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Abstract

Some best possible inequalities are established for k-partition-free
families (cf. Definition 1) and they are applied to prove a sharpening
of a classical result of Kleitman concerning families without k pairwise
disjoint members.

1 Introduction

Let n be a positive integer, [n] = {1, 2, . . . , n} is the standard n-element set,
2[n] its power set. For an integer k ≥ 2 a family F ⊂ 2[n] is called k-dependent
if it contains no k pairwise disjoint members. Similarly, if F1, . . . ,Fk ⊂ 2[n]

are not necessarily distinct families, we say that they are cross-dependent if
there is no choice of Fi ∈ Fi, i = 1, . . . , k, such that F1, . . . , Fk are pairwise
disjoint.

An important classical result of Kleitman [Kl] determines the maximal
size, |F| of a k-dependent family F ⊂ 2[n] for the cases n ≡ −1 or 0 (mod k).
In a recent paper [FK], Kupavskii and the author determined the maximum
of |F1|+ . . .+ |Fk| for cross-dependent families Fi for all values of n ≥ k ≥ 3.
(Let us note that the easy case of k = 2 was already solved by Erdős, Ko
and Rado [EKR].)

Definition 1. For k ≥ 3 and a family F ⊂ 2[n] we say that F is k-partition-
free if F contains no k pairwise disjoint members whose union is [n].

Being k-partition-free is slightly less restrictive than being k-dependent.

For 0 ≤ j ≤ n let us use the notations F (j) = F ∩
(
[n]
j

)
, f (j) = |F (j)|.

The following inequality is an important discovery of Kleitman [Kl].
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Kleitman Lemma. Let F ⊂ 2[n] be k-partition-free and let j1, j2, . . . , jk be
non-negative integers satisfying j1 + . . . + jk = n. Then

(1)
∑
1≤i≤k

f (ji)(
n
ji

) ≤ k − 1.

The proof of (1) is an easy averaging over all choices of pairwise dis-
joint sets G1, . . . , Gk satisfying |Gi| = ji and noting that at least one of the
relations Gi ∈ F fails.

Since the relation j1 + . . .+ jk = n is essential for proving (1) it is rather
surprising that in certain cases one can prove the analogous inequality even
if j1 + . . . + jk > n.

Let us first state our inequality for the case k = 3.

Theorem 2. Let m > ` > 0 be integers, n = 3m− `. Suppose that F ⊂ 2[n]

is 3-partition-free. Then

(2)
|F (m−`)(

n
m−`

) +
|F (m)|(

n
m

) +
|F (m+`)|(

n
m+`

) ≤ 2.

Looking at the family
(
[n]
m

)
∪
(

[n]
m+`

)
shows that (2) is best possible.

To state our most general result let us say that the families F1, . . . ,Fk ⊂
2[n] are cross-partition-free if there is no choice of Fi ∈ Fi, i = 1, . . . , k such
that F1, . . . , Fk form a partition of [n].

Theorem 3. Let m > ` > 0 be integers, n = km−`, k ≥ 3. For 1 ≤ i ≤ k let
Fi ⊂

(
[n]
m−`

)
∪
(
[n]
m

)
∪
(

[n]
m+`

)
and suppose that F1, . . . ,Fk are cross-partition-free.

Then

(3)
∑
1≤i≤k

∣∣F (m−`)
i

∣∣(
n

m−`

) +

∣∣F (m)
i

∣∣(
n
m

) + (k − 2)

∣∣F (m+`)
i

∣∣(
n

m+`

) ≤ (k − 1)k.

Note that for k = 3 and F1 = . . . = Fk the inequality (3) implies (2).
The reason that we treat it separately is that both the statement and the
proof are simple and hopefully give the reader the motivation to go through
the more technical result (3).

The proofs of (2) and (3) are based on Katona’s cyclic permutation
method (cf. [Ka1], [Ka2]).
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2 The proof of (2)

Let x1, x2, . . . , x3m−`, x1 be a random cyclic permutation of {1, 2, . . . , n} (as
indicated above, the element after xn is x1). All (n− 1)! cyclic permutations
have the same probability 1/(n− 1)!. Set d = (3m− `,m).

We define three families, B, A and C. B =
{
B1, . . . , B(3m−`)/d

}
where

Br = {xj : (r − 1)m < j ≤ rm}, r = 1, . . . , (3m − `)/d. Note that the Br

are arcs of m consecutive elements xj. Moreover, (m, 3m− `) = d guarantees
that each of the (3m− `)/d arcs Br are distinct and the last element of Bn/d

is xn.
Let us partition each Br as Br = Ar∪Dr with Ar being the arc consisting

of the first m − ` elements. Formally, Ar = {xj : (r − 1)m < j ≤ rm − `},
Dr = Br \ Ar. Set Cr = Br ∪Dr+1. Define

A = {Ar : 1 ≤ r ≤ n/d},
C = {Cr : 1 ≤ r ≤ n/d}.

Note that Cr is not an arc but the union of two arcs and that it has the
important property Cr ∪Ar+1 = Br ∪Br+1 that we are going to use without
further reference.

Lemma 2.1. If F ⊂ 2[n] is 3-partition-free then

(2.1) |F ∩ A|+ |F ∩ B|+ |F ∩ C| ≤ 2n/d.

Proof of (2.1). Let R = {r : Ar ∈ F}, S = {s : Bs /∈ F}, T = {t : Ct /∈ F}.
(We consider S and T as sets on distinct ground sets.) To prove (2.1) it is
sufficient to show

(2.2) |R| ≤ |S|+ |T |.

We prove (2.2) by constructing an injection ϕ from R into S ∪ T .
First note that Br, Br+1, Ar+2 form a partition of [n]. This implies that

if r + 2 ∈ R then at least one of r, r + 1 is in S. If r + 1 ∈ S, we set
ϕ(r + 2) = r + 1. If not then we let provisionally ϕ(r + 2) = r.

The only problem that might occur is that r+1 is also in R and therefore
ϕ(r + 2) = ϕ(r + 1) = r.

Noting that Cr, Ar+1, Ar+2 form a partition of [n], r ∈ T follows. We
change the value of ϕ(r + 2) to the element r in T . This element is not
allocated to any other r′ ∈ R and the proof of (2.2) is complete.
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To deduce (2) from (2.1) is easy averaging. For every B ∈ B the probabil-
ity of B ∈ F is |F (m)|/

(
n
m

)
by the uniform random choice of the permutation.

The expected size E(|F ∩ B|) is

|B| |F (m)|
/ (n

m

)
=
|F (m)|(

n
m

) · n
d
.

The same holds for A and C as well. By linearity of expectation and using
the trivial fact that the expectation never exceeds the maximum, we infer

n

d

(
|F (m−`)|(

n
m−`

) +
|F (m)|(

n
m

) +
|F (m+`)|(

n
m+`

) ) = E(|F ∩A|+ |F ∩ B|+ |F ∩ C|) ≤ 2n

d
.

Dividing by n
d

yields (2).

3 The proof of (3)

The proof is similar to that of (2) but both notationally and conceptually
more complicated. Set d = (km − `,m) and n = n/d. Fix a random cyclic
permutation x1, . . . , xn of {1, . . . , n} and define again the n arcs of length
m, B = {B1, . . . , Bn} where Br =

{
xq : (r − 1)m < q ≤ rm

}
. The choice

of n guarantees that Bn ends with the element xn. This time we want to
distribute these arcs among the k families Fi, 1 ≤ i ≤ k. For this reason let
b be the first positive integer such that k divides bn. Of course, b = k/(n, k).

We let B
(p)
r be a copy of Br and make a circle of bn sets in the following

order: B
(1)
1 , B

(2)
2 , . . . , B

(k)
k , B

(1)
k+1, . . . , B

(k)
bn . For each pair (r, p) we define the

arc A
(p)
r ⊂ B

(p)
r as the set of the first m− ` elements of B

(p)
r and let D

(p)
r be

the rest: D
(p)
r = B

(p)
r \A(p)

r . For 1 ≤ j ≤ k− 2 we define the (m+ `)-element
sets

C(p)
r (j) = B(p)

r ∪D
(p+j)
r+j (r + j is mod n, p + j is mod k).

Note that C
(p)
r (j)∪A(p+j)

r+j = B
(p)
r ∪B(p+j)

r+j . For 1 ≤ p ≤ k let us define B(p) ={
B

(p)
1 , . . . , B

(p)
n

}
, A(p) =

{
A

(p)
1 , . . . , A

(p)
n

}
and C(p)j =

{
C

(p)
r (j) : 1 ≤ r ≤ n

}
,

1 ≤ j ≤ k−2. Note that altogether we defined
(
1+1+(k−2)

)
k = k2 families,

each of size bn/k. Therefore (3) will follow once we prove that out of these
altogether bnk sets at most bn(k − 1) are in the corresponding families Fi.
In other words we have to show that at least bn in total are missing.
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Our plan is very simple. Fixing an arbitrary pair (i, r), 1 ≤ i ≤ k,
1 ≤ r ≤ n, we want to show that there is an integer, 0 < t ≤ k such that out
of the following tk sets at least t are missing from the corresponding Fi′ .

The list is A
(i)
r , A

(i−1)
r−1 , ..., A

(i−t+1)
r−t+1 ; B

(i−1)
r−1 , ..., B

(i−t)
r−t ; C

(i−1)
r−1 (j), ..., C

(i−t)
r−t (j),

1 ≤ j ≤ k − 2.
To achieve this goal we prove a slightly stronger assertion. Since we do

not need them for this statement, we remove the upper indices and let Cr(j)

denote the set C
(i)
r (j) and the same with B

(i)
r , A

(i)
r .

Lemma 3.1. Let r be fixed and consider the following k groups of sets.
G1 = {Ar, Br−1}, G2 = {Ar−1, Br−2, Cr−2(1)}, . . . , Gk−1 = {Ar−k+2, Br−k+1,
Cr−k+1(1), . . . , Cr−k+1(k − 2)}. Suppose that we have families Hi, Hi ⊂ Gi,
1 ≤ i < k such that we cannot find k members of H1 ∪ . . . ∪ Hk−1 which
partition Ar ∪Br−1 ∪ . . . ∪Br−k+1. Then there exists t, 1 ≤ t ≤ k satisfying

(3.1)
∑
1≤s≤t

∣∣Gs \ Hs

∣∣ ≥ t.

Proof. First consider H1. If H1 $ G1 then (3.1) holds with t = 1. If H1 = G1
then the two members Ar and Br−1 partition Ar ∪Br−1. Arguing indirectly,
suppose that (3.1) does not hold and let 1 ≤ t < k be the smallest integer
such that Ar ∪ Br−1 ∪ . . . ∪ Br−t cannot be partitioned using the sets in
H1 ∪ . . . ∪Ht.

By our assumptions t exists and the above considerations show t > 1 and
Ar ∈ H1. The minimality of t implies the existence of members Hi ∈ Hi,
1 ≤ i < t such that

Ar ∪H1 ∪ . . . ∪Ht−1 = Ar ∪Br−1 ∪ . . . ∪Br−(t−1)

is a partition with Hi ∈ Hi. To conclude the proof we will prove that (3.1)
holds for t.

First note that adding Br−t would make a partition of Ar∪Br−1∪. . .∪Br−t,
implying Br−t /∈ Ht. To exhibit t − 1 further missing sets let us note the
following important feature about the partition H1∪ . . .∪Ht−1 = Br−1∪ . . .∪
Br−(t−1): whenever a set Cr−s(j) occurs it must come together with Ar−s+j

and the union of these two sets is Br−s ∪Br−s+j. Consequently, altering the
order of the Hu, we can break up the partition as

Br−1∪ . . .∪Br−(t−1) = Bu1 ∪ . . .∪Bu`
∪
(
Bu`+1

∪Bu`+2

)
∪ . . .∪

(
But−2 ∪But−1

)
.
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To prove (3.1) we show the existence of distinct sets in
⋃

1≤s≤t
Gs \Hs, one for

Bui
and two for Bui

∪Bui+1
.

For Bui
note Cr−t(ui−r+t)∪Aui

= Br−t∪Bui
. Since Ar∪Br−1∪. . .∪Br−t

cannot be partitional by members of the Hs, either Cr−t(ui − r + t) or Aui

is missing from the Hs. For the case of Bv ∪ Bw (to simplify notation,
r − t < v < w ≤ r − 1) first note that one of the corresponding sets in
H1 ∪ . . . ∪ Ht−1 that partition Bv ∪ Bw is Aw (the other is Cv(w − v)).
Consider two partitions of Br−t ∪Bv ∪Bw.

Cr−t(w − r + t) ∪Bv ∪ Aw and

Cr−t(v − r + t) ∪ Av ∪Bw.

Since at least one set must be missing from both, we are done. Noting that
the exhibited candidates for missing sets are all distinct, the proof of (3.1)
is complete. �

Equipped with (3.1) it is not hard to prove Lemma 3.1. Starting at an
arbitrary r we find, say, t1 consecutive “groups” with at least a total of t1
missing sets, 1 ≤ t1 ≤ k. Then starting at r − t1 we find t2 such groups,
etc. Going around the circle (of length bn) the last position of the last group
might not be r + 1. However, since there are only bn members after making
no more than k full rounds we definitely have two sets of groups starting at
the same element, say r′. That is for the tw in between, say ta, ta+1, . . . , ta+q

one has ta + ta+1 + . . . + ta+q = c · bn with c a positive integer. For these
positions we exhibited altogether at least cbn missing sets and each of them
is counted at most c times. Therefore there are at least bn missing sets,
proving Lemma 3.1.

Since Lemma 3.1 implies (3) by the same averaging argument as Lemma 2.1
implied (2), the proof of Theorem 3 is complete.

4 Applications

Definition 4.1. For positive integers n ≥ k ≥ 3 let p(n, k) denote the
maximum of |F| over all F ⊂ 2[n] that are k-partition-free.

Theorem 4.2.

(4.1) p(km− 1, k) =
∑
j≥m

(
km− 1

j

)
,
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moreover the only k-partition-free family achieving equality in (4.1) is
{
G ⊂

[km− 1] : |G| ≥ m
}

.

Let us note that Kleitman [Kl] proved the same bound for the somewhat
stronger restriction that the family is without k pairwise disjoint sets. Also,
Kleitman did not prove the uniqueness of the optimal family.

Proof. Since the case m = 1 is trivial, we suppose m ≥ 2. Our main tool is

Theorem 3 applied with ` = 1, F1 = . . . = Fk
def
= F . For the k-partition-free

family F ⊂ 2[n], n = km− 1 we get from (3):

|F (m−1)|(
n

m−1

) +
|F (m)|(

n
m

) + (k − 2)
|F (m+1)|(

n
m+1

) ≤ k − 1.

Setting y(j) =
(
n
j

)
− |F (j)| we obtain

(4.2)
y(m− 1)(

n
m−1

) +
y(m)(

n
m

) + (k − 2)
y(m + 1)(

n
m+1

) ≥ 1.

Note
(
km−1
m

)
= (k − 1)

(
km−1
m−1

)
and for further use

(4.3)

(
km− 1

m− j + 1

) / (km− 1

m− j

)
=

(k − 1)m + j − 1

m− j + 1
> k − 1 for j ≥ 2.

Using
(
km−1
m+i

)
≥
(
km−1
m

)
(valid for i < m) (4.2) yields the following inequality.

(4.4) y(m− 1) +
1

k − 1
y(m) +

k − 2

k − 1
y(m + 1) ≥

(
km− 1

m− 1

)
.

Let us apply (1) with

(j1, . . . , jk) = (m− `,m,m, . . . ,m,m + `− 1) for ` = 2, 3, . . . ,m.

Multiplying both sides by
(

n
m−`

)
we obtain

(4.5) y(m− `) +
(k − 2)

(k − 1)`
y(m) +

1

(k − 1)`
y(m + `− 1) ≥

(
km− 1

m− `

)
(
we used (4.3) and

(
n

m+`−1

)
>
(
n
m

))
. We want to add (4.4) and the sum of

(4.5) over 2 ≤ ` ≤ m. For ` > 2 the term y(m + `− 1) occurs only once and
its coefficient is smaller than 1

k−1 < 1. The term y(m + 1) has coefficient

k − 2

k − 1
+

1

(k − 1)2
<

k − 2

k − 1
+

1

k − 1
= 1 also.
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Finally (k− 1)−2 + (k− 1)−3 + . . . = k−1
k−2 ·

1
(k−1)2 = 1

(k−2) ·
1

k−1 . Thus the total

coefficient of y(m) will be less than 2
k−1 ≤ 1. That is, we obtain an inequality

of the form

y(0) + y(1) + . . . + y(m− 1) + cmy(m) + . . . + c2my(2m) ≥
∑

0≤j<m

(
n

j

)
with c(m + i) < 1 for 0 ≤ i ≤ m. Consequently, |F| ≤ 2n −

∑
0≤j<m

(
n
j

)
=∑

j≥m

(
n
m

)
, as desired. Moreover, in case of equality, y(m + i) = 0 must hold

because of cm+i < 1 for all 0 ≤ i ≤ m. Plugging these values into (4.4) and
(4.5), y(m − `) =

(
n

m−`

)
follows for all 1 ≤ ` ≤ m. That is, F = {F ⊂ [n] :

|F | ≥ m} concluding the proof of the uniqueness.

Remark. If we used (1) instead of Theorem 3 then instead of (4.4) we would
have

y(m− 1) + y(m) ≥
(
km− 1

m

)
.

Thus adding more equalities to it would make the coefficient of y(m) greater
than 1.

Definition 4.3. The not necessarily distinct families F1, . . . ,Fk are called
cross-dependent if there is no choice of F1 ∈ F1, . . . , Fk ∈ Fk that are pairwise
disjoint.

Let us recall the following recent result of Kupavskii and the author.

Theorem 4.4 ([FK]). Suppose that F1, . . . ,Fk ⊂ 2[n], n = mk − 1, are
cross-dependent. Then one has:

(4.6) |F1|+ . . . + |Fk| ≤ k ·
∑
j≥m

(
mk − 1

j

)
.

One can use Theorem 3 to prove (4.6) under the weaker assumption of
being cross-partition-free and show that equality holds only if

F1 = . . . = Fk = {F ⊂ [n] : |F | ≥ m}.

We leave the details to the interested reader.
Let us mention that in [FK] the maximum of |F1|+. . .+|Fk| is determined

for all values of n and k. The methods presented in this paper seem to be
insufficient to tackle the cases n 6≡ −1 (mod k).
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