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Abstract

Let m(k) denote the maximum number of edges in a non-extendable,
intersecting k-graph. Erdős and Lovász proved that m(k) ≤ kk. An
improved bound is provided.

1 Introduction

Let k ≥ 2 be an integer. A collection F = {F1, . . . , Fm} of distinct k-element
sets is usually called a k-graph, |F| = m is its size. The k-graph F is called
intersecting if F ∩ F ′ 6= ∅ for all F, F ′ ∈ F . The intersecting k-graph F
is called maximal or saturated if F ∪ {F0} ceases to be intersecting for all
possible choices of a k-set F0 /∈ F .

In their seminal paper [EL] Erdős and Lovász proved the following im-
portant finiteness result.

Erdős–Lovász Bound [EL]. If F is a maximal intersecting k-graph
then

(1.1) |F| ≤ kk.

Let m(k) denote the maximum of |F|. It is easy to see that the only maximal
intersecting 2-graph is the triangle. This construction can be extended to
k ≥ 3.

Example 1.1 ([EL]). Let E1, E2, . . . , Ek be pairwise disjoint sets, |Ei| = i.
Define Ei = {E : |E| = k, Ei ⊂ E, |Ej ∩ E| = 1, i < j ≤ k}. Then
E = E1 ∪ . . . ∪ Ek is maximal intersecting,

(1.2) |E| =
∑
1≤i≤k

k!/i! =
⌊
(e− 1)k!

⌋
.
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For k = 3 one has |E| = 10. Although there are other non-isomorphic
examples, no maximal intersecting 3-graph has more than 10 edges, i.e.,
m(3) = 10. For more than twenty years this construction was believed to
be the largest possible (cf. [L]). However, in [FOT] a construction of size
about (k/2)k was given. Since we are mostly interested in upper bounds, we
reproduce it only for the even case.

Example 1.2 ([FOT]). Let k = 2a+ 2, a ≥ 1. Let x be a vertex and choose
2a + 1 pairwise disjoint (a + 2)-element sets Ai, 0 ≤ i ≤ 2a, x /∈ Ai. Define
Ai = {A : |A| = k, Ai ⊂ A, |A ∩ Aj| = 1, i + 1 ≤ j ≤ i + a} (computation
is modulo 2a + 1). Define also B = {B : |B| = k, x ∈ B, |B ∩ Ai| = 1,
0 ≤ i ≤ 2a}. Set A = B ∪A0 ∪ . . .∪A2a+1. Then A is maximal intersecting,

|A| = (a+ 2)k−1 + (k − 1) · (a+ 2)a ∼
(
k
2

)k−1 · e.
To improve the bound (1) considerably seems to be difficult. In 1994 Tuza

[T] proved m(k) ≤
(
1− 1

e
+ o(1)

)
kk but no progress was made for another

20 years.
In 2016 Arman and Retter [AR] proved

(1.3) m(k) ≤ (1 + o(1))kk−1.

The aim of the present paper is to provide a near-exponential improve-
ment of the previous upper bounds.

Theorem 1.3. For k ≥ 81 one has

(1.4) m(k) < kk · e−k1/4/6.

For a family of sets F and a set D we use the following standard notations.

F(D) = {F \D : D ⊂ F ∈ F}, F(D) = {F ∈ F : F ∩D = ∅}.

In the case D = {x} we simply write F(x) and F(x). Note the identity
|F| = |F(x)|+ |F(x)|.

A set C is said to be a cover (for F) if F ∩ C 6= ∅ for all F ∈ F . The
covering number τ(F) is defined as

τ(F) = {min |C| : C is a cover for F}.

If F is an intersecting k-graph then τ(F) ≤ k. Indeed, every F ∈ F is a
cover.

Two families A and B are said to be cross-intersecting if A ∩ B 6= ∅ for
all A ∈ A, B ∈ B.
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Observation 1.4. Suppose that F is an intersecting k-graph with τ(F) = k.
Let x be an arbitrary vertex. Then (i) and (ii) hold.

(i) F(x) and F(x) are cross-intersecting.
(ii) τ(F(x)) = k − 1.

Proof. (i) Take H ∈ F(x), F ∈ F(x). Since H ∪ {x} ∈ F and x /∈ F ∈ F ,

∅ 6= (H ∪ {x}) ∩ F = H ∩ F.

(ii) By (i) any H ∈ F(x) is a cover for F(x) showing τ(F(x)) ≤ k − 1.
On the other hand if T covers F(x) then T ∪ {x} is a cover for F . Thus

τ(F(x)) ≥ τ(F)− 1 = k − 1.

We deduce Theorem 1.3 from the following result.

Theorem 1.5. Let F be a maximal intersecting k-graph, k ≥ 81 and x an
arbitrary vertex. Then

(1.5) |F(x)| ≤ kk−1e−k
1/4/6.

To deduce (1.4) form (1.5) is immediate. Choose an arbitrary edge F of
a maximal intersecting family F with |F| = m(k). Since F is intersecting,

|F| ≤
∑
x∈F

|F(x)| − (k − 1).

Applying (1.5) to each term |F(x)| yields (1.4). �

The paper is organised as follows. The next section introduces the notion
of a t-broom. This is a simple k-graph that can be found as a subgraph in
every k-graph with large covering number.

In Section 3 we consider a pair of cross-intersecting families. The main
result is Proposition 3.3 that shows that the existence of brooms in the first
implies the existence of relatively slim s-cuts (cf. Definition 3.1) for the
second.

In Section 4 we use this result to prove Theorem 1.5 and thereby Theo-
rem 1.3 as well.
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2 Brooms

Definition 2.1. Let t ≥ 2, s ≥ 2 be integers. A k-graph B = {B1, . . . , Bs}
is called a t-broom of size s if 1 ≤ |Bi ∩ Bj| < t for 1 ≤ i < j ≤ s and
B has no vertex of degree more than two (i.e., Bu ∩ Bv ∩ Bw = ∅ for all
1 ≤ u < v < w ≤ s).

Proposition 2.2. Suppose t and s are positive integers, s ≥ 3, G is an
intersecting k-graph, τ(G) ≥

(
s
2

)
t. Then either G contains a t-broom of size

s+ 1 or there exist G,G′ ∈ G such that

t ≤ |G ∩G′| ≤ k − t.

Proof. Arguing indirectly we assume that for all G,G′ ∈ G either |G∩G′| >
k − t or |G ∩ G′| < t holds. To get started let us find B1, B2 ∈ G with
|B1 ∩B2| < t.

To this effect fix an arbitrary B1 ∈ G and a subset T ⊂ B1, |T | = t. Since
even for s = 3 we have τ(G) > t, there exists B2 ∈ G with B2 ∩ T = ∅. This
implies |B1 ∩B2| ≤ k − t and therefore |B1 ∩B2| < t, as desired.

Now suppose that we have found a t-broom {B1, . . . , Bp} ⊂ G of size p,
2 ≤ p ≤ s. To conclude the proof we show that it can be extended to a larger
t-broom.

Define Y =
⋃

1≤i<j≤p
Bi ∩Bj. Note that

|Y | ≤
(
p

2

)
(t− 1) <

(
s

2

)
t ≤ τ(G).

Define Ri = Y ∩ Bi and Ei = Bi \ Y . Next we define a subset Si of Ei. If
|Ri| ≥ t we let Si = ∅. If |Ri| < t then we let Si be an arbitrary (t − |Ri|)-
subset of Ei (1 ≤ i ≤ p). Let us show

(∗) |Y |+
∑
1≤i≤p

|Si| <
(
s

2

)
t.

If p = 2 then B1 ∩B2 = Y = R1 = R2. Now |Ri|+ |Si| ≤ t and Ri 6= ∅ imply
|R1|+ |S1|+ |S2| ≤ 2t− 1 ≤

(
s
2

)
t. For the case p ≥ 3 let us use

|Bi ∩Bi+1|+ |Si| ≤ t, valid for all i < p, along with |Bp ∩B1|+ |Sp| ≤ t.
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Adding these p inequalities together with the simpler |Bi ∩ Bj| < t for the
remaining

(
p
2

)
− p choices of {i, j} gives (∗).

Set Z = Y ∪ S1 ∪ . . . ∪ Sp. Now τ(G) >
(
s
2

)
t implies the existence of

G ∈ G satisfying G∩Z = ∅. The careful choice of Si entails |G∩Bi| ≤ k− t.
Consequently, |G ∩Bi| < t and B ∪ {G} is a t-broom of size p+ 1.

3 Constructing slim cuts

Let us fix s = bk1/4c. This implies s
(
s
2

)
< k

2
, a fact that we shall use without

further reference.

Definition 3.1. Given a family of sets A, the `-graph D is called an `-cut
for A if for all A ∈ A there exists D ∈ D such that D ⊂ A.

Note that if the families A and G are cross-intersecting then every G ∈ G
is a 1-cut for A.

Our proof of the main theorem is based on suitable, relatively slim `-cuts,
for the family F(x) where F is a maximal intersecting k-graph. However,
we prefer to proceed in the more general setting of pairs of cross-intersecting
families.

Lemma 3.2. Suppose that A and G are cross-intersecting, G is a k-graph
with τ(G) > `. Then for every vertex y there exists an `-cut Dy for A
consisting entirely of sets not containing y and satisfying |Dy| ≤ k`.

Proof. Let G1 ∈ G satisfy y /∈ G1. Then the k elements of G1 form a desired
1-cut proving the case ` = 1. Now we apply induction. Suppose that for some
p we have constructed a p-cut Dy for A, |Dy| ≤ kp and y /∈ D for all D ∈ Dy.
If p < ` then |D ∪ {y}| ≤ `. Thus there exists a set G(D, y) ∈ G satisfying
G(D, y)∩ (D∪{y}) = ∅. Then the (`+1)-graph

⋃
D∈Dy

{D∪ (z) : z ∈ G(D, y)}

will be a (`+ 1)-cut for A, as desired.

Proposition 3.3. Suppose that A and G are cross-intersecting, G is an in-
tersecting k-graph with τ(G) > s

(
s
2

)
, s ≥ 5, k ≥ s4 ≥ 81. Then there exists a

(s+ 1)-cut D for A satisfying

(3.1) |D| <
(

1− s+ 1

3k

)s+1

ks+1
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or a 2-cut D′ with

(3.2) |D′| <
(

1− s+ 1

3k

)2

k2.

Proof. Let us start with the harder case. We suppose

(3.3) |G ∩G′| < s or |G ∩G′| > k − s for all G,G′ ∈ G

and prove the existence of a slim (s+ 1)-cut.
In view of Proposition 2.2 there exists a t-broom B = {B1, . . . , Bs+1} of

size s+ 1, B ⊂ G. We set again Y =
⋃

1≤i<j≤s+1

Bi∩Bj, Ei = Bi \Y . For each

y ∈ Y let Dy be an s-cut for A, |Dy| ≤ ks. Set Ey = {D ∪ {y} : D ∈ Dy}.
Define E =

{
{x1, . . . , xs+1} : xi ∈ Ei

}
. Since the Ei are pairwise disjoint,

E is a (s+ 1)-graph with

|E| = |E1| · . . . · |Es+1|.

We claim that
( ⋃
y∈Y
Ey
)
∪ E def

= D is a (s+ 1)-cut for A.

Let A ∈ A. If A ∩ Y 6= ∅ then choose y ∈ A ∩ Y . Since Dy is an s-cut
for A we can pick D ∈ Dy satisfying D ⊂ A. Thus {y} ∪D is a (s + 1)-set
contained in A.

If A ∩ Y = ∅ then the cross-intersecting property implies A ∩ Ei 6= ∅ for
1 ≤ i ≤ s+ 1. Picking xi ∈ A ∩ Ei the (s+ 1)-set {x1, . . . , xs+1} is a subset
of A finishing the proof of the claim.

To estimate the size of this (s+ 1)-cut note that

|E1|+ . . .+ |Es+1| = (s+ 1)k − 2|Y | and |Y | ≥
(
s+ 1

2

)
.

Invoking the inequality between arithmetic and geometric mean we infer

|E| ≤
(
k − 2|Y |

s+ 1

)s+1

≤ ks+1 − 2|Y |ks + s|Y |2 · ks−1.

Consequently,

(3.4) |D| ≤ ks+1

(
1− |Y |

k
+
s|Y |2

k2

)
.
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For 2s|Y | < k the term in the bracket is a decreasing function of |Y |.
Using |Y | ≤ (s − 1)

(
s+1
2

)
, 2s|Y | ≤ s2(s2 − 1) < s4. Setting s = bk1/4c

is sufficient. In this case the maximum of the RHS is attained if |Y | is
minimal, that is, |Y | =

(
s+1
2

)
.

For this value

(3.5)
|Y |
k
− s|Y |2

k2
=

(s+ 1)s

2k

[
1− s2(s+ 1)

2k

]
.

Using k ≥ s4, the quantity in [ ] is at most 1− 1
2s
− 1

2s2
≥ 1− 1

s
for s ≥ 1. For

s ≥ 5 one has s−1
2
≥ s+1

3
implying that the value of (3.4) is at least (s+1)2

3k
.

Using (3.4) we obtain

|D| < ks+1

(
1− s+ 1

3k
(s+ 1)

)
<

(
k

(
1− s+ 1

3k

))s+1

as desired.

Consider next the case that we can find G1, G2 satisfying

s ≤ |G1 ∩G2| ≤ k − s.

Set Y = G1 ∩G2, Ei = Gi \ Y , i = 1, 2.
Define E =

{
{x1, x2} : x1 ∈ E1, x2 ∈ E2

}
, |E| = (k − |Y |)2. For each

y ∈ Y fix G(y) ∈ G with y /∈ G(y). Finally set

D′ = E ∪
(⋃

y∈Y

{
{y, u} : u ∈ G(y)

})
It is easy to verify that D′ is a 2-cut.

|D′| = (k − |Y |)2 + |Y | · k = k2 − |Y |k + |Y |2.

In the range s ≤ |Y | ≤ k−s the maximum of the RHS is attained for |Y | = s
and |Y | = k − s. It is equal to

k2 − sk + s2 = k2
(

1− s

k
+
s2

k2

)
< k2

(
1− s+ 1

3k

)2

for s ≥ 3 and thus for k ≥ 81.
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4 The proof of Theorem 1.5

Recall Observation 1.4. This enables us to apply Proposition 3.3 with A =
F(x), G = F(x). However, one application is not sufficient, we need to repeat
it. For a set D recall the definitions

A(D) = {A \D : D ⊂ A ∈ A}, G(D) = {G ∈ G : G ∩D = ∅}.

Note also τ(G(D)) ≥ τ(G)−|D| and the fact that ifA,G are cross-intersecting
then A(D) and G(D) are cross-intersecting as well.

Now we can describe the process. Set A0 = A, G0 = G, D0 = ∅.
Suppose that we have defined already Ai, Gi and Di where |Di| > Di−1|,

Ai = A(Di), Gi = G(Di) and

(4.1) |A| <
(

1− s+ 1

3k

)|Di|

|A(Di)|k|Di|.

Suppose that we can apply Proposition 3.3 to Ai and Gi. Then either (3.1)
or (3.2) holds.

In case of (3.1) we choose D ∈ D to maximize |Ai(D)| and set Di+s+1 =
Di ∪D, Ai+1 = A(Di ∪D), Gi+1 = G(Di ∪D). In view of (3.1) and |Di+1| =
|Di|+ s+ 1 the inequality (4.1) holds with i replaced by i+ 1.

In case of (3.2) we proceed in absolutely the same way. The only difference
is that D′ ∈ D satisfies |D′| = 2. Therefore |Di+1| = |Di|+ 2.

As long as |Di| < k/2 we have

τ(G(Di)) > k − 1− k − 1

2
≥ bk/2c.

Thus we can proceed. Once we have |Di| ≥ k/2 we stop. In view of Obser-
vation 1.4, Lemma 3.2 implies

|A(Di)| ≤ kk−1−|Di|.

Combining with (4.1) we infer

|A| < kk−1
(

1− s+ 1

3k

)k/2

< kk−1 · e−
1
6
k1/4 .

� � �
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5 Concluding remarks

First note that every intersecting k-graph F with τ(F) = k can be extended
to a maximal intersecting k-graph on the same vertex set. Therefore the
upper bound (1.1) is valid for such F as well. Let us remark that Gyárfás
[G] proved that

∣∣{G : G∩F 6= ∅ for all F ∈ F , |G| = t}
∣∣ ≤ kt for all k-graphs

with τ(F) = t, that is, without the intersection property. Equality holds if
F consists of t pairwise disjoint edges.

Finally we remark that our methods can be refined to yield m(k) <

kk · e−ck1/3 . We preferred to prove the present bound keeping the argument
and calculations simpler.
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