A near exponential improvement on a bound of Erdős and Lovász

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Let m(k) denote the maximum number of edges in a non-extendable, intersecting k-graph. Erdős and Lovász proved that $m(k) \leq k^k$. An improved bound is provided.

1 Introduction

Let $k \geq 2$ be an integer. A collection $\mathcal{F} = \{F_1, \ldots, F_m\}$ of distinct k-element sets is usually called a k-graph, $|\mathcal{F}| = m$ is its size. The k-graph \mathcal{F} is called intersecting if $F \cap F' \neq \emptyset$ for all $F, F' \in \mathcal{F}$. The intersecting k-graph \mathcal{F} is called maximal or saturated if $\mathcal{F} \cup \{F_0\}$ ceases to be intersecting for all possible choices of a k-set $F_0 \notin \mathcal{F}$.

In their seminal paper [EL] Erdős and Lovász proved the following important finiteness result.

Erdős–Lovász Bound [EL]. If \mathcal{F} is a maximal intersecting k-graph then

$$(1.1) \qquad \qquad |\mathcal{F}| \le k^k$$

Let m(k) denote the maximum of $|\mathcal{F}|$. It is easy to see that the only maximal intersecting 2-graph is the triangle. This construction can be extended to $k \geq 3$.

Example 1.1 ([EL]). Let E_1, E_2, \ldots, E_k be pairwise disjoint sets, $|E_i| = i$. Define $\mathcal{E}_i = \{E : |E| = k, E_i \subset E, |E_j \cap E| = 1, i < j \leq k\}$. Then $\mathcal{E} = \mathcal{E}_1 \cup \ldots \cup \mathcal{E}_k$ is maximal intersecting,

(1.2)
$$|\mathcal{E}| = \sum_{1 \le i \le k} k!/i! = \lfloor (e-1)k! \rfloor$$

For k = 3 one has $|\mathcal{E}| = 10$. Although there are other non-isomorphic examples, no maximal intersecting 3-graph has more than 10 edges, i.e., m(3) = 10. For more than twenty years this construction was believed to be the largest possible (cf. [L]). However, in [FOT] a construction of size about $(k/2)^k$ was given. Since we are mostly interested in upper bounds, we reproduce it only for the even case.

Example 1.2 ([FOT]). Let k = 2a + 2, $a \ge 1$. Let x be a vertex and choose 2a + 1 pairwise disjoint (a + 2)-element sets A_i , $0 \le i \le 2a$, $x \notin A_i$. Define $\mathcal{A}_i = \{A : |A| = k, A_i \subset A, |A \cap A_j| = 1, i + 1 \le j \le i + a\}$ (computation is modulo 2a + 1). Define also $\mathcal{B} = \{B : |B| = k, x \in B, |B \cap A_i| = 1, 0 \le i \le 2a\}$. Set $\mathcal{A} = \mathcal{B} \cup \mathcal{A}_0 \cup \ldots \cup \mathcal{A}_{2a+1}$. Then \mathcal{A} is maximal intersecting, $|\mathcal{A}| = (a + 2)^{k-1} + (k - 1) \cdot (a + 2)^a \sim \left(\frac{k}{2}\right)^{k-1} \cdot e$.

To improve the bound (1) considerably seems to be difficult. In 1994 Tuza [T] proved $m(k) \leq \left(1 - \frac{1}{e} + o(1)\right) k^k$ but no progress was made for another 20 years.

In 2016 Arman and Retter [AR] proved

(1.3)
$$m(k) \le (1+o(1))k^{k-1}$$

The aim of the present paper is to provide a near-exponential improvement of the previous upper bounds.

Theorem 1.3. For $k \ge 81$ one has

(1.4)
$$m(k) < k^k \cdot e^{-k^{1/4}/6}.$$

For a family of sets \mathcal{F} and a set D we use the following standard notations.

$$\mathcal{F}(D) = \{ F \setminus D : D \subset F \in \mathcal{F} \}, \quad \mathcal{F}(\overline{D}) = \{ F \in \mathcal{F} : F \cap D = \emptyset \}.$$

In the case $D = \{x\}$ we simply write $\mathcal{F}(x)$ and $\mathcal{F}(\overline{x})$. Note the identity $|\mathcal{F}| = |\mathcal{F}(x)| + |\mathcal{F}(\overline{x})|$.

A set C is said to be a *cover* (for \mathcal{F}) if $F \cap C \neq \emptyset$ for all $F \in \mathcal{F}$. The covering number $\tau(\mathcal{F})$ is defined as

$$\tau(\mathcal{F}) = \{ \min |C| : C \text{ is a cover for } \mathcal{F} \}.$$

If \mathcal{F} is an intersecting k-graph then $\tau(\mathcal{F}) \leq k$. Indeed, every $F \in \mathcal{F}$ is a cover.

Two families \mathcal{A} and \mathcal{B} are said to be *cross-intersecting* if $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.

Observation 1.4. Suppose that \mathcal{F} is an intersecting k-graph with $\tau(\mathcal{F}) = k$. Let x be an arbitrary vertex. Then (i) and (ii) hold.

- (i) $\mathcal{F}(\overline{x})$ and $\mathcal{F}(x)$ are cross-intersecting.
- (ii) $\tau(\mathcal{F}(\overline{x})) = k 1.$

Proof. (i) Take $H \in \mathcal{F}(x)$, $F \in \mathcal{F}(\overline{x})$. Since $H \cup \{x\} \in \mathcal{F}$ and $x \notin F \in \mathcal{F}$,

$$\emptyset \neq (H \cup \{x\}) \cap F = H \cap F.$$

(ii) By (i) any $H \in \mathcal{F}(x)$ is a cover for $\mathcal{F}(\overline{x})$ showing $\tau(\mathcal{F}(\overline{x})) \leq k - 1$. On the other hand if T covers $\mathcal{F}(\overline{x})$ then $T \cup \{x\}$ is a cover for \mathcal{F} . Thus

$$\tau(\mathcal{F}(\overline{x})) \ge \tau(\mathcal{F}) - 1 = k - 1.$$

We deduce Theorem 1.3 from the following result.

Theorem 1.5. Let \mathcal{F} be a maximal intersecting k-graph, $k \geq 81$ and x an arbitrary vertex. Then

(1.5)
$$|\mathcal{F}(x)| \le k^{k-1} e^{-k^{1/4}/6}.$$

To deduce (1.4) form (1.5) is immediate. Choose an arbitrary edge F of a maximal intersecting family \mathcal{F} with $|\mathcal{F}| = m(k)$. Since \mathcal{F} is intersecting,

$$|\mathcal{F}| \le \sum_{x \in F} |\mathcal{F}(x)| - (k-1)$$

Applying (1.5) to each term $|\mathcal{F}(x)|$ yields (1.4).

The paper is organised as follows. The next section introduces the notion of a t-broom. This is a simple k-graph that can be found as a subgraph in every k-graph with large covering number.

In Section 3 we consider a pair of cross-intersecting families. The main result is Proposition 3.3 that shows that the existence of brooms in the first implies the existence of relatively slim s-cuts (cf. Definition 3.1) for the second.

In Section 4 we use this result to prove Theorem 1.5 and thereby Theorem 1.3 as well.

2 Brooms

Definition 2.1. Let $t \ge 2$, $s \ge 2$ be integers. A k-graph $\mathcal{B} = \{B_1, \ldots, B_s\}$ is called a *t*-broom of size s if $1 \le |B_i \cap B_j| < t$ for $1 \le i < j \le s$ and \mathcal{B} has no vertex of degree more than two (i.e., $B_u \cap B_v \cap B_w = \emptyset$ for all $1 \le u < v < w \le s$).

Proposition 2.2. Suppose t and s are positive integers, $s \ge 3$, \mathcal{G} is an intersecting k-graph, $\tau(\mathcal{G}) \ge {s \choose 2}t$. Then either \mathcal{G} contains a t-broom of size s+1 or there exist $G, G' \in \mathcal{G}$ such that

$$t \le |G \cap G'| \le k - t.$$

Proof. Arguing indirectly we assume that for all $G, G' \in \mathcal{G}$ either $|G \cap G'| > k - t$ or $|G \cap G'| < t$ holds. To get started let us find $B_1, B_2 \in \mathcal{G}$ with $|B_1 \cap B_2| < t$.

To this effect fix an arbitrary $B_1 \in \mathcal{G}$ and a subset $T \subset B_1$, |T| = t. Since even for s = 3 we have $\tau(\mathcal{G}) > t$, there exists $B_2 \in \mathcal{G}$ with $B_2 \cap T = \emptyset$. This implies $|B_1 \cap B_2| \le k - t$ and therefore $|B_1 \cap B_2| < t$, as desired.

Now suppose that we have found a *t*-broom $\{B_1, \ldots, B_p\} \subset \mathcal{G}$ of size p, $2 \leq p \leq s$. To conclude the proof we show that it can be extended to a larger *t*-broom.

Define $Y = \bigcup_{1 \le i < j \le p} B_i \cap B_j$. Note that

$$|Y| \le \binom{p}{2}(t-1) < \binom{s}{2}t \le \tau(\mathcal{G}).$$

Define $R_i = Y \cap B_i$ and $E_i = B_i \setminus Y$. Next we define a subset S_i of E_i . If $|R_i| \ge t$ we let $S_i = \emptyset$. If $|R_i| < t$ then we let S_i be an arbitrary $(t - |R_i|)$ -subset of E_i $(1 \le i \le p)$. Let us show

$$(*) |Y| + \sum_{1 \le i \le p} |S_i| < \binom{s}{2}t.$$

If p = 2 then $B_1 \cap B_2 = Y = R_1 = R_2$. Now $|R_i| + |S_i| \le t$ and $R_i \ne \emptyset$ imply $|R_1| + |S_1| + |S_2| \le 2t - 1 \le {s \choose 2}t$. For the case $p \ge 3$ let us use

$$|B_i \cap B_{i+1}| + |S_i| \le t$$
, valid for all $i < p$, along with $|B_p \cap B_1| + |S_p| \le t$.

Adding these p inequalities together with the simpler $|B_i \cap B_j| < t$ for the remaining $\binom{p}{2} - p$ choices of $\{i, j\}$ gives (*).

Set $Z = Y \cup S_1 \cup \ldots \cup S_p$. Now $\tau(\mathcal{G}) > \binom{s}{2}t$ implies the existence of $G \in \mathcal{G}$ satisfying $G \cap Z = \emptyset$. The careful choice of S_i entails $|G \cap B_i| \le k - t$. Consequently, $|G \cap B_i| < t$ and $\mathcal{B} \cup \{G\}$ is a *t*-broom of size p + 1. \Box

3 Constructing slim cuts

Let us fix $s = \lfloor k^{1/4} \rfloor$. This implies $s \binom{s}{2} < \frac{k}{2}$, a fact that we shall use without further reference.

Definition 3.1. Given a family of sets \mathcal{A} , the ℓ -graph \mathcal{D} is called an ℓ -cut for \mathcal{A} if for all $A \in \mathcal{A}$ there exists $D \in \mathcal{D}$ such that $D \subset A$.

Note that if the families \mathcal{A} and \mathcal{G} are cross-intersecting then every $G \in \mathcal{G}$ is a 1-cut for \mathcal{A} .

Our proof of the main theorem is based on suitable, relatively slim ℓ -cuts, for the family $\mathcal{F}(x)$ where \mathcal{F} is a maximal intersecting k-graph. However, we prefer to proceed in the more general setting of pairs of cross-intersecting families.

Lemma 3.2. Suppose that \mathcal{A} and \mathcal{G} are cross-intersecting, \mathcal{G} is a k-graph with $\tau(\mathcal{G}) > \ell$. Then for every vertex y there exists an ℓ -cut \mathcal{D}_y for \mathcal{A} consisting entirely of sets not containing y and satisfying $|\mathcal{D}_y| \leq k^{\ell}$.

Proof. Let $G_1 \in \mathcal{G}$ satisfy $y \notin G_1$. Then the k elements of G_1 form a desired 1-cut proving the case $\ell = 1$. Now we apply induction. Suppose that for some p we have constructed a p-cut \mathcal{D}_y for \mathcal{A} , $|\mathcal{D}_y| \leq k^p$ and $y \notin D$ for all $D \in \mathcal{D}_y$. If $p < \ell$ then $|D \cup \{y\}| \leq \ell$. Thus there exists a set $G(D, y) \in \mathcal{G}$ satisfying $G(D, y) \cap (D \cup \{y\}) = \emptyset$. Then the $(\ell + 1)$ -graph $\bigcup_{D \in \mathcal{D}_y} \{D \cup (z) : z \in G(D, y)\}$

will be a $(\ell + 1)$ -cut for \mathcal{A} , as desired.

Proposition 3.3. Suppose that \mathcal{A} and \mathcal{G} are cross-intersecting, \mathcal{G} is an intersecting k-graph with $\tau(\mathcal{G}) > s\binom{s}{2}$, $s \ge 5$, $k \ge s^4 \ge 81$. Then there exists a (s+1)-cut \mathcal{D} for \mathcal{A} satisfying

$$(3.1) \qquad \qquad |\mathcal{D}| < \left(1 - \frac{s+1}{3k}\right)^{s+1} k^{s+1}$$

or a 2-cut \mathcal{D}' with

(3.2)
$$|\mathcal{D}'| < \left(1 - \frac{s+1}{3k}\right)^2 k^2.$$

Proof. Let us start with the harder case. We suppose

(3.3)
$$|G \cap G'| < s \text{ or } |G \cap G'| > k - s \text{ for all } G, G' \in \mathcal{G}$$

and prove the existence of a slim (s+1)-cut.

In view of Proposition 2.2 there exists a *t*-broom $\mathcal{B} = \{B_1, \ldots, B_{s+1}\}$ of size s + 1, $\mathcal{B} \subset \mathcal{G}$. We set again $Y = \bigcup_{\substack{1 \le i < j \le s+1 \\ D \le i \le j \le s+1}} B_i \cap B_j$, $E_i = B_i \setminus Y$. For each $y \in Y$ let \mathcal{D}_y be an s-cut for \mathcal{A} , $|\mathcal{D}_y| \le k^s$. Set $\mathcal{E}_y = \{D \cup \{y\} : D \in \mathcal{D}_y\}$. Define $\mathcal{E} = \{\{x_1, \ldots, x_{s+1}\} : x_i \in E_i\}$. Since the E_i are pairwise disjoint,

 \mathcal{E} is a (s+1)-graph with

$$|\mathcal{E}| = |E_1| \cdot \ldots \cdot |E_{s+1}|.$$

We claim that $\left(\bigcup_{y\in Y} \mathcal{E}_y\right) \cup \mathcal{E} \stackrel{\text{def}}{=} \mathcal{D}$ is a (s+1)-cut for \mathcal{A} .

Let $A \in \mathcal{A}$. If $A \cap Y \neq \emptyset$ then choose $y \in A \cap Y$. Since \mathcal{D}_y is an s-cut for A we can pick $D \in \mathcal{D}_y$ satisfying $D \subset A$. Thus $\{y\} \cup D$ is a (s+1)-set contained in A.

If $A \cap Y = \emptyset$ then the cross-intersecting property implies $A \cap E_i \neq \emptyset$ for $1 \leq i \leq s+1$. Picking $x_i \in A \cap E_i$ the (s+1)-set $\{x_1, \ldots, x_{s+1}\}$ is a subset of A finishing the proof of the claim.

To estimate the size of this (s + 1)-cut note that

$$|E_1| + \ldots + |E_{s+1}| = (s+1)k - 2|Y|$$
 and $|Y| \ge \binom{s+1}{2}$.

Invoking the inequality between arithmetic and geometric mean we infer

$$|\mathcal{E}| \le \left(k - \frac{2|Y|}{s+1}\right)^{s+1} \le k^{s+1} - 2|Y|k^s + s|Y|^2 \cdot k^{s-1}.$$

Consequently,

(3.4)
$$|\mathcal{D}| \le k^{s+1} \left(1 - \frac{|Y|}{k} + \frac{s|Y|^2}{k^2} \right).$$

For 2s|Y| < k the term in the bracket is a decreasing function of |Y|. Using $|Y| \leq (s-1)\binom{s+1}{2}$, $2s|Y| \leq s^2(s^2-1) < s^4$. Setting $s = \lfloor k^{1/4} \rfloor$ is sufficient. In this case the maximum of the RHS is attained if |Y| is minimal, that is, $|Y| = \binom{s+1}{2}$.

For this value

(3.5)
$$\frac{|Y|}{k} - \frac{s|Y|^2}{k^2} = \frac{(s+1)s}{2k} \left[1 - \frac{s^2(s+1)}{2k}\right].$$

Using $k \ge s^4$, the quantity in [] is at most $1 - \frac{1}{2s} - \frac{1}{2s^2} \ge 1 - \frac{1}{s}$ for $s \ge 1$. For $s \ge 5$ one has $\frac{s-1}{2} \ge \frac{s+1}{3}$ implying that the value of (3.4) is at least $\frac{(s+1)^2}{3k}$. Using (3.4) we obtain

$$|\mathcal{D}| < k^{s+1} \left(1 - \frac{s+1}{3k} (s+1) \right) < \left(k \left(1 - \frac{s+1}{3k} \right) \right)^{s+1} \text{ as desired.}$$

Consider next the case that we can find G_1, G_2 satisfying

$$s \le |G_1 \cap G_2| \le k - s.$$

Set $Y = G_1 \cap G_2$, $E_i = G_i \setminus Y$, i = 1, 2.

Define $\mathcal{E} = \{\{x_1, x_2\} : x_1 \in E_1, x_2 \in E_2\}, |\mathcal{E}| = (k - |Y|)^2$. For each $y \in Y$ fix $G(y) \in \mathcal{G}$ with $y \notin G(y)$. Finally set

$$\mathcal{D}' = \mathcal{E} \cup \left(\bigcup_{y \in Y} \left\{ \{y, u\} : u \in G(y) \right\} \right)$$

It is easy to verify that \mathcal{D}' is a 2-cut.

$$|\mathcal{D}'| = (k - |Y|)^2 + |Y| \cdot k = k^2 - |Y|k + |Y|^2.$$

In the range $s \leq |Y| \leq k-s$ the maximum of the RHS is attained for |Y| = sand |Y| = k - s. It is equal to

$$k^{2} - sk + s^{2} = k^{2} \left(1 - \frac{s}{k} + \frac{s^{2}}{k^{2}} \right) < k^{2} \left(1 - \frac{s+1}{3k} \right)^{2}$$

for $s \ge 3$ and thus for $k \ge 81$.

4 The proof of Theorem 1.5

Recall Observation 1.4. This enables us to apply Proposition 3.3 with $\mathcal{A} = \mathcal{F}(x)$, $\mathcal{G} = \mathcal{F}(\overline{x})$. However, one application is not sufficient, we need to repeat it. For a set D recall the definitions

$$\mathcal{A}(D) = \{A \setminus D : D \subset A \in \mathcal{A}\}, \ \mathcal{G}(\overline{D}) = \{G \in \mathcal{G} : G \cap D = \emptyset\}.$$

Note also $\tau(\mathcal{G}(\overline{D})) \geq \tau(\mathcal{G}) - |D|$ and the fact that if \mathcal{A}, \mathcal{G} are cross-intersecting then $\mathcal{A}(D)$ and $\mathcal{G}(\overline{D})$ are cross-intersecting as well.

Now we can describe the process. Set $\mathcal{A}_0 = \mathcal{A}, \mathcal{G}_0 = \mathcal{G}, D_0 = \emptyset$.

Suppose that we have defined already \mathcal{A}_i , \mathcal{G}_i and D_i where $|D_i| > D_{i-1}|$, $\mathcal{A}_i = \mathcal{A}(D_i)$, $\mathcal{G}_i = \mathcal{G}(\overline{D}_i)$ and

(4.1)
$$|\mathcal{A}| < \left(1 - \frac{s+1}{3k}\right)^{|D_i|} |\mathcal{A}(D_i)| k^{|D_i|}.$$

Suppose that we can apply Proposition 3.3 to \mathcal{A}_i and \mathcal{G}_i . Then either (3.1) or (3.2) holds.

In case of (3.1) we choose $D \in \mathcal{D}$ to maximize $|\mathcal{A}_i(D)|$ and set $D_{i+s+1} = D_i \cup D$, $\mathcal{A}_{i+1} = \mathcal{A}(D_i \cup D)$, $\mathcal{G}_{i+1} = \mathcal{G}(\overline{D_i \cup D})$. In view of (3.1) and $|D_{i+1}| = |D_i| + s + 1$ the inequality (4.1) holds with *i* replaced by i + 1.

In case of (3.2) we proceed in absolutely the same way. The only difference is that $D' \in \mathcal{D}$ satisfies |D'| = 2. Therefore $|D_{i+1}| = |D_i| + 2$.

As long as $|D_i| < k/2$ we have

$$au(\mathcal{G}(\overline{D}_i)) > k - 1 - \frac{k-1}{2} \ge \lfloor k/2 \rfloor.$$

Thus we can proceed. Once we have $|D_i| \ge k/2$ we stop. In view of Observation 1.4, Lemma 3.2 implies

$$|\mathcal{A}(D_i)| \le k^{k-1-|D_i|}.$$

Combining with (4.1) we infer

$$|\mathcal{A}| < k^{k-1} \left(1 - \frac{s+1}{3k} \right)^{k/2} < k^{k-1} \cdot e^{-\frac{1}{6}k^{1/4}}.$$

5 Concluding remarks

First note that every intersecting k-graph \mathcal{F} with $\tau(\mathcal{F}) = k$ can be extended to a maximal intersecting k-graph on the same vertex set. Therefore the upper bound (1.1) is valid for such \mathcal{F} as well. Let us remark that Gyárfás [G] proved that $|\{G: G \cap F \neq \emptyset \text{ for all } F \in \mathcal{F}, |G| = t\}| \leq k^t$ for all k-graphs with $\tau(\mathcal{F}) = t$, that is, without the intersection property. Equality holds if \mathcal{F} consists of t pairwise disjoint edges.

Finally we remark that our methods can be refined to yield $m(k) < k^k \cdot e^{-ck^{1/3}}$. We preferred to prove the present bound keeping the argument and calculations simpler.

References

- [AR] A. Arman, T. Retter, An upper bound for the size of a k-uniform intersecting family with covering number k, J. Comb. Theory, Ser. A 147 (2017), 18–26.
- [EL] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: *Infinite and Finite Sets, Proc. Colloq. Math. Soc. János Bolyai, Keszthely, Hungary, 1973*, North-Holland, Amsterdam, 1974, 609–627.
- [FOT] P. Frankl, K. Ota, N. Tokushige, Covers in uniform intersecting families and a counterexample to a conjecture of Lovász, J. Comb. Theory, Ser. A 74 (1) (1996), 33–42.
- [G] A. Gyárfás, Partition covers and blocking sets in hypergraphs, MTA SZTAKI Tanulmányok 71/1977, Budapest, 1977 (in Hungarian).
- [L] L. Lovász, On the minimax theorems of combinatorics, Mat. Lapok
 26 (1975), 209–264 (in Hungarian).
- [T] Z. Tuza, Inequalities for minimal covering sets in set systems of given rank, *Discrete Appl. Math.* **51** (1994), 187–195.