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A size-sensitive inequality for cross-intersecting families

Peter Frankl∗, Andrey Kupavskii†

Abstract

Two families A and B of k-subsets of an n-set are called cross-intersecting if A∩B 6=
∅ for all A ∈ A, B ∈ B. Strengthening the classical Erdős-Ko-Rado theorem, Pyber

proved that | A ||B| ≤
(

n−1
k−1

)2
holds for n ≥ 2k. In the present paper we sharpen this

inequality. We prove that assuming |B| ≥
(

n−1
k−1

)

+
(

n−i
k−i+1

)

for some 3 ≤ i ≤ k + 1 the
stronger inequality

| A ||B| ≤
(

(

n− 1

k − 1

)

+

(

n− i

k − i+ 1

)

)(

(

n− 1

k − 1

)

−

(

n− i

k − 1

)

)

holds. These inequalities are best possible. We also present a new short proof of
Pyber’s inequality and a short computation-free proof of an inequality due to Frankl
and Tokushige.

1 Introduction

Let [n] = {1, . . . , n} and
(

[n]
k

)

be the family of all k-subsets of [n] for n ≥ k ≥ 0. For a family

F ⊂
(

[n]
k

)

let F c be the family of complements, i.e., F c = {[n] − F : F ∈ F}. Obviously,

F c ⊂
(

[n]
n−k

)

holds.

Two families A,B ⊂
(

[n]
k

)

are said to be cross-intersecting if A ∩ B 6= ∅ holds for all

A ∈ A, B ∈ B. To avoid trivialities we assume n ≥ 2k. Analogously, C,D ⊂
(

[n]
l

)

are called
cross-union if C ∪D 6= [n] holds for all C ∈ C, D ∈ D. Here we assume n ≤ 2l in general.
Note that A,B are cross-intersecting iff Ac,Bc are cross-union.

In order to state one of the most fundamental theorems in extremal set theory, let us say
that F ⊂

(

[n]
k

)

is intersecting if F ∩ F ′ 6= ∅ for all F, F ′ ∈ F .

Theorem (Erdős-Ko-Rado Theorem [2]). If F ⊂
(

[n]
k

)

is intersecting and n ≥ 2k > 0 then

|F| ≤

(

n− 1

k − 1

)

holds. (1)
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Hilton and Milner [7] proved in a stronger form that for n > 2k the only way to achieve
equality in (1) is to take all k-subsets containing some fixed element of [n].

If F is intersecting then A = F , B = F are cross-intersecting. Therefore the following
result is a strengthening of (1).

Theorem (Pyber’s inequality [14]). Suppose that A,B ⊂
(

[n]
k

)

are cross-intersecting and

n ≥ 2k. Then

|A||B| ≤

(

n− 1

k − 1

)2

holds. (2)

Let us mention that the notion of cross-intersection is not just a natural extension of the
notion of intersecting for two families, but it is also a very useful tool for proving results for
one family. As a matter of fact, it was already used in the paper of Hilton and Milner [7].
This explains the interest in two-family versions of intersection theorems (cf. e.g. [1], [12],
[15]).

The object of this paper is two-fold. First we provide a very short proof of (2). Then we
use the ideas of this proof and some counting based on the Kruskal-Katona Theorem [10],
[8] to obtain the following sharper, best possible bounds.

Example 1. Let i be an integer and define Bi = {B ∈
(

[n]
k

)

: 1 ∈ B} ∪ {B ∈
(

[n]
k

)

: 1 /∈

B, [2, i] ⊂ B}, Ai = {A ∈
(

[n]
k

)

: 1 ∈ A, [2, i]∩A 6= ∅}. Note that Ai,Bi are cross intersecting
with

| Ai | =

(

n− 1

k − 1

)

−

(

n− i

k − 1

)

, |Bi| =

(

n− 1

k − 1

)

+

(

n− i

k − i+ 1

)

.

The inequalities (3) and (4) given below show that the pair (Ai,Bi) is extremal in the cor-
responding range.

Theorem 1. Let A,B ⊂
(

[n]
k

)

be cross-intersecting, n > 2k > 0 and suppose | A | ≤
(

n−1
k−1

)

≤
|B| and ∩B∈BB = ∅. Then

| A ||B| ≤
(

(

n− 1

k − 1

)

+ 1
)(

(

n− 1

k − 1

)

−

(

n− k − 1

k − 1

)

)

holds. (3)

Theorem 2. Let A,B ⊂
(

[n]
k

)

be cross-intersecting, n ≥ 2k > 0 and suppose that |B| ≥
(

n−1
k−1

)

+
(

n−i

k−i+1

)

holds for some 3 ≤ i ≤ k + 1. Then

|A||B| ≤
(

(

n− 1

k − 1

)

+

(

n− i

k − i+ 1

)

)(

(

n− 1

k − 1

)

−

(

n− i

k − 1

)

)

. (4)

Note that plugging in i = k + 1 into (4) gives (3) except for the case |B| =
(

n−1
k−1

)

which
we treat separately. In the proof of Theorem 2 we give a short computation-free proof of an
important special case of an inequality due to Frankl and Tokushige [3], which is based on
the König-Hall theorem [9], [5].
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2 Preliminaries

Let us define the lexicographic and the colex orders on the k-subsets of [n]. We have F ≺ G
in the lexicographic order if minF \G < minG \F holds. E.g., {1, 100} ≺ {2, 3}. The colex
order ≺

c
is defined by F ≺

c
G if maxF \ G < maxG \ F . Thus, {2, 3}≺

c
{1, 100}. Note that

{1, 3} precedes {2, 4} in both orderings.
For 0 ≤ m ≤

(

n

k

)

let L(k)(m) denote the initial segment of k-sets of length m, i.e., the

first m k-sets in the lexicographic order. Note that L(k)
((

n−1
k−1

))

= {F ∈
(

[n]
k

)

: 1 ∈ F}.

Similarly, C(k)(m) denotes the family of first m k-sets in the colex order. Note that for
k ≤ s ≤ n one has C(k)

((

s

k

))

=
(

[s]
k

)

.
Let us state the Kruskal-Katona Theorem [10], [8], which is one of the most important

results in extremal set theory. For 0 ≤ t ≤ k define the t-shadow S(t)(F) of a family F ⊂
(

[n]
k

)

by

S(t)(F) =
{

S ∈

(

[n]

t

)

: ∃F ∈ F , S ⊂ F
}

.

Theorem (Kruskal-Katona [10], [8]). The inequality

|S(t)(F)| ≥ |S(t)(C(k)(|F|))| (5)

holds for all F ⊂
(

[n]
k

)

, n ≥ k ≥ t ≥ 0.

Depending on the value of |F|, equality might hold in (5) even if F is not isomorphic to
C(k)(|F|). However, Füredi and Griggs [4] succeeded in determining which are the values of
|F| such that C(k)(|F|) is the unique optimal family. Mörs [13] proved a stronger inequality
under the assumption that ∪F∈FF = [n]. We need the following special case of it.

Theorem (Mörs, [13]). Suppose that G ⊂
(

[n]
l

)

, n ≥ l > t ≥ 1 and |G| =
(

n−1
l

)

. If ∪G∈G = [n]
holds then

|S(t)(G)| ≥

(

n− 1

t

)

+

(

l − 1

t− 1

)

. (6)

Computationwise, the bounds arising from the Kruskal-Katona Theorem are not easy to
handle. Lovász [11] found the following slightly weaker but very handy form.

Theorem (Lovász, [11]). If n ≥ k ≥ t ≥ 0, F ⊂
(

[n]
k

)

and |F| =
(

x

k

)

for a real number x ≥ k
then

|S(t)(F)| ≥

(

x

t

)

holds. (7)

Note that for x ≥ k− 1 the polynomial
(

x

k

)

is a monotone increasing function of x. Thus
x is uniquely determined by |F| and k.

Hilton observed that the lexicographic order is very useful for handling cross-intersecting
families.
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Theorem (Hilton’s Lemma [6]). If A ⊂
(

[n]
a

)

and B ⊂
(

[n]
b

)

are cross-intersecting then

L(a)(|A|) and L(b)(|B|) are cross-intersecting as well.

Since it appears that the proof of Hilton’s lemma was never published, we give it here
for completeness.

Proof. We may clearly assume that n ≥ a+ b. Consider the family B̄ of complements of sets
from B. We have |B̄| = |B| and B̄ ⊂

(

[n]
n−b

)

. Since A and B are cross-intersecting, then there

are no B̄ ∈ B̄, A ∈ A, such that A ⊂ B̄. In other words, A and B are cross-intersecting if
and only if A and S(a)(B̄) are disjoint.

Next, let us define the reversed colex order. It is the colex order for [n], in which the
order of elements is inverted: n is the first element, then n− 1, etc. Formally, F ≺ G in the
reversed colex order if minF \ G > minG \ F. It is not difficult to see the following three
things. First, if an a-set A is the i-th in the lexicographical order, then it is (

(

n

a

)

−i)-th in the
reversed colex order. Second, the complement [n] − A is (

(

n

a

)

− i)-th in the lexicographical

order and, thus, i-th in the reversed colex order. Finally, we note that if a family F ⊂
(

[n]
f

)

form an initial segment in the reversed colex order, then for any 0 < f ′ < f its shadow
S(f ′)(F) also forms an initial segment in the reversed colex order.

Returning to the proof of the theorem, we note that |S(a)(B̄)| ≥ |S(a)(L̄b)|, where Lb :=
L(b)(|B|), due to (5) and the considerations in the previous paragraph, which give that L̄b

in an initial segment in the reversed colex order. We only point out that we can apply (5)
with both colex and reversed colex orders.

Assume that La := L(a)(|A|) and Lb are not cross-intersecting. Then La and S(a)(L̄b)
intersect. The first family consists of the first sets in the lexicographical order, while the
second is the initial segment in the reversed colex order, and so consists of the last elements
in the lexicographical order (see two paragraphs above). Therefore, we get that |La| +
|S(a)(L̄b)| >

(

n

a

)

. But then |A|+ |S(a)(B̄)| >
(

n

a

)

, which implies that A and S(a)(B̄) intersect.
This means that A,B are also not cross-intersecting, a contradiction.

Looking at the complements the next statement follows.

Corollary. If D ⊂
(

[n]
d

)

and E ⊂
(

[n]
e

)

are cross-union then C(d)(|D|) and C(e)(|E|) are cross-

union as well.

We use the following standard notation. Given a family A ⊂
(

[n]
k

)

, the family A(̄ij) is
defined in the following way: A(̄ij) = {A− {j} : A ∈ A, j ∈ A, i /∈ A}.

Let us conclude this section with a simple inequality involving binomial coefficients

(

n− i

k − i

)(

n

k

)

<

(

n− i+ 1

k − i+ 1

)(

n− 1

k − 1

)

holds for n ≥ 2k, i ≥ 2. (8)

Proof. For k < i the LHS is 0. Suppose k ≥ i and divide both sides by
(

n

k

)(

n−i+1
k−i+1

)

. We

obtain k−i+1
n−i+1

< k
n
, which is obviously true.
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3 Proofs

3.1 Short proof of Pyber’s theorem

By symmetry, we suppose |A| ≤ |B|. First note that if |A| ≤
(

n−2
k−2

)

, then

|A||B| ≤

(

n− 2

k − 2

)(

n

k

)

<

(

n− 1

k − 1

)2

by (8), case i = 2.

From now on we assume that
(

n−2
k−2

)

≤ |A| ≤ |B|. By Hilton’s Lemma we suppose that
A = L(|A|), B = L(|B|), i.e., both families are initial segments in the lexicographic order.

Note that the first
(

n−2
k−2

)

sets in the lexicographic order are all the k-sets that contain 1
and 2. Since A,B are cross-intersecting, we infer that all their members must contain either
1 or 2. We shall use this fact to prove:

Proposition 3. We have

|A|+ |B| ≤ 2

(

n− 1

k − 1

)

. (9)

Note that (9) implies (2) by the inequality between arithmetic and geometric means. One
can even deduce that (2) is strict unless |A| = |B| =

(

n−1
k−1

)

holds.

Proof of Proposition 3. If |B| ≤
(

n−1
k−1

)

then (9) is obvious. Therefore, we assume |B| >
(

n−1
k−1

)

.

Note that the first
(

n−1
k−1

)

members of
(

[n]
k

)

are all the k-sets containing 1. Since A,B are cross-
intersecting, 1 ∈ A holds for all A ∈ A. Let B′ be the family of the remaining sets in B,
i.e.,

B′ = {B ∈ B : 1 /∈ B}.

Let C = {C ∈
(

[n]
k

)

: 1 ∈ C,C /∈ A}. To prove (9) we need to show that

|C| ≥ |B′| holds.

Recall that all k-sets containing both 1 and 2 are in A and therefore all members of B
contain 1 or 2. We infer that B ∩ {1, 2} = {2} for all B ∈ B′ and C ∩ {1, 2} = {1} for all
C ∈ C.

Let us now consider a bipartite graph G = (X1, X2, E), where Xi :=
{

Di ∈
(

[n]
k

)

:
Di ∩ {1, 2} = {i}

}

and two vertices D1 and D2 are connected by an edge if and only if
D1 ∩D2 = ∅ holds.

Note that G is regular of degree
(

n−k−1
k−1

)

, C ⊆ X1,B
′ ⊆ X2 hold. Moreover, the cross-

intersecting property implies that if D1 and D2 are connected for some D2 ∈ B′ then D1 ∈ C.
In other words, the full neighborhood of B′ in the regular bipartite graph G is contained in
C. This implies |C| ≥ |B′| and concludes the proof.
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3.2 Proof of Theorem 1 modulo Theorem 2

Set l = n − k and consider the families F = Ac,G = Bc ⊂
(

[n]
l

)

. Then F ,G are cross-union.
We assume |F| ≤ |G|. Note that for n = 2k = 2l the cross-intersecting and cross-union
conditions are equivalent and simply mean that if, say, F ∈ F then [n]− F /∈ G. Therefore,
for an arbitrary F ⊂

(

[n]
l

)

the families F and
(

[n]
k

)

−F c are cross-union. Moreover, these are

altogether
(

2k
k

)

= 2
(

2k−1
k−1

)

sets. Consequently, in this case there are many ways to achieve
equality in (2).

The case |B| =
(

n−1
k−1

)

of Theorem 1 is somewhat special because replacing B by L(k)
((

n−1
k−1

))

would produce the family of all k-sets containing 1, i.e., the family with the intersection of
all its members being non-empty. Fortunately, in this case we can apply the theorem of
Mörs.

Setting G = Bc, by (6) we have

|S(k)(G)| ≥

(

n− 1

k

)

+

(

n− k − 1

k − 1

)

, yielding

| A | ≤

(

n

k

)

− |S(k)(G)| ≤

(

n− 1

k − 1

)

−

(

n− k − 1

k − 1

)

,

which proves strict inequality in (3). From now on we may assume |B| >
(

n−1
k−1

)

, and the
remaining part of Theorem 1 follows from the case i = k + 1 of Theorem 2, which we prove
in the next section.

3.3 Proof of Theorem 2

We assume w.l.o.g. that |A| ≤ |B|. For the whole proof we assume that A,B are the first
sets in the lexicographical order. We consider several cases depending on the size of |A|.

Case 1. |A| ≥
(

n−2
k−2

)

+
(

n−i

k−i+1

)

.

Lemma 4. If m ≥ 2a are natural numbers, A′,B′ ⊂
(

[m]
a

)

are cross-intersecting, and for

some integer j ≥ 1 we have
(

m−j

a−j

)

≤ |A′| ≤ |B′|, then

|A′|+ |B′| ≤

(

m

a

)

+

(

m− j

a− j

)

−

(

m− j

a

)

.

Proof. We assume that A′,B′ are the first sets in the lexicographical order. For j = 1 the
familyA′ contains all sets containing {1}. It implies that both families must have cardinality
(

n−1
a−1

)

, since otherwise B′ contains the set {2, . . . , a + 1}, which is disjoint with {1, a +
2, . . . , 2a} ∈ A′. At the same time, the right hand side of the displayed equation above is
exactly 2

(

n−1
a−1

)

for j = 1. Therefore, in what follows we may assume that j ≥ 2. Since
|A′| ≤ |B′|, we may w.l.o.g. assume that all sets from A′ contain {1} and B′ contains the
family L of all the sets containing {1}. Since |A′| ≥

(

m−j

a−j

)

, then A′ contains the family A1

6



of all a-sets that contain [1, j]. Therefore, each set from B′ must intersect [1, j]. We denote
by B0 the family of all a-sets that do not contain {1} and intersect [2, j]. By A0 we denote
the family L \ A1. Note that |A0| =

(

m−1
a−1

)

−
(

m−j

a−j

)

and |B0| =
(

m−1
a

)

−
(

m−j

a

)

.
Consider a bipartite graph G with parts A0,B0 and with two sets joined by an edge if

they are disjoint. We know that (B′ \ L) ∪ (A′ \ A1) is an independent set in G, since any
pair of sets from different families intersect.

We aim to show that there is a matching of A0 into B0 in G. We look at the following
decomposition: A0 = P1 ⊔ . . . ⊔ Pj−1, where for any 1 ≤ s ≤ j − 1 we have

Ps = {A ∈ A0 : [2, s] ⊂ A, s+ 1 /∈ A}.

Analogously, we consider the decomposition for B0 : B0 = Q1 ⊔ . . . ⊔ Qj−1, where for any
1 ≤ s ≤ j − 1 we have

Qs = {B ∈ B0 : B ∩ [2, s] = ∅, s+ 1 ∈ B}

.
We claim that for each s there is a matching of Ps into Qs. Indeed, G|Ps,Qs

is a biregular
graph with |Ps| =

(

m−s−1
a−s

)

≤
(

m−s−1
a−1

)

= |Qs|, therefore, it has a matching exhausting the
smaller part by the König-Hall theorem. The inequality between two binomial coefficients
holds since m− s− 1 ≥ (a− s) + (a− 1) = 2a− s− 1.

Since Qs for different s are disjoint, combining matchings of Ps into Qs we get a matching
of A0 in B0. Thus the biggest independent set in G is B0 and, therefore, |B

′ \L|+ |A′\A1| ≤
|B0| =

(

m−1
a

)

−
(

m−j

a

)

, yielding

|A′|+ |B′| ≤

(

m− 1

a

)

−

(

m− j

a

)

+

(

m− 1

a− 1

)

+

(

m− j

a− j

)

=

(

m

a

)

+

(

m− j

a− j

)

−

(

m− j

a

)

.

The proof is complete.

Remark. Actually Lemma 4 was proved in a more general form in [3]. However, the
proof that we presented here is shorter and more elementary.

To conclude the proof of the theorem in this case one has to notice the following. Recall
that |B| ≥

(

n−1
k−1

)

+
(

n−i

k−i+1

)

. Consider the cross-intersecting families B(1̄2),A(12̄). We remark

that |A| =
(

n−2
k−2

)

+ |A(12̄)| and |B| =
(

n−1
k−1

)

+ |B(1̄2)|. Both families are subsets of
(

[3,n]
k−1

)

,

moreover, we know that both |B(1̄2)|, |A(12̄)| ≥
(

n−i

k−i+1

)

. Applying Lemma 4 with m =
n− 2, a = k − 1 and j = i− 2, we get that

|B(1̄2)|+ |A(12̄)| ≤

(

n− 2

k − 1

)

+

(

n− i

k − i+ 1

)

−

(

n− i

k − 1

)

.

Therefore, |B| + |A| ≤
(

n−1
k−1

)

+
(

n−2
k−2

)

+
(

n−2
k−1

)

+
(

n−i

k−i+1

)

−
(

n−i

k−1

)

= 2
(

n−1
k−1

)

+
(

n−i

k−i+1

)

−
(

n−i

k−1

)

.

We know that | A | ≤
(

n−1
k−1

)

−
(

n−i

k−1

)

. Knowing the bound on | A |+ |B| above, it follows that

7



the product | A ||B| is the biggest if | A | is maximum possible and |B| = max(| A | + |B|)−
max | A |, which gives exactly |B| =

(

n−1
k−1

)

+
(

n−i

k−i+1

)

and |A| =
(

n−1
k−1

)

−
(

n−i

k−1

)

. The proof in
this case is complete.

Remark. The argument above and Lemma 4 together show that the bound in (4) actu-
ally decreases as i decreases.

Case 2. |A| ≤
(

n−3
k−3

)

. In this case

|A||B| ≤

(

n

k

)(

n− 3

k − 3

)

<

(

n− 1

k − 1

)(

n− 2

k − 2

)

<

(

n− 1

k − 1

)

(

(

n− 1

k − 1

)

−

(

n− i

k − 1

)

)

.

The right hand side is obviously less than the right hand side of (4). The second inequality
follows from (8) with i = 3. The proof of (4) in this case is complete.

Case 3.
(

n−3
k−3

)

≤ |A| ≤
(

n−2
k−2

)

. For this case we are going to pass to the complements of
sets from A,B and to change from cross-intersecting to cross-union families. Set l = n− k.
Note that 2l ≥ n. We may assume that both A,B consist of the initial segments of l-sets in
the colex order.

First we verify that when |A| =
(

n−2
k−2

)

=
(

n−2
l

)

, the inequality (4) holds. Indeed, then

|B| ≤
(

n−1
l

)

+
(

n−2
l−1

)

. At the same time, the right hand side of (4) is the smallest when

i = 3 and then it is strictly bigger than f =
(

n−1
k−1

)

(

(

n−2
k−2

)

+
(

n−3
k−2

)

)

=
(

n−1
l

)

(

(

n−2
l

)

+
(

n−3
l−1

)

)

.

Therefore, in this case

f − |A||B| ≥

(

n− 1

l

)(

n− 3

l − 1

)

−

(

n− 2

l

)(

n− 2

l − 1

)

=
((n− 1)l

l(n− 2)
− 1

)

(

n− 2

l

)(

n− 2

l − 1

)

> 0. (10)

Next we pass to the case when |B| =
(

n−1
l

)

+
(

n−2
l−1

)

+
(

x

l−2

)

for some x ≥ l−2. We remark

that x ≤ n− 3 since |A| ≥
(

n−3
l

)

. In this case, by (7), we have

|A| ≤

(

n− 2

l

)

−

(

x

n− l − 2

)

.

Indeed, A contains sets from
(

[n−2]
l

)

only, while B contains all sets from
(

[n−1]
l

)

, all sets from
{

{n} ∪ F : F ∈
(

[n−2]
l−1

)}

, as well as
(

x

l−2

)

sets from
{

{n − 1, n} ∪ F : F ∈
(

[n−2]
l−2

)}

. Let
us denote the family of sets {B \ {n − 1, n} : {n − 1, n} ⊂ B ∈ B} by B(n − 1, n). We
have |B(n − 1, n)| =

(

x

l−2

)

. We think of this family and the family A as families of subsets

of [n − 2]. These families are cross-union in [n − 2]. Therefore, A ∩
{

[n − 2] − S : S ∈

S(n−l−2)(B(n− 1, n))
}

= ∅, which, together with (7), implies the displayed inequality above.
To verify (4) in this case it is sufficient for us to prove that

(

x

l − 2

)(

n− 2

l

)

≤

(

x

n− l − 2

)(

n− 1

l

)

. (11)
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If we do so, then the value of the product for any n − 3 ≥ x ≥ l − 2 is not bigger than the
value of the product, calculated for the case |A| =

(

n−2
l

)

, which, in turn, is smaller than the
right hand side of (4).

It is easy to see that, since l − 2 ≥ n − l − 2, the function
(

x

l−2

)

/
(

x

n−l−2

)

is a monotone
increasing function. Therefore, it is sufficient to verify (11) for x = n− 3. In that case (11)
transforms into

(

n−3
l−2

)(

n−2
l

)

≤
(

n−3
l−1

)(

n−1
l

)

, which is true since l−1
n−2

· l
n−1

< l
n−2

.

Case 4.
(

n−2
k−2

)

≤ |A| ≤
(

n−2
k−2

)

+
(

n−i

k−i+1

)

. Before starting the proof in this case we remark
that for i = k + 1 this case is not necessary, since it is covered by cases 1 and 3. Since for
i = 3 the right hand side of (4) is the smallest and the interval of values for |A| is the largest,
we may w.l.o.g. assume that i = 3.

We remark that for |A| =
(

n−2
l

)

+
(

n−3
l−1

)

we have |B| =
(

n−1
l

)

+
(

n−3
l−1

)

and we obtain

exactly the bound (4). Now assume that |B| =
(

n−1
l

)

+
(

n−3
l−1

)

+
(

x

l−2

)

. Then, again using (7),

we get that |A| ≤
(

n−2
l

)

+
(

n−3
l−1

)

−
(

x

n−l−2

)

. If x ≤ n− 4, then
(

x

n−l−2

)

≥
(

x

l−2

)

and, therefore,
the product |A||B| is smaller than the right hand side of (4).

The last remaining case is that |A| ≤
(

n−2
l

)

+
(

n−3
l−1

)

−
(

n−4
n−l−2

)

=
(

n−2
l

)

+
(

n−4
l−1

)

. In this

case we have |A||B| ≤
(

(

n−2
l

)

+
(

n−4
l−1

)

)(

(

n−1
l

)

+
(

n−2
l−1

)

)

. We claim that this value is less than

the value of the right hand side of (4) for i = 3:

(

(

n− 2

l

)

+

(

n− 4

l − 1

)

)(

(

n− 1

l

)

+

(

n− 2

l − 1

)

)

≤
(

(

n− 1

l

)

+

(

n− 3

l − 1

)

)(

(

n− 2

l

)

+

(

n− 3

l − 1

)

)

.

Indeed, we just check for any j1, j2 ∈ {1, 2} that the product of the j1-th summand from
the first bracket and the j2-th summand from the second bracket in the left hand side is not
bigger than the corresponding product in the right hand side. For j1 = j2 = 1 it is obvious
and for j1 = 1, j2 = 2 it is shown in (10). As for the rest, we have

(

n− 4

l − 1

)(

n− 1

l

)

≤
(n− 3)(n− l − 1)

(n− l − 2)(n− 1)

(

n− 4

l − 1

)(

n− 1

l

)

=

(

n− 3

l − 1

)(

n− 2

l

)

since ((n−1)−2)(n− l−1)− (n−1)((n− l−1)−1) = n−1−2(n− l−1) = 2l−n+1 > 0,
and

(

n− 4

l − 1

)(

n− 2

l − 1

)

≤
(n− 3)(n− l − 1)

(n− l − 2)(n− 2)

(

n− 4

l − 1

)(

n− 2

l − 1

)

=

(

n− 3

l − 1

)(

n− 3

l − 1

)

since ((n− 2)− 1)((n− l− 2)+ 1)− (n− 2)(n− l− 2) = n− 2− (n− l− 2)− 1 = l− 1 > 0.
The last inequality is due to the well-known fact that

(

m

b

)

is a log-concave function of m,
but to make the argument self-contained, we included the proof. The proof of the theorem
is complete.
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