A near exponential improvement on a bound of Erdős and Lovász

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Let $m(k)$ denote the maximum number of edges in a non-extendable, intersecting k-graph. Erdős and Lovász proved that $m(k) \leq k^{k}$. An improved bound is provided.

1 Introduction

Let $k \geq 2$ be an integer. A collection $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ of distinct k-element sets is usually called a k-graph, $|\mathcal{F}|=m$ is its size. The k-graph \mathcal{F} is called intersecting if $F \cap F^{\prime} \neq \emptyset$ for all $F, F^{\prime} \in \mathcal{F}$. The intersecting k-graph \mathcal{F} is called maximal or saturated if $\mathcal{F} \cup\left\{F_{0}\right\}$ ceases to be intersecting for all possible choices of a k-set $F_{0} \notin \mathcal{F}$.

In their seminal paper [EL] Erdős and Lovász proved the following important finiteness result.

Erdős-Lovász Bound [EL]. If \mathcal{F} is a maximal intersecting k-graph then

$$
\begin{equation*}
|\mathcal{F}| \leq k^{k} \tag{1.1}
\end{equation*}
$$

Let $m(k)$ denote the maximum of $|\mathcal{F}|$. It is easy to see that the only maximal intersecting 2-graph is the triangle. This construction can be extended to $k \geq 3$.

Example 1.1 ([EL]). Let $E_{1}, E_{2}, \ldots, E_{k}$ be pairwise disjoint sets, $\left|E_{i}\right|=i$. Define $\mathcal{E}_{i}=\left\{E:|E|=k, E_{i} \subset E,\left|E_{j} \cap E\right|=1, i<j \leq k\right\}$. Then $\mathcal{E}=\mathcal{E}_{1} \cup \ldots \cup \mathcal{E}_{k}$ is maximal intersecting,

$$
\begin{equation*}
|\mathcal{E}|=\sum_{1 \leq i \leq k} k!/ i!=\lfloor(e-1) k!\rfloor . \tag{1.2}
\end{equation*}
$$

For $k=3$ one has $|\mathcal{E}|=10$. Although there are other non-isomorphic examples, no maximal intersecting 3 -graph has more than 10 edges, i.e., $m(3)=10$. For more than twenty years this construction was believed to be the largest possible (cf. [L]). However, in [FOT] a construction of size about $(k / 2)^{k}$ was given. Since we are mostly interested in upper bounds, we reproduce it only for the even case.
Example 1.2 ([FOT]). Let $k=2 a+2, a \geq 1$. Let x be a vertex and choose $2 a+1$ pairwise disjoint $(a+2)$-element sets $A_{i}, 0 \leq i \leq 2 a, x \notin A_{i}$. Define $\mathcal{A}_{i}=\left\{A:|A|=k, A_{i} \subset A,\left|A \cap A_{j}\right|=1, i+1 \leq j \leq i+a\right\}$ (computation is modulo $2 a+1$). Define also $\mathcal{B}=\left\{B:|B|=k, x \in B,\left|B \cap A_{i}\right|=1\right.$, $0 \leq i \leq 2 a\}$. Set $\mathcal{A}=\mathcal{B} \cup \mathcal{A}_{0} \cup \ldots \cup \mathcal{A}_{2 a+1}$. Then \mathcal{A} is maximal intersecting, $|\mathcal{A}|=(a+2)^{k-1}+(k-1) \cdot(a+2)^{a} \sim\left(\frac{k}{2}\right)^{k-1} \cdot e$.

To improve the bound (1) considerably seems to be difficult. In 1994 Tuza [T] proved $m(k) \leq\left(1-\frac{1}{e}+o(1)\right) k^{k}$ but no progress was made for another 20 years.

In 2016 Arman and Retter [AR] proved

$$
\begin{equation*}
m(k) \leq(1+o(1)) k^{k-1} \tag{1.3}
\end{equation*}
$$

The aim of the present paper is to provide a near-exponential improvement of the previous upper bounds.

Theorem 1.3. For $k \geq 81$ one has

$$
\begin{equation*}
m(k)<k^{k} \cdot e^{-k^{1 / 4} / 6} \tag{1.4}
\end{equation*}
$$

For a family of sets \mathcal{F} and a set D we use the following standard notations.

$$
\mathcal{F}(D)=\{F \backslash D: D \subset F \in \mathcal{F}\}, \quad \mathcal{F}(\bar{D})=\{F \in \mathcal{F}: F \cap D=\emptyset\} .
$$

In the case $D=\{x\}$ we simply write $\mathcal{F}(x)$ and $\mathcal{F}(\bar{x})$. Note the identity $|\mathcal{F}|=|\mathcal{F}(x)|+|\mathcal{F}(\bar{x})|$.

A set C is said to be a cover (for \mathcal{F}) if $F \cap C \neq \emptyset$ for all $F \in \mathcal{F}$. The covering number $\tau(\mathcal{F})$ is defined as

$$
\tau(\mathcal{F})=\{\min |C|: C \text { is a cover for } \mathcal{F}\}
$$

If \mathcal{F} is an intersecting k-graph then $\tau(\mathcal{F}) \leq k$. Indeed, every $F \in \mathcal{F}$ is a cover.

Two families \mathcal{A} and \mathcal{B} are said to be cross-intersecting if $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.

Observation 1.4. Suppose that \mathcal{F} is an intersecting k-graph with $\tau(\mathcal{F})=k$. Let x be an arbitrary vertex. Then (i) and (ii) hold.
(i) $\mathcal{F}(\bar{x})$ and $\mathcal{F}(x)$ are cross-intersecting.
(ii) $\tau(\mathcal{F}(\bar{x}))=k-1$.

Proof. (i) Take $H \in \mathcal{F}(x), F \in \mathcal{F}(\bar{x})$. Since $H \cup\{x\} \in \mathcal{F}$ and $x \notin F \in \mathcal{F}$,

$$
\emptyset \neq(H \cup\{x\}) \cap F=H \cap F
$$

(ii) By (i) any $H \in \mathcal{F}(x)$ is a cover for $\mathcal{F}(\bar{x})$ showing $\tau(\mathcal{F}(\bar{x})) \leq k-1$. On the other hand if T covers $\mathcal{F}(\bar{x})$ then $T \cup\{x\}$ is a cover for \mathcal{F}. Thus

$$
\tau(\mathcal{F}(\bar{x})) \geq \tau(\mathcal{F})-1=k-1
$$

We deduce Theorem 1.3 from the following result.
Theorem 1.5. Let \mathcal{F} be a maximal intersecting k-graph, $k \geq 81$ and x an arbitrary vertex. Then

$$
\begin{equation*}
|\mathcal{F}(x)| \leq k^{k-1} e^{-k^{1 / 4} / 6} \tag{1.5}
\end{equation*}
$$

To deduce (1.4) form (1.5) is immediate. Choose an arbitrary edge F of a maximal intersecting family \mathcal{F} with $|\mathcal{F}|=m(k)$. Since \mathcal{F} is intersecting,

$$
|\mathcal{F}| \leq \sum_{x \in F}|\mathcal{F}(x)|-(k-1) .
$$

Applying (1.5) to each term $|\mathcal{F}(x)|$ yields (1.4).
The paper is organised as follows. The next section introduces the notion of a t-broom. This is a simple k-graph that can be found as a subgraph in every k-graph with large covering number.

In Section 3 we consider a pair of cross-intersecting families. The main result is Proposition 3.3 that shows that the existence of brooms in the first implies the existence of relatively slim s-cuts (cf. Definition 3.1) for the second.

In Section 4 we use this result to prove Theorem 1.5 and thereby Theorem 1.3 as well.

2 Brooms

Definition 2.1. Let $t \geq 2, s \geq 2$ be integers. A k-graph $\mathcal{B}=\left\{B_{1}, \ldots, B_{s}\right\}$ is called a t-broom of size s if $1 \leq\left|B_{i} \cap B_{j}\right|<t$ for $1 \leq i<j \leq s$ and \mathcal{B} has no vertex of degree more than two (i.e., $B_{u} \cap B_{v} \cap B_{w}=\emptyset$ for all $1 \leq u<v<w \leq s)$.

Proposition 2.2. Suppose t and s are positive integers, $s \geq 3, \mathcal{G}$ is an intersecting k-graph, $\tau(\mathcal{G}) \geq\binom{ s}{2} t$. Then either \mathcal{G} contains a t-broom of size $s+1$ or there exist $G, G^{\prime} \in \mathcal{G}$ such that

$$
t \leq\left|G \cap G^{\prime}\right| \leq k-t
$$

Proof. Arguing indirectly we assume that for all $G, G^{\prime} \in \mathcal{G}$ either $\left|G \cap G^{\prime}\right|>$ $k-t$ or $\left|G \cap G^{\prime}\right|<t$ holds. To get started let us find $B_{1}, B_{2} \in \mathcal{G}$ with $\left|B_{1} \cap B_{2}\right|<t$.

To this effect fix an arbitrary $B_{1} \in \mathcal{G}$ and a subset $T \subset B_{1},|T|=t$. Since even for $s=3$ we have $\tau(\mathcal{G})>t$, there exists $B_{2} \in \mathcal{G}$ with $B_{2} \cap T=\emptyset$. This implies $\left|B_{1} \cap B_{2}\right| \leq k-t$ and therefore $\left|B_{1} \cap B_{2}\right|<t$, as desired.

Now suppose that we have found a t-broom $\left\{B_{1}, \ldots, B_{p}\right\} \subset \mathcal{G}$ of size p, $2 \leq p \leq s$. To conclude the proof we show that it can be extended to a larger t-broom.

Define $Y=\bigcup_{1 \leq i<j \leq p} B_{i} \cap B_{j}$. Note that

$$
|Y| \leq\binom{ p}{2}(t-1)<\binom{s}{2} t \leq \tau(\mathcal{G})
$$

Define $R_{i}=Y \cap B_{i}$ and $E_{i}=B_{i} \backslash Y$. Next we define a subset S_{i} of E_{i}. If $\left|R_{i}\right| \geq t$ we let $S_{i}=\emptyset$. If $\left|R_{i}\right|<t$ then we let S_{i} be an arbitrary $\left(t-\left|R_{i}\right|\right)$ subset of $E_{i}(1 \leq i \leq p)$. Let us show

$$
\begin{equation*}
|Y|+\sum_{1 \leq i \leq p}\left|S_{i}\right|<\binom{s}{2} t \tag{*}
\end{equation*}
$$

If $p=2$ then $B_{1} \cap B_{2}=Y=R_{1}=R_{2}$. Now $\left|R_{i}\right|+\left|S_{i}\right| \leq t$ and $R_{i} \neq \emptyset$ imply $\left|R_{1}\right|+\left|S_{1}\right|+\left|S_{2}\right| \leq 2 t-1 \leq\binom{ s}{2} t$. For the case $p \geq 3$ let us use
$\left|B_{i} \cap B_{i+1}\right|+\left|S_{i}\right| \leq t$, valid for all $i<p$, along with $\left|B_{p} \cap B_{1}\right|+\left|S_{p}\right| \leq t$.

Adding these p inequalities together with the simpler $\left|B_{i} \cap B_{j}\right|<t$ for the remaining $\binom{p}{2}-p$ choices of $\{i, j\}$ gives $(*)$.

Set $Z=Y \cup S_{1} \cup \ldots \cup S_{p}$. Now $\tau(\mathcal{G})>\binom{s}{2} t$ implies the existence of $G \in \mathcal{G}$ satisfying $G \cap Z=\emptyset$. The careful choice of S_{i} entails $\left|G \cap B_{i}\right| \leq k-t$. Consequently, $\left|G \cap B_{i}\right|<t$ and $\mathcal{B} \cup\{G\}$ is a t-broom of size $p+1$.

3 Constructing slim cuts

Let us fix $s=\left\lfloor k^{1 / 4}\right\rfloor$. This implies $s\binom{s}{2}<\frac{k}{2}$, a fact that we shall use without further reference.

Definition 3.1. Given a family of sets \mathcal{A}, the ℓ-graph \mathcal{D} is called an ℓ-cut for \mathcal{A} if for all $A \in \mathcal{A}$ there exists $D \in \mathcal{D}$ such that $D \subset A$.

Note that if the families \mathcal{A} and \mathcal{G} are cross-intersecting then every $G \in \mathcal{G}$ is a 1 -cut for \mathcal{A}.

Our proof of the main theorem is based on suitable, relatively slim ℓ-cuts, for the family $\mathcal{F}(x)$ where \mathcal{F} is a maximal intersecting k-graph. However, we prefer to proceed in the more general setting of pairs of cross-intersecting families.

Lemma 3.2. Suppose that \mathcal{A} and \mathcal{G} are cross-intersecting, \mathcal{G} is a k-graph with $\tau(\mathcal{G})>\ell$. Then for every vertex y there exists an ℓ-cut \mathcal{D}_{y} for \mathcal{A} consisting entirely of sets not containing y and satisfying $\left|\mathcal{D}_{y}\right| \leq k^{\ell}$.

Proof. Let $G_{1} \in \mathcal{G}$ satisfy $y \notin G_{1}$. Then the k elements of G_{1} form a desired 1 -cut proving the case $\ell=1$. Now we apply induction. Suppose that for some p we have constructed a p-cut \mathcal{D}_{y} for $\mathcal{A},\left|\mathcal{D}_{y}\right| \leq k^{p}$ and $y \notin D$ for all $D \in \mathcal{D}_{y}$. If $p<\ell$ then $|D \cup\{y\}| \leq \ell$. Thus there exists a set $G(D, y) \in \mathcal{G}$ satisfying $G(D, y) \cap(D \cup\{y\})=\emptyset$. Then the $(\ell+1)$-graph $\bigcup_{D \in \mathcal{D}_{y}}\{D \cup(z): z \in G(D, y)\}$ will be a $(\ell+1)$-cut for \mathcal{A}, as desired.

Proposition 3.3. Suppose that \mathcal{A} and \mathcal{G} are cross-intersecting, \mathcal{G} is an intersecting k-graph with $\tau(\mathcal{G})>s\binom{s}{2}, s \geq 5, k \geq s^{4} \geq 81$. Then there exists a $(s+1)$-cut \mathcal{D} for \mathcal{A} satisfying

$$
\begin{equation*}
|\mathcal{D}|<\left(1-\frac{s+1}{3 k}\right)^{s+1} k^{s+1} \tag{3.1}
\end{equation*}
$$

or a 2-cut \mathcal{D}^{\prime} with

$$
\begin{equation*}
\left|\mathcal{D}^{\prime}\right|<\left(1-\frac{s+1}{3 k}\right)^{2} k^{2} \tag{3.2}
\end{equation*}
$$

Proof. Let us start with the harder case. We suppose

$$
\begin{equation*}
\left|G \cap G^{\prime}\right|<s \text { or }\left|G \cap G^{\prime}\right|>k-s \text { for all } G, G^{\prime} \in \mathcal{G} \tag{3.3}
\end{equation*}
$$

and prove the existence of a slim $(s+1)$-cut.
In view of Proposition 2.2 there exists a t-broom $\mathcal{B}=\left\{B_{1}, \ldots, B_{s+1}\right\}$ of size $s+1, \mathcal{B} \subset \mathcal{G}$. We set again $Y=\underset{1 \leq i<j \leq s+1}{\bigcup} B_{i} \cap B_{j}, E_{i}=B_{i} \backslash Y$. For each $y \in Y$ let \mathcal{D}_{y} be an s-cut for $\mathcal{A},\left|\mathcal{D}_{y}\right| \leq k^{s}$. Set $\mathcal{E}_{y}=\left\{D \cup\{y\}: D \in \mathcal{D}_{y}\right\}$.

Define $\mathcal{E}=\left\{\left\{x_{1}, \ldots, x_{s+1}\right\}: x_{i} \in E_{i}\right\}$. Since the E_{i} are pairwise disjoint, \mathcal{E} is a $(s+1)$-graph with

$$
|\mathcal{E}|=\left|E_{1}\right| \cdot \ldots \cdot\left|E_{s+1}\right| .
$$

We claim that $\left(\bigcup_{y \in Y} \mathcal{E}_{y}\right) \cup \mathcal{E} \stackrel{\text { def }}{=} \mathcal{D}$ is a $(s+1)$-cut for \mathcal{A}.
Let $A \in \mathcal{A}$. If $A \cap Y \neq \emptyset$ then choose $y \in A \cap Y$. Since \mathcal{D}_{y} is an s-cut for A we can pick $D \in \mathcal{D}_{y}$ satisfying $D \subset A$. Thus $\{y\} \cup D$ is a $(s+1)$-set contained in A.

If $A \cap Y=\emptyset$ then the cross-intersecting property implies $A \cap E_{i} \neq \emptyset$ for $1 \leq i \leq s+1$. Picking $x_{i} \in A \cap E_{i}$ the $(s+1)$-set $\left\{x_{1}, \ldots, x_{s+1}\right\}$ is a subset of A finishing the proof of the claim.

To estimate the size of this $(s+1)$-cut note that

$$
\left|E_{1}\right|+\ldots+\left|E_{s+1}\right|=(s+1) k-2|Y| \text { and }|Y| \geq\binom{ s+1}{2}
$$

Invoking the inequality between arithmetic and geometric mean we infer

$$
|\mathcal{E}| \leq\left(k-\frac{2|Y|}{s+1}\right)^{s+1} \leq k^{s+1}-2|Y| k^{s}+s|Y|^{2} \cdot k^{s-1}
$$

Consequently,

$$
\begin{equation*}
|\mathcal{D}| \leq k^{s+1}\left(1-\frac{|Y|}{k}+\frac{s|Y|^{2}}{k^{2}}\right) \tag{3.4}
\end{equation*}
$$

For $2 s|Y|<k$ the term in the bracket is a decreasing function of $|Y|$. Using $|Y| \leq(s-1)\binom{s+1}{2}, 2 s|Y| \leq s^{2}\left(s^{2}-1\right)<s^{4}$. Setting $s=\left\lfloor k^{1 / 4}\right\rfloor$ is sufficient. In this case the maximum of the RHS is attained if $|Y|$ is minimal, that is, $|Y|=\binom{s+1}{2}$.

For this value

$$
\begin{equation*}
\frac{|Y|}{k}-\frac{s|Y|^{2}}{k^{2}}=\frac{(s+1) s}{2 k}\left[1-\frac{s^{2}(s+1)}{2 k}\right] . \tag{3.5}
\end{equation*}
$$

Using $k \geq s^{4}$, the quantity in [] is at most $1-\frac{1}{2 s}-\frac{1}{2 s^{2}} \geq 1-\frac{1}{s}$ for $s \geq 1$. For $s \geq 5$ one has $\frac{s-1}{2} \geq \frac{s+1}{3}$ implying that the value of (3.4) is at least $\frac{(s+1)^{2}}{3 k}$.

Using (3.4) we obtain

$$
|\mathcal{D}|<k^{s+1}\left(1-\frac{s+1}{3 k}(s+1)\right)<\left(k\left(1-\frac{s+1}{3 k}\right)\right)^{s+1} \text { as desired. }
$$

Consider next the case that we can find G_{1}, G_{2} satisfying

$$
s \leq\left|G_{1} \cap G_{2}\right| \leq k-s
$$

Set $Y=G_{1} \cap G_{2}, E_{i}=G_{i} \backslash Y, i=1,2$.
Define $\mathcal{E}=\left\{\left\{x_{1}, x_{2}\right\}: x_{1} \in E_{1}, x_{2} \in E_{2}\right\},|\mathcal{E}|=(k-|Y|)^{2}$. For each $y \in Y$ fix $G(y) \in \mathcal{G}$ with $y \notin G(y)$. Finally set

$$
\mathcal{D}^{\prime}=\mathcal{E} \cup\left(\bigcup_{y \in Y}\{\{y, u\}: u \in G(y)\}\right)
$$

It is easy to verify that \mathcal{D}^{\prime} is a 2 -cut.

$$
\left|\mathcal{D}^{\prime}\right|=(k-|Y|)^{2}+|Y| \cdot k=k^{2}-|Y| k+|Y|^{2}
$$

In the range $s \leq|Y| \leq k-s$ the maximum of the RHS is attained for $|Y|=s$ and $|Y|=k-s$. It is equal to

$$
k^{2}-s k+s^{2}=k^{2}\left(1-\frac{s}{k}+\frac{s^{2}}{k^{2}}\right)<k^{2}\left(1-\frac{s+1}{3 k}\right)^{2}
$$

for $s \geq 3$ and thus for $k \geq 81$.

4 The proof of Theorem 1.5

Recall Observation 1.4. This enables us to apply Proposition 3.3 with $\mathcal{A}=$ $\mathcal{F}(x), \mathcal{G}=\mathcal{F}(\bar{x})$. However, one application is not sufficient, we need to repeat it. For a set D recall the definitions

$$
\mathcal{A}(D)=\{A \backslash D: D \subset A \in \mathcal{A}\}, \quad \mathcal{G}(\bar{D})=\{G \in \mathcal{G}: G \cap D=\emptyset\}
$$

Note also $\tau(\mathcal{G}(\bar{D})) \geq \tau(\mathcal{G})-|D|$ and the fact that if \mathcal{A}, \mathcal{G} are cross-intersecting then $\mathcal{A}(D)$ and $\mathcal{G}(\bar{D})$ are cross-intersecting as well.

Now we can describe the process. Set $\mathcal{A}_{0}=\mathcal{A}, \mathcal{G}_{0}=\mathcal{G}, D_{0}=\emptyset$.
Suppose that we have defined already $\mathcal{A}_{i}, \mathcal{G}_{i}$ and D_{i} where $\left|D_{i}\right|>D_{i-1} \mid$, $\mathcal{A}_{i}=\mathcal{A}\left(D_{i}\right), \mathcal{G}_{i}=\mathcal{G}\left(\bar{D}_{i}\right)$ and

$$
\begin{equation*}
|\mathcal{A}|<\left(1-\frac{s+1}{3 k}\right)^{\left|D_{i}\right|}\left|\mathcal{A}\left(D_{i}\right)\right| k^{\left|D_{i}\right|} \tag{4.1}
\end{equation*}
$$

Suppose that we can apply Proposition 3.3 to \mathcal{A}_{i} and \mathcal{G}_{i}. Then either (3.1) or (3.2) holds.

In case of (3.1) we choose $D \in \mathcal{D}$ to maximize $\left|\mathcal{A}_{i}(D)\right|$ and set $D_{i+s+1}=$ $D_{i} \cup D, \mathcal{A}_{i+1}=\mathcal{A}\left(D_{i} \cup D\right), \mathcal{G}_{i+1}=\mathcal{G}\left(\overline{D_{i} \cup D}\right)$. In view of (3.1) and $\left|D_{i+1}\right|=$ $\left|D_{i}\right|+s+1$ the inequality (4.1) holds with i replaced by $i+1$.

In case of (3.2) we proceed in absolutely the same way. The only difference is that $D^{\prime} \in \mathcal{D}$ satisfies $\left|D^{\prime}\right|=2$. Therefore $\left|D_{i+1}\right|=\left|D_{i}\right|+2$.

As long as $\left|D_{i}\right|<k / 2$ we have

$$
\tau\left(\mathcal{G}\left(\bar{D}_{i}\right)\right)>k-1-\frac{k-1}{2} \geq\lfloor k / 2\rfloor .
$$

Thus we can proceed. Once we have $\left|D_{i}\right| \geq k / 2$ we stop. In view of Observation 1.4, Lemma 3.2 implies

$$
\left|\mathcal{A}\left(D_{i}\right)\right| \leq k^{k-1-\left|D_{i}\right|} .
$$

Combining with (4.1) we infer

$$
|\mathcal{A}|<k^{k-1}\left(1-\frac{s+1}{3 k}\right)^{k / 2}<k^{k-1} \cdot e^{-\frac{1}{6} k^{1 / 4}}
$$

5 Concluding remarks

First note that every intersecting k-graph \mathcal{F} with $\tau(\mathcal{F})=k$ can be extended to a maximal intersecting k-graph on the same vertex set. Therefore the upper bound (1.1) is valid for such \mathcal{F} as well. Let us remark that Gyárfás [G] proved that $\mid\{G: G \cap F \neq \emptyset$ for all $F \in \mathcal{F},|G|=t\} \mid \leq k^{t}$ for all k-graphs with $\tau(\mathcal{F})=t$, that is, without the intersection property. Equality holds if \mathcal{F} consists of t pairwise disjoint edges.

Finally we remark that our methods can be refined to yield $m(k)<$ $k^{k} \cdot e^{-c k^{1 / 3}}$. We preferred to prove the present bound keeping the argument and calculations simpler.

References

[AR] A. Arman, T. Retter, An upper bound for the size of a k-uniform intersecting family with covering number k, J. Comb. Theory, Ser. A 147 (2017), 18-26.
[EL] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, Proc. Colloq. Math. Soc. János Bolyai, Keszthely, Hungary, 1973, North-Holland, Amsterdam, 1974, 609-627.
[FOT] P. Frankl, K. Ota, N. Tokushige, Covers in uniform intersecting families and a counterexample to a conjecture of Lovász, J. Comb. Theory, Ser. A 74 (1) (1996), 33-42.
[G] A. Gyárfás, Partition covers and blocking sets in hypergraphs, MTA SZTAKI Tanulmányok 71/1977, Budapest, 1977 (in Hungarian).
[L] L. Lovász, On the minimax theorems of combinatorics, Mat. Lapok 26 (1975), 209-264 (in Hungarian).
[T] Z. Tuza, Inequalities for minimal covering sets in set systems of given rank, Discrete Appl. Math. 51 (1994), 187-195.

