
we summarize the state of the art for the uniform problem, also known as Erdős Matching
Conjecture.

There are some natural ways to construct a family A ⊂
(
[n]
k

)
satisfying ν(A) = s for

n ≥ (s+ 1)k. Following [5], let us define the families A
(k)
i (n, s) :

A
(k)
i (n, s) :=

{

A ∈

(
[n]

k

)

: |A ∩ [(s+ 1)i− 1]| ≥ i
}

, 1 ≤ i ≤ k. (7)
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Conjecture 2 (Erdős Matching Conjecture [2]). For n ≥ (s+ 1)k

ek(n, s+ 1) = max
{
|A

(k)
1 (n, s)|, |A

(k)
k (n, s)|

}
. (8)

The conjecture (8) is known to be true for k ≤ 3 (cf. [3], [15] and [7]).
Improving earlier results of [2], [1], [12] and [10], in [6]

ek(n, s+ 1) =

(
n

k

)

−

(
n− s

k

)

is proven for n ≥ (2s+ 1)k − s. (9)

In the case of s = 1 (that is, the case of the Erdős-Ko-Rado Theorem) one has a very
useful stability theorem due to Hilton and Milner [11]. In the next section, along with other
auxiliary results, we formulate and prove a Hilton-Milner-type result for the case s > 1.

2 Auxiliaries

In this section we provide some results necessary for the proof of Theorem 1.

We recall the definition of the left shifting (left compression), which we would simply
refer to as shifting. For a given pair of indices i < j ∈ [n] and a set A ∈ 2[n] we define the
(i, j)-shift Si,j(A) of A in the following way.

Si,j(A) :=

{

A if i ∈ A or j /∈ A;

(A− {j}) ∪ {i} if i /∈ A and j ∈ A.

Next, we define the (i, j)-shift Si,j(F) of a family F ⊂ 2[n]:

Si,j(F) := {Si,j(A) : A ∈ F} ∪ {A : A, Si,j(A) ∈ F}.

We call a family F shifted, if Si,j(F) = F for all 1 ≤ i < j ≤ n.

Recall that F is called closed upward if for any F ∈ F all sets that contain F are also in
F . When dealing with e(n, s), we may restrict our attention to the families that are closed
upward and shifted (cf. e.g. [5] for a proof), which we assume for the rest of the paper.

2.1 Averaging over partitions

The exposition in this subsection follows very closely the original proof of Kleitman [14],
borrowing a large part of notation and statements from there.

Let n = sm+ s− l, 1 ≤ l ≤ s, for this subsection. Consider a family F ⊂ 2[n], ν(F) < s.
Put F̄ := 2[n] − F and y(q) := |F̄ ∩

(
[n]
q

)
|.

Let π be an ordered partition of a positive integer x, x ≤ n, into s positive integers
p1, . . . , ps:

∑s

r=1 pr = x. In what follows we simply call any such π a partition. For an
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s-tuple T = (A1, . . . , As) of disjoint subsets of [n] we say that T is of type π if |Sr| = pr. We
note that, in general, T does not partition the whole set [n]. Define the following class of
s-tuples:

Ci(π) :=
{
T = (A1, . . . , As) : T is of type π, |{r : Ar ∈ F̄}| = i

}
.

Informally, an s-tuple T of type π belongs to Ci(π) if exactly i sets from the tuple are not

contained in F .
The number of s-tuples of type π we denote n(π). Clearly,

n(π) =
n!

(n−
∑s

r=1 pr)!
∏s

r=1 pr!
. (10)

We set Xi(π) := |Ci(π)|/n(π).

The following simple lemma is essentially stated in [14]:

Lemma 2. For any partition π we have

s∑

i=0

Xi(π) =
s∑

i=1

Xi(π) = 1. (11)

s∑

i=1

iXi(π) =

s∑

r=1

y(pr)
/
(
n

pr

)

. (12)

The first statement is evident, while the second one is verified by a simple application of
double counting: count in two ways the number of pairs (s-tuple of type π; a subset from F̄
that belongs to the s-tuple).

Denote by πe the partition of x = ms into s equal parts. From (12) we immediately get
that

y(m) =
1

s

(
n

m

) s∑

i=1

iXi(πe). (13)

The proof of the following lemma relies on the ideas of the proof of ([14], Lemma 2):

Lemma 3. For any 0 ≤ j ≤ m and 1 ≤ u ≤ s− l we have

y(m+ u) ≥
1

s

(
n

m+ u

) s−l
u∑

i=1

Xi(πe). (14)

Proof. Consider an s-tuple T that belongs to Ci(πe) for some 1 ≤ i ≤ s−l
u
. Distribute some iu

elements of [n]\T evenly between the i sets of T belonging to F̄ . We have ui ≤
∣
∣[n]\T

∣
∣ = s−l,

and so the number of elements in [n] \ T is sufficient. Since ν(F) < s, at least one of the
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obtained (m + u)-sets must be in F̄ . We say that any (m + u)-set from F̄ obtained in this
way is associated with T .

Consider a bipartite graph G = (A,B,E), where the part A consists of the m-sets from
T ∩ F̄ , the part B :=

(
[n]\T
u

)
and E contains the edge connecting an m-set and a u-subset of

[n] \ T iff their union belongs to F . Take at random a subfamily B′ ⊂
(
[n]\T
u

)
of i pairwise

disjoint u-element sets, and consider a subgraph G′ of G induced on A and B′.
Since ν(F) < s, there is no perfect matching in G′: if we distribute the elements from

B′ between the m-sets from T as it is suggested by the perfect matching, we would get an
s-tuple of pairwise disjoint sets with all sets in F . Therefore, the number of edges in G′ is
at most i(i− 1). Averaging over all choices of B′, we get that

|E| ≤

(∣
∣[n] \ T

∣
∣

u

)

(i− 1) =

(
s− l

u

)

(i− 1).

Thus, the number of non-edges in the bipartite graph is at least
(
s−l

u

)
. Each non-edge

corresponds to an (m + u)-set associated with T , and so there are at least
(
s−l

u

)
different

(m+ u)-sets associated with each T .

On the other hand, each set from F̄ ∩
(

[n]
m+u

)
is associated with at most N s-tuples of the

type πe, where

N := s

(
m+ u

u

)
(n−m− u)!

(m!)s−1(s− l − u)!
.

Therefore, by double counting we get that

y(m+ u) ≥

(
s−l

u

)

N

s−l
u∑

i=1

|Ci(πe)|
(10)
=

1

s

(
n

m+ u

) s−l
u∑

i=1

Xi(πe).

2.2 Calculations

In this subsection we prove some technical claims necessary for the proof of Theorem 1.

Claim. 1. For n = sm+ s− 2 the following inequality holds:

(

s− 2−
1

s− 2

)(n

m

)

+
m∑

j=1

(s− 1)

(
n

m− j

)

≤

(
n

m+ 1

)

. (15)

2. For n = sm+ s− l with s ≥ 3, s ≥ l ≥ 2 we have

s− l

2

(
n

m

)

≤

(
n

m+ 2

)

. (16)
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3. For n = sm+ s− l we have

(s− l)

(
n

m

)

≤

(
n

m+ 1

)

. (17)

Proof. 1. Indeed, we have
( n

m−j)
( n

m−j−1)
= n−m+j+1

m−j
> s− 1 for any j ≥ 0. Therefore,

∑m

j=1(s−

1)
(

n

m−j

)
≤ (s− 1) 1

1− 1
s−1

(
n

m−1

)
= (s−1)2

s−2

(
n

m−1

)
. On the other hand, we have

(
n

m+ 1

)

−
(

s− 2−
1

s− 2

)(n

m

)

=
[m(s− 1) + s− 2

m+ 1
−
(

s− 2−
1

s− 2

)](n

m

)

>

s− 1

s− 2

m

m+ 1

(
n

m

)

=
s− 1

s− 2

m

m+ 1

n−m+ 1

m

(
n

m− 1

)

=
s− 1

s− 2

(s− 1)(m+ 1)

m+ 1

(
n

m− 1

)

=

=
(s− 1)2

s− 2

(
n

m− 1

)

.

2. For s = l the statement is obvious, thus we assume that s > l. We have

(
n

m+ 2

)

=
((s− 1)m+ s− l)((s− 1)m+ s− l − 1)

(m+ 1)(m+ 2)

(
n

m

)

>

> (s− l)
(s− 1)m+ s− l − 1

m+ 2

(
n

m

)

≥ (s− l)
(s− 1)m

m+ 2

(
n

m

)

.

The last expression is greater than s−l
2

(
n

m

)
for any s ≥ 3, m ≥ 1.

3. We have
(

n

m+1

)
= (s−1)m+s−l

m+1

(
n

m

)
≥ (s− l)

(
n

m

)
.

As in the previous subsection, consider a family F ⊂ 2[n] with ν(F) < s.

Claim 4. For n = s(m+ 1)− l, s ≥ 3, m ≥ 1, we have

y(m) +
1

2
y(m+ 1) + y(m+ 2) ≥

1

s

(
n

m

)(

s− l + 1 +
s∑

i=s−l+2

Xi(πe)
)

. (18)

For n = s(m+ 1)− 2, s ≥ 4, m ≥ 1 we have

y(m) +
(s− 5/2)

(
n

m

)

(
n

m+1

) y(m+ 1) + y(m+ 2) ≥

≥
1

s

(
n

m

)(

s− 1 +

s−2∑

i=1

(
i−

3

2

)
Xi(πe) +X1(πe) +Xs(πe)

)

(19)
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Proof. We give only the proof of (18), the proof of (19) is analogous. Indeed, by (17) and
(14) with u = 1 we have

1

2
y(m+ 1) ≥

s−l
2

(
n

m

)

(
n

m+1

) y(m+ 1) ≥
s− l

2s

(
n

m

) s−l∑

i=1

Xi(πe).

By the inequalities (16) and (14) with u = 2 we have

y(m+ 2) ≥
s−l
2

(
n

m

)

(
n

m+2

) y(m+ 2) ≥
s− l

2s

(
n

m

) s−l
2∑

i=1

Xi(πe).

Adding them up with (13) we get that the left hand side of the inequality (18) is at least
1
s

(
n

m

)∑s

i=1 αiXi(πe), where each coefficient αi is at least s− l + 1, moreover, αi ≥ s− l + 2
for i ≥ s− l + 2. Using (11), we get (18).

2.3 Hilton-Milner-type result for Erdős Matching Conjecture

We conclude Section 2 with the promised stability theorem for the uniform case. Let us
define the following families.

H(k)(n, s) :=
{

H ∈

(
[n]

k

)

: H ∩ [s] 6= ∅
}

∪
{
[s+ 1, s+ k]

}
−

−
{

H ∈

(
[n]

k

)

: H ∩ [s] = {s}, H ∩ [s + 1, s+ k] = ∅
}

.

Note that ν(H(k)(n, s)) = s for n ≥ sk and

|H(k)(n, s)| =

(
n

k

)

−

(
n− s

k

)

+ 1−

(
n− s− k

k − 1

)

. (20)

The covering number τ(H) of a hypergraph is the minimum of |T | over all T satisfying
T ∩ H 6= ∅ for all H ∈ H. Recall the definition (7). If n ≥ k + s, then the equality

τ(A
(k)
1 (n, s)) = s is obvious. At the same time, if n ≥ k + s, then τ(H(k)(n, s)) = s + 1 and

τ(A
(k)
i (n, s)) > s for i ≥ 2.
Let us make the following conjecture.

Conjecture 3. Suppose that n ≥ (s+1)k and F ⊂
(
[n]
k

)
satisfies ν(F) = s, τ(F) > s. Then

|F| ≤ max
{{

|A
(k)
i (n, s)| : i = 2, . . . , k

}
, |H(k)(n, s)|

}

holds. (21)

The Hilton-Milner Theorem shows that (21) is true for s = 1.
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Theorem (Hilton-Milner [11]). Suppose that n ≥ 2k and F ⊂
(
[n]
k

)
satisfies ν(F) = 1 and

τ(F) ≥ 2. Then
|F| ≤ |H(k)(n, 1)| holds.

Let us mention that for n > 2sk the maximum on the RHS of (21) is attained on
|H(k)(n, s)|. For n > 2k3s (21) was verified by Bollobás, Daykin and Erdős [1]. In the paper
[8] we verify the conjecture for n ≥ (2+o(1))sk. Here we present a weaker, but easier-to-prove
result, which we use in the proof of Theorem 1.

Theorem 5. Let n = (u+ s− 1)(k − 1) + s + k, u ≥ s + 1. Then for any family G ⊂
(
[n]
k

)

with ν(G) = s and τ(G) ≥ s+ 1 we have

|G| ≤

(
n

k

)

−

(
n− s

k

)

−
u− s− 1

u

(
n− s− k

k − 1

)

. (22)

Below we prove Theorem 5. For s = 1 the inequality follows from the Hilton-Milner theo-
rem, therefore we may assume that s ≥ 2. Consider any family G satisfying the requirements
of the theorem. The proof uses the techniques developed in [6].

The case of shifted G

First we prove Theorem 5 in the assumption that G is shifted. Following [6], we say that
the families F1, . . . ,Fs are nested, if F1 ⊃ F2 ⊃ . . . ⊃ Fs. We also say that the families
F1, . . . ,Fs are cross-dependent if for any Fi ∈ Fi, i = 1, . . . , s, there are two distinct indices
i1, i2, such that Fi1 , Fi2 intersect. The following lemma may be proven by a straightforward
modification of the proof of Theorem 3.1 from [6]:

Lemma 6 ([6]). Let N ≥ (u+ s− 1)(k − 1) and F1, . . . ,Fs ⊂
(
[N ]
k−1

)
be cross-dependent and

nested, then

|F1|+ |F2|+ . . .+ |Fs−1|+ u|Fs| ≤ (s− 1)

(
N

k − 1

)

. (23)

We use the following notation. For any p ∈ [n] and a subset Q ⊂ [1, p] define

G(Q, p) := {G \Q : G ∈ G, G ∩ [1, p] = Q}.

The first step of the proof of Theorem 5 is the following lemma.

Lemma 7. Assume that |G| − |G(∅, s)| ≤
(
n

k

)
−
(
n−s

k

)
− C for some C > 0. Then

|G| ≤

(
n

k

)

−

(
n− s

k

)

−
u− s− 1

u
C. (24)

Proof. Recall the definition of the immediate shadow

∂H :=
{
H : ∃H ′ ∈ H, H ⊂ H ′, |H ′ −H| = 1

}
.
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For every H ∈ ∂G(∅, s+1) we have H ∈ G({s+1}, s+1), since G is shifted. Combining this
with the inequality s|∂H| ≥ |H| from ([6], Theorem 1.2), valid for any H with ν(H) ≤ s, we
get

|G(∅, s+ 1)| ≤ s|G({s+ 1}, s+ 1)|. (25)

For any Q ⊂ [1, s + 1], |Q| ≥ 2, we have A
(k)
1 (n, s)(Q, s + 1) =

(
[s+2,n]
k−|Q|

)
, and so we

have |G(Q, s + 1)| ≤ |A
(k)
1 (n, s)(Q, s + 1)|. We also have A

(k)
1 (n, s)(∅, s + 1) = ∅ and

∑s+1
i=1 |A

(k)
1 (n, s)({i}, s+ 1)| = s

(
n−s−1
k−1

)
. Using (25) and (23), we have

|G(∅, s+ 1)|+
s+1∑

i=1

|G({i}, s+ 1)| ≤
s∑

i=1

|G({i}, s+ 1)|+ (s+ 1)|G({s+ 1}, s+ 1)| ≤

≤ s

(
n− s− 1

k − 1

)

− (u− s− 1)|G({s+ 1}, s+ 1)|.

Thus, |A
(k)
1 (n, s)|−|G| ≥ (u−s−1)|G({s+1}, s+1)|

(25)
≥ u−s−1

s+1
|G(∅, s)|.On the other hand,

the inequality from the formulation of the lemma tells us that |A
(k)
1 (n, s)|−|G| ≥ C−|G(∅, s)|.

Adding these two inequalities (the second one taken with coefficient u−s−1
s+1

), we get that

|A
(k)
1 (n, s)| − |G| ≥ u−s−1

u
C.

Therefore, to prove Theorem 5, we need to show that C ≥
(
n−s−k

k−1

)
. We use the following

simple observation:

Observation 8. If for some C > 0 and B ⊂
(
[s+1,n]
k−1

)
we have

∑s

i=1

∣
∣G({i}, s)∩B

∣
∣ ≤ s|B|−C,

then |G| − |G(∅, s)| ≤
(
n

k

)
−
(
n−s

k

)
− C.

Since G(∅, s) is non-empty and shifted, we have [s+1, s+k] ∈ G(∅, s). Put B :=
(
[s+k+1,n]

k−1

)
.

Denote GB({i}, s) := G({i}, s) ∩ B, i = 1, . . . , s. Then the families GB({i}, s), i = 1, . . . , s,
are cross-dependent and nested. From (23) we get the inequality

|GB({1}, s)|+. . .+|GB({s−1}, s)|+u|GB({s}, s)| ≤ (s−1)

(
n− s− k

k − 1

)

= s|B|−

(
n− s− k

k − 1

)

.

Applying Observation 8, the above inequality implies the desired bound on C. The last
thing we note is that the condition n ≥ (u+ s− 1)(k − 1) + s+ k is exactly the one needed
for the proof to work. The proof of Theorem 5 for shifted families is complete.

The case of not shifted G

Consider an arbitrary family G satisfying the requirements of the theorem. Since the property
τ(G) > s is not necessarily maintained by shifting, we cannot make the family G shifted right
away. However, each (i, j)-shift, 1 ≤ i < j ≤ n, decreases τ(G) by at most 1, and so we
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perform the (i, j)-shifts (1 ≤ i < j ≤ n) one by one until either G becomes shifted or
τ(G) = s+ 1. In the former case we fall into the situation of the previous subsection.

Assume w.l.o.g. that τ(G) = s + 1 and that each set from G intersects [s + 1]. Then all
families G({i}, s+1), i = 1, . . . , s+1, are nonempty. Make the family G shifted in coordinates
s+ 2, . . . , n by performing all the (i, j)-shifts for s + 2 ≤ i < j ≤ n. Denote the new family
by G again. Since the shifts do not increase the matching number, we have ν(G) ≤ s and
τ(G) ≤ s+ 1. Each family G({i}, s+ 1) contains the set [s+ 2, s+ k].

Next, perform all possible shifts on coordinates 1, . . . , s + 1, and denote the resulting
family by G ′. We have |G ′| = |G|, ν(G ′) ≤ s, and, most importantly, G ′({i}, s+ 1) are nested
and non-empty for all i = 1, . . . , s + 1. The last claim is true due to the fact that all of the
families contained the same set before the shifting.

We can actually apply the proof of the previous subsection to G ′. Indeed, the main
consequence of the shiftedness we were using is that G ′({i}, s + 1), i = 1, . . . , s + 1, are all
non-empty and nested. We do have it for G ′. The other consequence was the bound (25),
which we do not need in this case as G ′(∅, s + 1) is empty since each set from G ′ intersects
[s+ 1]. The proof of Theorem 5 is complete.

3 Proof of the statement (i) of Theorem 1

Put n := sm+ s− 2 for this section. Consider a family F ⊂ 2[n] with ν(F) < s. In terms of
Section 2.1, the statement (i) is equivalent to the following inequality:

n∑

r=0

y(r) ≥

(
n− 1

m

)

+
m−1∑

r=0

(
n

r

)

. (26)

Applying the inequality (12) with the partition (m− j,m+ 1, . . . , m+ 1), we get

y(m− j) + (s− 1)

(
n

m−j

)

(
n

m+1

)y(m+ 1) ≥

(
n

m− j

)

. (27)

Thus, for s ≥ 4, using (15), (27), and (19), we get

n∑

r=0

y(r)
(15)
≥

m∑

r=0

y(r) +
(s− 5

2
)
(
n

m

)
+ (s− 1)

∑m

j=1

(
n

m−j

)

(
n

m+1

) y(m+ 1) + y(m+ 2)
(27),(19)

≥

≥
m∑

j=1

(
n

m− j

)

+
1

s

(
n

m

)(

s− 1 +
s−2∑

i=1

(
i−

3

2

)
Xi(πe) +X1(πe) +Xs(πe)

)

. (28)

Our goal is to prove the following lemma, which is the main ingredient we add to the
technique of [14].

11



Lemma 9. For s ≥ 5 and a family F ⊂ 2[n] with ν(F) < s we have

X1(πe) +

s−2∑

i=1

(
i−

3

2

)
Xi(πe) +Xs(πe) ≥

s− 2

n
. (29)

We first deduce (i) from Lemma 9. Note that s − 1 + s−2
n

= (s−1)(ms+s−2)+s−2
n

= s(n−m)
n

.
Taking that and (29) into account and continuing the chain of inequalities (28), we get that

n∑

r=0

y(r) ≥
m∑

j=1

(
n

m− j

)

+
1

s

(
n

m

)(

s− 1 +
s− 2

n

)

=

m∑

j=1

(
n

m− j

)

+
n−m

n

(
n

m

)

.

Finally,
(
n−1
m

)
= n−m

n

(
n

m

)
, which concludes the proof of the first part of Theorem 1.

Remark. We explain the motivation behind Lemma 9. The only density Xi(πe) that
has non-positive coefficient in (28) is Xs−1(πe), and it prevents us from getting a better
bound on

∑n

k=0 y(k) right away. Thus, we want to prove that other densities contribute
sufficiently to the expression on the right hand side of (28) to compensate for that. More-
over, we implicitly say that the contribution of the other densities for any family F ∩

(
[n]
m

)

is at least as big as the contribution of the maximal trivial intersecting family of m-element
sets. (We remind the reader that the maximal trivial intersecting family of m-sets consists
of all m-sets that contain a given element.) In the extremal family P(s,m, 2) the subfamily
P ∩

(
[n]
m

)
indeed forms a trivial intersecting family, and this partly explains why we obtain

tight bounds on e(n, s) in this case.

We are going to derive (29) using Katona’s circle method. Let σ be an arbitrary permu-
tation of [n]. Think of the vertices σ(1), . . . , σ(n) as being arranged on a circle: the vertex
next to σ(i) in the clockwise order is σ(i+1), with i+1 computed modulo n. For an arbitrary
i, 1 ≤ i ≤ n, let Di denote the circular arc {σ(i), . . . , σ(i+m− 1)}, with the computations
made modulo n.

We deal with s-tuples of pairwise disjoint arcs, and so it is natural to look at the Di in the
following order: Di, Dm+i, D2m+i, . . .. Let d denote the greatest common divisor of m and
s− 2 and put n̄ := n

d
. The above chain of Dj’s will close after n̄ steps, that is, Di+n̄m = Di

holds.
Having several chains may look like an additional trouble but actually it is working

in our favor. We end up partitioning the n circular arcs of length m into d groups of n̄
arcs. Let Di, Dm+i, . . . , Di+(n̄−1)m form any of these groups and let us arrange the numbers
0, 1, . . . , n̄− 1 on a circle and define the set R := {j : Di+jm ∈ F}.

The objects that interest us most are arcs of length s on this circle. Let Cr be the arc
starting at r. That is, Cr := {r, r + 1, . . . , r + s − 1}. It corresponds to s pairwise disjoint
sets Di+rm, . . . , Di+(r+s−1)m. The family of s-tuples of m-sets, represented by Cr, we denote
by C(σ). Note that the order of sets in the tuple corresponding to each Cr is fixed: it is also
circular. We use this notation in the averaging part of the proof.
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Let us define fb(R) :=
∣
∣{r : 0 ≤ r < n̄ : |Cr ∩R| = b}

∣
∣. The following simple claim is the

main tool for proving the analogue of (29) on the circle.

Claim 10. Define t, 1 ≤ t < s− 1, by the equation n̄ ≡ t(mod s). Then at least one of the

following possibilities holds:

(i) f0(R) ≥ t,

(ii) f1(R) = 0,

(iii) f2(R) ≥ 2.

Proof. We may assume that (ii) does not hold. Let us note that
∣
∣|Cj ∩R| − |Cj+1∩R|

∣
∣ ≤ 1,

i.e., |Cj ∩ R| is “continuous”. Consequently, if |Cu ∩R| ≥ 3 for some u, then (iii) holds.
Indeed, choosing v satisfying |Cv ∩ R| = 1, u and v divide the circle into two parts and

by the continuity of |Cj ∩R| on each part there exists at least one w satisfying |Cw ∩R| = 2.
From now on we assume fb = 0 for b ≥ 3 and f2(R) ≤ 1. This implies that any two

vertices of R are at least s− 1 apart on the circle. If they are exactly s− 1 apart then there
is a Cj containing both of them, i.e., |Cj ∩R| = 2. Therefore, this can occur at most once.

On the one hand, we have

f0(R) + f1(R) + f2(R) = n̄. (30)

On the other hand, every vertex belongs to Cu for exactly s values of u. So, if f2(R) = 0, then,
counting the total degree of vertices in R, we get f1(R) = |R|s. Since f1(R) ≤ n̄ ≡ t(mod s),
f0(R) ≥ t follows from (30).

If f2(R) = 1, then f1(R)+ f2(R) = |R|s− 1. Since t < s− 1, we infer f0(R) ≥ t+1 from
(30), concluding the proof of the claim.

Now we are ready to state and prove (29) for the arcs of length m in the cyclical per-
mutation σ. Let xj denote the number of those s-tuples Di, Di+m, . . . , Di+(s−1)m from which
exactly s− j are members of F (that is, j are members of F̄).

Lemma 11. In the notations above, for any permutation σ we have

x1 +
s−2∑

i=1

(
i−

3

2

)
xi + xs ≥ s− 2. (31)

Proof. First consider the case n = n̄, i.e., the greatest common divisor d of m and s − 2
is equal to 1. In this case xs−i = fi(R) for all i = 0, . . . , s. Let us apply Claim 10. In the
case (i) we get xs ≥ s− 2 and in case (iii) the left hand side of (31) is bounded from below
by 2(s − 2 − 3

2
), which is greater than s − 2 for s ≥ 5. In the remaining case (ii) we have

xs−1 = 0. Since in (31) all xi for i 6= s− 1 have coefficient at least 1
2
, the statement follows

from
∑s

i=1 xi = n ≥ 2s− 2.
Now suppose that d ≥ 2. We apply the claim separately to each of the d disjoint circles

of length n̄. In order to prove (31) we only need to show the corresponding statement on
each of the circles with s− 2 replaced by t := s−2

d
.
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This is automatically satisfied if f2(R) ≥ 1 or if f0(R) ≥ t. The last remaining case
is f1(R) = 0. Even in this case dn̄ = n ≥ 2s − 2 implies n̄

2
≥ s−1

d
> s−2

d
, concluding the

proof.

Remark. It is not difficult to verify that the argument above works for s = 4 and even
m due to the fact that in that case we have d = 2, and each of the disjoint circles contributes
at least 1 to the sum in the left hand side of (31). Since in the remaining part of the proof we
do not use the condition s ≥ 5, the statement of part (i) of Theorem 1 is valid in this case also.

We are left to do a standard averaging, always used in the applications of Katona’s circle
method. We sum over all σ the value of the expression in the left hand side of (31) and
compute the sum in two ways: grouping the summands with the same σ, and grouping the
ones that belong to the same class Ci(πe) of s-tuples. For any σ the left hand side of (31) is
at least s− 2 by Lemma 11. On the other hand, each s-tuple belongs to the the collection
C(σ) for n(m!)s(s− 2)! permutations. We have

n!(s− 2)
(31)
≤
∑

σ

[

|C(σ) ∩ C1(πe)|+
s−2∑

i=1

(
i−

3

2

)
|C(σ) ∩ Ci(πe)|+ |C(σ) ∩ Cs(πe)|

]

=

= n(m!)s(s− 2)!

[

|C1(πe)|+
s−2∑

i=1

(
i−

3

2

)
|Ci(πe)|+ |Cs(πe)|

]

(10)
=

= n(m!)s(s− 2)!
n!

(m!)s(s− 2)!

[

X1(πe) +
s−2∑

i=1

(
i−

3

2

)
Xi(πe) +Xs(πe)

]

=

= nn!

[

X1(πe) +

s−2∑

i=1

(
i−

3

2

)
Xi(πe) +Xs(πe)

]

.

Dividing the first and the last expression by nn!, we get that X1(πe) +
∑s−2

i=1 (i−
3
2
)Xi(πe) +

Xs(πe) ≥
s−2
n
.

4 Proof of the statements (ii), (iii) of Theorem 1

We restrict our attention to the families that are shifted and closed upwards (see Section 2).
The statement (ii) is equivalent to the following proposition.

Proposition 12. Put n = 2s− l for some 1 ≤ l < s. Let F ⊂ 2[n], ν(F) < s. Then

|2[n] −F| ≥ 2(s− l) + 2. (32)

Proof. Since F is closed upward, ∅ /∈ F . If there are at there are at most l− 1 singletons in
F , then (32) holds. Otherwise, {i} ∈ F , 1 ≤ i ≤ l. Consider

G := {F ∈ F : F ⊂ [l + 1, 2s− l]}.
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The family G contains no s− l pairwise disjoint sets, so

|G| ≤ e(2(s− l), s− l) = 2e(2(s− l)− 1, s− l)
(3)
= 2

∑

2≤t≤2(s−l)−1

(
2(s− l)− 1

t

)

=

= 2
(
22(s−l)−1 − 2(s− l)

)
= 22(s−l) − 4(s− l).

Thus |2[n] − F| ≥ |2[l+1,n] − G| ≥ 4(s− l), proving (32) in this case as well.

We go on to the proof of (iii). Put n := sm+ s− l for the rest of the section. Consider
the maximum family F with ν(F) < s. As before, we denote the complementary family
2[n] −F by F̄ . We have |F| ≥ |P(s,m, l)|. Our strategy for proving the theorem is to study
the subfamilies Fj = F ∩

(
[n]
j

)
for j ≤ m + 1 and show successively that F is closer and

closer to P(s,m, l). Conjecture 1 holds for l ≤ 2, so we assume for the rest of the section
that l ≥ 3.

We start with the following lemma.

Lemma 13. ν(F0 ∪ . . . ∪ Fm) ≤ l − 1.

Proof. Assume for contradiction that F1, . . . , Fl ∈ F0 ∪ . . . ∪ Fm are pairwise disjoint. Set
T = F1∪. . .∪Fl and note that |T | ≤ lm. We have |[n]−T | ≥ sm+s−l−lm = (s−l)(m+1).
Choose a subset U of [n]− T of cardinality (s− l)(m+ 1).

We have ν(F ∩2U) < s− l. Applying equality (13) for the (m+1)-element sets of F ∩2U

we get

y(m+ 1) :=
∣
∣
∣F ∩

(
[n]

m+ 1

)∣
∣
∣ ≥

1

s− l

(
(s− l)(m+ 1)

m+ 1

)

=

(
(s− l)(m+ 1)− 1

m

)

. (33)

On the other hand, from (18) we get

y(m) +
1

2
y(m+ 1) + y(m+ 2) ≥

s− l + 1

s

(
n

m

)

. (34)

Combining (33) and (34), we get

n∑

k=0

y(k) ≥
m+2∑

k=m

y(k) ≥
1

2

(
(s− l)(m+ 1)− 1

m

)

+
s− l + 1

s

(
n

m

)

. (35)

Assume that for s ≥ lm+3l+3 the last expression exceeds
∑m

k=0

(
n

k

)
. Then we obtain a

contradiction with the assumption that F has maximal possible cardinality among families
with no s pairwise disjoint sets, since

∑m

k=0

(
n

k

)
is a crude upper bound on the number of

subsets of 2[n] missing from P(s,m, l).

We have
( n

k−1)
(nk)

≤ 1
s−1

for any 1 ≤ k ≤ m, therefore for any q ≤ m

q
∑

k=0

(
n

k

)

≤
s− 1

s− 2

(
n

q

)

≤
(
1 +

2

s

)
(
n

q

)

. (36)
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From (36) we get that the right hand side of (35) is greater than
∑m

k=0

(
n

k

)
if

1

2

(
(s− l)(m+ 1)− 1

m

)

≥
l + 1

s

(
n

m

)

. (37)

We have (s− l)(m+ 1)− 1 = n− lm− 1 and

(
n−lm−1

m

)

(
n

m

) =
lm∏

i=0

n−m− i

n− i
≥
(

1−
m

n− lm

)lm+1

> 1−
m(lm+ 1)

n− lm
.

Therefore, the inequality (37) will follow from the inequality

1

2

(

1−
m(lm+ 1)

n− lm

)

≥
l + 1

s
⇔

s− 2l − 2

s
≥

m(lm+ 1)

n− lm
.

It is easy to check that for any s ≥ ml + 3l + 3 we get that s − 2l − 2 > s
s−l

(ml + 1). We
also have n ≥ sm. Therefore, it is sufficient to show that

1

s− l
≥

m

sm− lm
,

which is obviously true.

The inequality of Frankl [5], that bounds the size of i-uniform families with no matchings
of size l, gives |Fi| ≤ (l − 1)

(
n−1
i−1

)
for each i ≤ m, and

∑

i≤k

|Fi| ≤ (l − 1)
∑

i≤k

(
n− 1

i− 1

)

for any k, k ≤ m. (38)

Lemma 14. We have Fm ⊂
{
F ∈

(
[n]
m

)
: F ∩ [1, l − 1] 6= ∅

}
=: H. Moreover,

|H − Fm| ≤ (l − 1)
s− 1

s− 2

(
n− 1

m− 2

)

. (39)

Proof. Note that

|P(s,m, l)| ≥
∑

j>m

(
n

j

)

+ |H|.

Since |F| ≥ |P(s,m, l)|, we have

|Fm| ≥ |H| −
∑

i<m

|Fi|. (40)

Using (38) with k = m− 1 and the bound (36), we get

∑

i<m

|Fi| ≤ (l − 1)
m−1∑

i=1

(
n− 1

i− 1

)

≤ (l − 1)
s− 1

s− 2

(
n− 1

m− 2

)

. (41)
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On the other hand, we know from [6] that |Fm| ≤ |H| and, moreover, if Fm * H, then by
Theorem 5 we have

|Fm| ≤ |H| −
s− 2l

s− l

(
n− l −m+ 1

m− 1

)

. (42)

Comparing the right hand sides of (41) and (42), we get:

s−2l
s−l

(
n−l−m+1

m−1

)

(l − 1) s−1
s−2

(
n−1
m−2

) =

s−2l
s−l

(
∏l+m−2

i=0
n−m+1−i

n−i

)(
n

m−1

)

(l − 1) (s−1)(m−1)
(s−2)n

(
n

m−1

) >

>
(s− 2l)s

(s− l)l

l+m−2∏

i=0

n−m+ 1− i

n− i
,

where the inequality follows from the fact that n > s(m− 1) and (l − 1) s−1
s−2

< l. Thus, the
right hand side is at least

(s− 2l)s

(s− l)l

(

1−
m− 1

n−m− l + 2

)l+m−1

≥
(s− 2l)s

(s− l)l

(

1−
(m− 1)(l +m− 1)

sm

)

≥

≥
(s− 2l)(s− l −m)

(s− l)l
≥ 1,

provided s ≥ m+ 3l. Therefore, Fm ⊂ H and

|H − Fm| ≤
∑

i<m

|Fi| ≤ (l − 1)
s− 1

s− 2

(
n− 1

m− 2

)

.

The following claim concludes the proof of the statement (iii) of the theorem.

Claim 15. For each i ≤ m− 1 and each F ∈ Fm−i we have |F ∩ [1, l − 1]| ≥ i+ 1.

Proof. Assume the contrary and choose F ∈ Fm−i such that |F ∩ [1, l− 1]| ≤ i. W.l.o.g., we
may suppose that F ∩ [1, l − 1] = [1, i]. Consider the family

F ′
m =

(
2[i+1,n] ∩ Fm

)

∪
{
F \ [1, i]

}
.

Remark that ν(2[i+1,n] ∩ Fm) ≤ l − 1− i because of Lemma 14.
If ν(F ′

m) ≤ l − 1 − i as well, then, via an argument repeating the one after Observation
8, we get that |F ′

m| ≤
(
n−i

m

)
−
(
n−l+1

m

)
−
(
n−l−m+2i+1

m−1

)
+1. Therefore, |Fm| ≤

(
n

m

)
−
(
n−l+1

m

)
−

(
n−l−m+2i+1

m−1

)
+1. Making calculations analogous to the ones made in Lemma 14, we get that

the last inequality contradicts the inequality (39), provided s ≥ m+ 3l.
If ν(F ′

m) ≥ l − i, then necessarily there exist sets Fj ∈ Fm, 1 ≤ j ≤ l − 1 − i, such that
F, F1, . . . , Fl−1−i are pairwise disjoint.
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Denote T = F ∪
⋃l−1−i

j=1 Fj and consider U = [n] \ T . We have |U | = sm+ s− l − (m −

i)− (l− i−1)m = (s− l+ i)(m+1). We also have that ν
(
Fm+1∩ 2U

)
< s− l+ i. Therefore,

as in the proof of Lemma 13, we apply equality (13) for sets of Fm+1 ∩ 2U and get

y(m+ 1) ≥
1

s− l + i

(
(s− l + i)(m+ 1)

m+ 1

)

=

(
(s− l + i)(m+ 1)− 1

m

)

.

This inequality is stronger than (33) and would lead us to the same contradiction as in the
proof of Lemma 13. The proof of the claim is complete.

We have thus shown that for each i, 0 ≤ i ≤ n, we have Fi ⊂ P(s,m, l) ∩
(
[n]
i

)
, which

concludes the proof of Theorem 1.

5 Discussion

In this section we discuss one possible generalization of the value e(n, s), as well as Conjecture
1 and some further open problems.

Families with no s pairwise disjoint sets of small total cardinality

Let us say that a family F ⊂ 2[n] has the property D(s, q) or shortly is D(s, q) if

|F1 ∪ . . . ∪ Fs| > q holds

for all pairwise disjoint F1, . . . , Fs ∈ F . Note that for q ≥ n being D(s, q) for F is equivalent
to ν(F) < s. We introduce the function f(n, q, s):

f(n, q, s) := max
{
|F| : F ∈ 2[n],F is D(s, q)

}
.

In what follows we show that the task of determining f(n, q, s) is in many cases easily
reduced to the problem of determining e(q, s) = f(q, q, s).

Claim 16. The property D(s, q) is maintained under shifting.

Proof. Let 1 ≤ i < j ≤ n. Consider a family F ⊂ 2[n] that is D(s, q) and the sets
A1, . . . , As ∈ Si,j(F) that are pairwise disjoint. If A1, . . . , As ∈ F , then we have noth-
ing to prove. Thus we may assume that A1 ∈ Si,j(F) − F . That is, i ∈ A1, j /∈ A1, and
Ā1 := (A1 − {i}) ∪ {j} is in F . Note that i /∈ At for 2 ≤ t ≤ s, and so At ∈ F .

If j /∈ A2 ∪ . . . ∪ As, then Ā1, A2, . . . , As are pairwise disjoint members of F , implying
s∑

i=1

|Ai| = |Ā1|+
s∑

i=2

|Ai| > q.

Suppose now that j ∈ A2. By the definition of Si,j , the set Ā2 := (A2 − {j}) ∪ {i} is
also in F . The sets Ā1, Ā2, A3, . . . , As ∈ F are pairwise disjoint. Since |Ā1| = |A1| and
|Ā2| = |A2|, we conclude that

∑s

i=1 |Ai| > q.
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Given a family F ⊂ 2[n], consider the following two families on [n− 1]:

F(n) := {A− {n} : n ∈ A,A ∈ F},

F(n̄) := {A : n /∈ A,A ∈ F}.

For n ≥ q := s(m+ 1)− l, 0 < l ≤ s, define the analogue of the families P(s,m, l):

B(n, q, s) := {F ⊂ [n] : |F |+ |F ∩ [l − 1] ≥ m+ 1}.

Note that if F = B(n, q, s), n > q, then F(n̄) = B(n− 1, q, s) and F(n) = B(n− 1, q − s, s)
hold. The following easy proposition allows us to extend the results concerning e(n, s) to
f(n, q, s).

Proposition 17. Fix n ≥ q ≥ s. If f(n− 1, q, s) = |B(n− 1, q, s)| and f(n− 1, q − s, s) =
|B(n− 1, q − s, s)| then

f(n, q, s) = |B(n, q, s)| holds.

Proof. W.l.o.g. we assume that F is shifted. It is clear that F(n̄) is D(q, s). Therefore, it is
sufficient to show that F(n) is D(q − s, s).

Assume for contradiction that A1, . . . , As ∈ F(n) are pairwise disjoint and H := A1 ∪
. . . ∪ As has size at most q − s. Since n ≥ q, n − (q − s) ≥ s. That is, we can find distinct
elements x1, . . . , xs ∈ [n]−H. Since F is shifted, A1∪{x1}, . . . , As∪{xs} are pairwise disjoint
members of F . Their union H ∪ {x1, . . . , xs} has size |H|+ s ≤ q, a contradiction.

Therefore, |F| = |F(n)|+ |F(n̄)| ≤ |B(n− 1, q− s, s)|+ |B(n− 1, q, s)| = |B(n, q, s)|.

We get the following corollary:

Corollary 18. Let s ≥ 2, m ≥ 0. For n ≥ q ≥ 0 the following holds:

(i) f(n, sm− 1, s) =
∑

i≥m

(
n

i

)

,

(ii) f(n, sm+ s− 2, s) =

(
n− 1

m− 1

)

+
∑

i≥m+1

(
n

i

)

.

Proof. We derive the corollary from Proposition 17 by double induction. We apply induction
on m, and for fixed m the induction on n. We remark that in all three cases on the right
hand sides we have the cardinality |B(n, q, s)| for the corresponding n, q and s. The equalities
f(n, 0, 2) = |B(n, 0, 2)|, f(n, s − 1, s) = |B(n, s − 1, s)|, f(n, s − 2, s) = |B(n, s − 2, s)| are
obvious. The equalities in the case when n = q follow from the results on e(sm−1, s), e(sm+
s− 2, s), discussed in the introduction.

What about f(n, sm, s) for s > 2, and, more generally, what about all other values of
parameters? Interestingly enough, for large n we can determine f(n, s(m+ 1)− l, s) exactly
for any l, m, s.
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Theorem 19. For 1 ≤ l ≤ s and n ≥ max
{
l(m2 +m+ 2), s(m+ 1) + l +m+ 3

}
one has

f(n, s(m+ 1)− l, s) = |B(n, s(m+ 1)− l, s)|.

The proof of Theorem 19 is very similar to the proof of Theorem 1, thus we omit most
of it, sketching only the key points. Assuming that the claim of Lemma 13 does not hold
and arguing as in the proof of Lemma 13 one can obtain that

y(m+ 1) ≥
n− lm− (s− l)(m+ 1)

n− lm

(
n− lm

m+ 1

)

and

y(m) ≥
n− sm

n

(
n

m

)

,

which by analogy with (36), (37) leads to contradiction if

n− lm− (s− l)(m+ 1)

n

(
n− lm

m+ 1

)

>
(s+ 2)m

n

(
n

m

)

.

The last inequality holds under the conditions imposed on n in Theorem 19. Next, the state-
ment and the proof of Lemma 14 remain the same. Finally, the proof of Claim 15 undergoes
the same modifications as that of Lemma 13.

Remark. The conditions on n in the statement of Theorem 19 are rather crude and
are likely not difficult to improve, especially in the case of l = s. However, the order of
n = Ω(m2l) for general l, m, seems to be more or less the limit for the present method to
work. Thus, it would be desirable to prove Theorem 19 for n > csm with some absolute
constant c.

Conjecture 1

We believe that Conjecture 1 should actually be true for an even wider range of l. However,
the equality (6) is not true in general, even if we exclude the case n = sm. The value of l
needs to be separated from s for P(s,m, l) to be the largest family with no s-matching. We
illustrate it for the case n = sm+ 1 (the same can be done for n = sm+ c for any positive
integer c and large enough s,m depending on c). Let s,m ≥ 20 and consider the family

W(m, s) := {W ∈ 2[n] : |W ∩ [sm− 1]| ≥ m}.

We remark that this family is obtained as ∪sm−1
t=m

(
[n]
t

)
, which we close upward, and that (4)

shows that it is the largest family for n = sm.
We have ν(W(m, s)) = s− 1, and for n = sm+ 1

|W(m, s)| =
n∑

r=m+1

(
n

r

)

+

(
sm− 1

m

)

−

(
sm− 1

m− 1

)

=

n∑

r=m+1

(
n

r

)

+
s− 2

s− 1

(
sm− 1

m

)

.
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Next, we remark that s−2
s−1

(
sm−1
m

)
= s−2

s−1
(sm+1−m)(sm−m)

(sm+1)sm

(
n

m

)
> s−3

s

(
n

m

)
≥ 0.85

(
n

m

)
. On the other

hand, we have |P(s,m, s − 1)| =
∑n

r=m+1

(
n

r

)
+
(
n

m

)
−
(
n−s+1

m

)
+
∣
∣P(s,m, s − 1) ∩

(
[n]

≤m−1

)∣
∣.

We have (
n

m

)

(
n−s+1

m

) ≤

(

n−m

n−m− s+ 1

)m

< e
(s−1)m

n−m−s+1 < e
m

m−1 < 3.

Therefore, |W(m, s)|−|P(s,m, s−1)| > 1
6

(
n

m

)
−
∣
∣P(s,m, s−1)∩

(
[n]

≤m−1

)∣
∣. Finally,

∣
∣P(s,m, s−

1) ∩
(

[n]
≤m−1

)∣
∣ <

∑m−1
r=0

(
n

r

)
< s−1

s−2

(
n

m−1

)
< 1

10

(
n

m

)
, which proves that P(s,m, s − 1) is not the

maximal family.

We managed to prove that for m = 2, n = 2s + 1 W(2, s) is indeed the largest family
with no s pairwise disjoint sets. However, already for n = 2s+ t with certain values of t we
can construct a yet another family with no s-matching, which is larger than both W (m, s)
and P(s,m, s− t). Therefore, it looks difficult to formulate a general conjecture. Still, there
is something common about all the extremal constructions we know. They are all defined as
the intersection of the boolean cube {0, 1}n and a certain halfspace in Rn! To make it more
precise, let us give some definitions.

Let α1 ≥ α2 ≥ . . . ≥ αn ≥ 0 be reals, and suppose that
∑

i αi < s. Put ααα = (α1, . . . , αn)
and define

F(ααα) := {F ∈ 2[n] :
∑

i∈F

αi ≥ 1}.

Then it is easy to see that ν(F(ααα) < s holds. It is also clear that F(ααα) = {0, 1}n ∩ {x ∈
Rn : 〈x,ααα〉 ≥ 1}. All the extremal families that were considered in this paper have a form
F(ααα) for suitable vectors α. Indeed,

• P(s,m, l) = F(αααp) with αααp :=
1

m+1

(
2, . . . , 2
︸ ︷︷ ︸

l−1

, 1, . . . , 1
)
,

• W(m, s) = F(αααw) with αααw := 1
m

(
1, . . . , 1
︸ ︷︷ ︸

sm−1

, 0, . . . , 0
)
,

• H(k)(n, s− 1) = F(αααh) ∩
(
[n]
k

)
with αααh :=

(

1, . . . , 1
︸ ︷︷ ︸

s−2

, 1− 1
k
,
1

k
, . . . ,

1

k
︸ ︷︷ ︸

k

, 0 . . . , 0
)

.

It motivates the following “meta-conjecture”.

Conjecture 4. For any n, s the maximum of e(n, s) is attained on the family F(ααα) for a

suitable ααα ∈ Rn.

The same question posed for ek(n, s) is a weakened version of Conjecture 2 and is also
very interesting.
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Truncated boolean lattice

Let n = s(m + 1) − l and F ⊂
(
[n]
≤r

)
satisfy ν(F) < s. What is the minimal value of

∑r

i=0

(
n

i

)
−|F|? If we interpret the results concerning e(n, s) in terms of how many sets from

2[n] are necessarily missing from a family F with ν(F) < s, then many of them are possible
to generalize to this setting. Namely, the number of missing sets would be exactly the same
as
∣
∣2[n] \ P(s,m, l)

∣
∣, provided that r ≥ m+ 2. Indeed, in the proofs we only used the layers

of the boolean lattice up to m+ 2.
On the other hand, it is clear that for r = m the family P(s,m, l) ∩

(
[n]
≤m

)
is not the

optimal one. Indeed, for l = 2, say, the family {A ⊂ [n] : A∩ [s−1] 6= ∅} clearly has a larger
cardinality.

So it is natural to ask what happens for r = m + 1. We conjecture that the number of
missing sets remains the same as in the case of the whole boolean lattice.
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