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Abstract

Let m(k) denote the maximum number of edges in a non-extendable,
intersecting k-graph. Erdés and Lovész proved that m(k) < k*. An
improved bound is provided.

1 Introduction

Let k£ > 2 be an integer. A collection F = {F7, ..., F,} of distinct k-element
sets is usually called a k-graph, |F| = m is its size. The k-graph F is called
intersecting if F N F' # () for all F,F' € F. The intersecting k-graph F
is called mazimal or saturated if F U {Fy} ceases to be intersecting for all
possible choices of a k-set Fy ¢ F.

In their seminal paper [EL] Erdés and Lovész proved the following im-
portant finiteness result.

Erdés—Lovasz Bound [EL|. If F is a maximal intersecting k-graph
then

(1.1) | F| < k",

Let m(k) denote the maximum of |F|. It is easy to see that the only maximal
intersecting 2-graph is the triangle. This construction can be extended to
k> 3.

Example 1.1 ([EL]). Let Ey, Es, ..., Ej be pairwise disjoint sets, |E;| = i.
Define & = {F : |E| = k, E; C E,|E;NE| =1,i < j < k}. Then
E =& U...U¢& is maximal intersecting,

(1.2) E] = > Klfil = [(e - D)K.

1<i<k



For k = 3 one has || = 10. Although there are other non-isomorphic
examples, no maximal intersecting 3-graph has more than 10 edges, i.e.,
m(3) = 10. For more than twenty years this construction was believed to
be the largest possible (cf. [L]). However, in [FOT] a construction of size
about (k/2)* was given. Since we are mostly interested in upper bounds, we
reproduce it only for the even case.

Example 1.2 ([FOT]). Let k = 2a+2, a > 1. Let x be a vertex and choose
2a + 1 pairwise disjoint (a + 2)-element sets A;, 0 < i < 2a, x ¢ A;. Define
A ={A: Al =k A CA |[ANAj|=1i+1<j<i+a} (computation
is modulo 2a + 1). Define also B = {B : |B| = k,z € B, |[BN A4 = 1,
0<i<2a}. Set A=BUAU...UAs1. Then A is maximal intersecting,
Al = (a+2)F 1+ (k=1)-(a+2)* ~ (5)".

To improve the bound (1) considerably seems to be difficult. In 1994 Tuza
[T] proved m(k) < (1 — 2+ o(1)) k* but no progress was made for another
20 years.

In 2016 Arman and Retter [AR] proved

(1.3) m(k) < (1+o(1))k* 1.

The aim of the present paper is to provide a near-exponential improve-
ment of the previous upper bounds.

Theorem 1.3. For k > 81 one has
(1.4) m(k) < k¥ - e RS,

For a family of sets F and a set D we use the following standard notations.

F(D)={F\D: DCFeF}, F(D)={FeF:FnD=0}.
In the case D = {x} we simply write F(x) and F(Z). Note the identity
[F| = [F (@) + [ F(@)]
A set C'is said to be a cover (for F) if FNC # () for all F € F. The
covering number 7(F) is defined as

7(F) ={min |C| : C is a cover for F}.

If F is an intersecting k-graph then 7(F) < k. Indeed, every F' € F is a
cover.

Two families A and B are said to be cross-intersecting if AN B # () for
all Ae A, B € B.



Observation 1.4. Suppose that F is an intersecting k-graph with 7(F) = k.
Let x be an arbitrary vertex. Then (i) and (ii) hold.
(i) F(T) and F(x) are cross-intersecting.

(ii) 7(F(T)) =k — 1.
Proof. (i) Take H € F(z), F € F(Z). Since HU{z} € Fandx ¢ F € F,
D4 (HU{z})NF=HNF.

(ii) By (i) any H € F(x) is a cover for F(T) showing 7(F (7)) < k — 1.
On the other hand if T" covers F(Z) then T'U {x} is a cover for F. Thus

T(F(@)>7(F)—1=k—1. O
We deduce Theorem 1.3 from the following result.

Theorem 1.5. Let F be a maximal intersecting k-graph, k > 81 and x an
arbitrary vertex. Then

(1.5) | F(z)] < kFle k6,

To deduce (1.4) form (1.5) is immediate. Choose an arbitrary edge F' of
a maximal intersecting family F with |F| = m(k). Since F is intersecting,

[FI <Y 1F@) = (k- 1).

zeF

Applying (1.5) to each term |F(z)| yields (1.4). O

The paper is organised as follows. The next section introduces the notion
of a t-broom. This is a simple k-graph that can be found as a subgraph in
every k-graph with large covering number.

In Section 3 we consider a pair of cross-intersecting families. The main
result is Proposition 3.3 that shows that the existence of brooms in the first
implies the existence of relatively slim s-cuts (cf. Definition 3.1) for the
second.

In Section 4 we use this result to prove Theorem 1.5 and thereby Theo-
rem 1.3 as well.



2 Brooms

Definition 2.1. Let ¢ > 2, s > 2 be integers. A k-graph B = {By,..., B}
is called a t-broom of size s if 1 < |B;NB;| <tfor1l <i < j < s and
B has no vertex of degree more than two (i.e., B, N B, N B, = 0 for all
I<u<v<w<s).

Proposition 2.2. Suppose t and s are positive integers, s > 3, G is an
intersecting k-graph, T7(G) > (;)t Then either G contains a t-broom of size
s+ 1 or there exist G,G' € G such that

t<|GNG| <k—t.

Proof. Arguing indirectly we assume that for all G, G’ € G either |GNG'| >
k—tor |GNG' <t holds. To get started let us find By, By € G with
|Bl N B2| < t.

To this effect fix an arbitrary By € G and a subset T' C By, |T| = t. Since
even for s = 3 we have 7(G) > t, there exists By € G with Bo N'T = (). This
implies |B; N By| < k —t and therefore |B; N By| < t, as desired.

Now suppose that we have found a ¢-broom {Bj,...,B,} C G of size p,
2 < p < s. To conclude the proof we show that it can be extended to a larger
t-broom.

Define Y = |J B; N B;. Note that

1<i<j<p

| < <§> (t—1) < ©t < 7(G).

Define R; = Y N B; and E; = B; \ Y. Next we define a subset S; of E;. If
|R;| >t we let S; = (0. If |R;| <t then we let S; be an arbitrary (¢t — |R;|)-
subset of E; (1 <1i <p). Let us show

(%) i+ S 18] < G)t

1<i<p

If p=2then BiNBy, =Y = Ry = Ry. Now |R;|+|S;| <t and R; # ) imply
|Ri| + [S1] 4+ 92| <2t —1 < (3)t. For the case p > 3 let us use

|B; N Bip1| + |Si] < t, valid for all i < p, along with |B, N By| + |S,| < t.



Adding these p inequalities together with the simpler |B; N B;| < t for the
remaining (5) — p choices of {i,j} gives (x).

Set Z =Y US;U...US, Now 7(G) > (;)t implies the existence of
G € G satistying GNZ = (). The careful choice of S; entails |GNB;| < k—t.
Consequently, |G N B;| <t and BU {G} is a t-broom of size p + 1. O

3 Constructing slim cuts

Let us fix s = [k'/*]. This implies s(}) < %, a fact that we shall use without
further reference.

Definition 3.1. Given a family of sets A, the ¢-graph D is called an ¢-cut
for A if for all A € A there exists D € D such that D C A.

Note that if the families A and G are cross-intersecting then every G € G
is a 1-cut for A.

Our proof of the main theorem is based on suitable, relatively slim ¢-cuts,
for the family F(z) where F is a maximal intersecting k-graph. However,
we prefer to proceed in the more general setting of pairs of cross-intersecting
families.

Lemma 3.2. Suppose that A and G are cross-intersecting, G is a k-graph
with 7(G) > (. Then for every vertex y there exists an (-cut D, for A
consisting entirely of sets not containing y and satisfying |D,| < k*.

Proof. Let Gy € G satisfy y ¢ G1. Then the k elements of G form a desired
1-cut proving the case £ = 1. Now we apply induction. Suppose that for some
p we have constructed a p-cut D, for A, |D,| < kP and y ¢ D for all D € D,
If p < ¢ then |D U {y}| < ¢. Thus there exists a set G(D,y) € G satisfying
G(D,y)Nn(DU{y}) = 0. Then the ((+1)-graph |J {DU(z):2z € G(D,y)}

DeD,

will be a (¢ + 1)-cut for A, as desired. O

Proposition 3.3. Suppose that A and G are cross-intersecting, G is an in-
tersecting k-graph with 7(G) > s(g), s>5, k> s*>81. Then there exists a
(s + 1)-cut D for A satisfying

1 s+1
(3.1) Dl < (1 - S;k ) ot




or a 2-cut D' with

s+1\2
3.2 D’ 1— k2.
(3:2) < (1=

Proof. Let us start with the harder case. We suppose

(3.3) IGNG' | <s or |GNG'|>k—s forall G,G'e€g
and prove the existence of a slim (s + 1)-cut.

In view of Proposition 2.2 there exists a t-broom B = {Bjy, ..., Bsi1} of
size s+ 1, B C G. We set again Y = U BiNBj, E;=B;\Y. For each

1<i<j<s+1
y €Y let D, be an s-cut for A, |D,| < k*. Set & ={DU{y}: D € D,}.
Define £ = {{xl, ce Teq1) i@ € El} Since the F; are pairwise disjoint,
€ is a (s+ 1)-graph with

El = [En] - [Espal.

We claim that ( U €y> UEYDisa (s 4+ 1)-cut for A.
yey

Let Ae A If ANY # 0 then choose y € ANY. Since D, is an s-cut
for A we can pick D € D, satisfying D C A. Thus {y} UD is a (s + 1)-set
contained in A.

If ANY = () then the cross-intersecting property implies A N E; # () for
1 <i<s+1. Picking x; € AN E; the (s + 1)-set {x1,..., 2511} is a subset
of A finishing the proof of the claim.

To estimate the size of this (s 4 1)-cut note that

s+1
Byl + ...+ |Esa| = (s + Dk —=2]Y] and [Y] > ( 5 )
Invoking the inequality between arithmetic and geometric mean we infer
+1

2 Y s+1
] < ( _ L) < B VIR 4 s|V]2 - R
S

Consequently,

Y[ s[Y]?
(3.4) |D| <k (1 PR



For 2s|Y| < k the term in the bracket is a decreasing function of |Y|.
Using Y| < (s — 1)(*}"), 2s]Y] < s*(s* — 1) < s’ Setting s = |k'/*4]
is sufficient. In this case the maximum of the RHS is attained if |Y| is
minimal, that is, [Y| = (°*}').

For this value

(3.5)

Y] sV (s+1)s - s?(s+1)
k k2 2k 2k '

Using k > s*, the quantity in [ ]is at most 1—5-— 55 > 1—1 for s > 1. For

s > 5 one has 7= L> 3“ implying that the value of (3.4) is at least (SH) )
Using (3.4) We obtam

1 1 s+1
ID| < k5t (1 — S;;g (s + 1)) < (k (1 — S;;g )) as desired.

Consider next the case that we can find Gy, G satisfying

s<|GiNGy <k—s.

SetY:GlﬂGg, EZ:GZ\Y,Z:1,2
Define & = {{z1, 22} : 21 € Ey, 22 € Es}, [E] = (k — |Y])?. For each
yeY fix G(y) € G with y ¢ G(y). Finally set

=EU (U{{y,u} cu € G(y)})
yeyY
It is easy to verify that D’ is a 2-cut.

D= (k=Y + Y] k=K —[Y]k+[V]"

In the range s < |Y'| < k—s the maximum of the RHS is attained for |Y| = s
and |Y| =k — s. It is equal to

2 2
2 2 _ 12 _ s 2 s+
k*—sk+s =k <1 k+k2)<k <1 3k:>

for s > 3 and thus for k£ > 81. O]




4 The proof of Theorem 1.5

Recall Observation 1.4. This enables us to apply Proposition 3.3 with A =
F(x), G = F(x). However, one application is not sufficient, we need to repeat
it. For a set D recall the definitions

AD)={A\D:DCAcA}, G(D)={GeG:GND =0}
Note also 7(G(D)) > 7(G)—|D| and the fact that if A, G are cross-intersecting
then A(D) and G(D) are cross-intersecting as well.
Now we can describe the process. Set Ay = A, Go = G, Dy = 0.
Suppose that we have defined already A;, G; and D; where |D;| > D;_4],

s+1
3k

| D]
(4.1) |A| < (1 — ) |A(D;)|k!Pi.

Suppose that we can apply Proposition 3.3 to A; and G;. Then either (3.1)
or (3.2) holds.

In case of (3.1) we choose D € D to maximize |A;(D)| and set D; 511 =
D;uUD, Ajy1 = A(D;UD), Givy = G(D; U D). In view of (3.1) and |D; 11| =
|D;| + s + 1 the inequality (4.1) holds with 7 replaced by i + 1.

In case of (3.2) we proceed in absolutely the same way. The only difference
is that D’ € D satisfies |D’| = 2. Therefore |D; 41| = |D;| + 2.

As long as |D;| < k/2 we have

HGD) > k—1— % > [k/2.

Thus we can proceed. Once we have |D;| > k/2 we stop. In view of Obser-
vation 1.4, Lemma 3.2 implies

|A(D;)| < kF-1-10i

Combining with (4.1) we infer

k/2
e (12 ) e e




5 Concluding remarks

First note that every intersecting k-graph F with 7(F) = k can be extended
to a maximal intersecting k-graph on the same vertex set. Therefore the
upper bound (1.1) is valid for such F as well. Let us remark that Gyérfas
[G] proved that [{G : GNF # 0 for all F € F,|G| =t}| < k' for all k-graphs
with 7(F) = ¢, that is, without the intersection property. Equality holds if
F consists of ¢ pairwise disjoint edges.

Finally we remark that our methods can be refined to yield m(k) <
Kk . e=<k'"* We preferred to prove the present bound keeping the argument
and calculations simpler.
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