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Abstract

Let F be a family of subsets of {1, 2, . . . , n}, satisfying |F1 ∩ F2 ∩
F3| ≥ 4 for all F1, F2, F3 ∈ F . It is shown that |F| ≤ 2n−4 must hold.
This best possible bound was conjectured by the author more than 40
years ago. For the proof several related results are proved for one or
several families.

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set. Any subset of the power
set 2[n] is called a family. For integers t ≥ 1 and r ≥ 2 a family F ⊂ 2[n] is
called r-wise t-intersecting if for all choices of Fi ∈ F , i = 1, . . . , r one has
|F1∩ . . .∩Fr| ≥ t. Since for t > n the only possibility is F = ∅, in the sequel
we tacitly assume n ≥ t.

Definition 1. Let m(n, r, t) =
{
|F| : F ⊂ 2[n], F is r-wise t-intersecting

}
.

The easy fact, m(n, r, 1) = 2n−1 was proved already by Erdős, Ko and
Rado [EKR]. Katona [Kat] determined m(n, 2, t) for all n ≥ t ≥ 2 together
with all the families attaining equality. An easy consequence of it is that for
every fixed t ≥ 1,

lim
n→∞

m(n, 2, t)/2n = 1/2.

For r ≥ 3 the situation is completely different. In [F76] m(n, 3, 2) = 2n−2 and

m(n, 3, t)/2n <

(√
5− 1

2

)t
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were shown.
For every integer j and n ≥ t + rj one defines Aj(n, r, t) =

{
A ⊂ [n] :∣∣[t + rj] \ A

∣∣ ≤ j
}

.
In human language Aj(n, r, t) consists of those subsets of [n] that miss at

most j elements out of the first t + rj. Thus r sets miss altogether at most
rj, ensuring that their intersection contains at least t elements.

Conjecture 2 ([F76], [F79]). For all n ≥ t ≥ 1, r ≥ 2

(1) m(n, r, t) = max
0≤j≤n−t

r

∣∣Aj(n, r, t)
∣∣.

Easy computation shows that∣∣A0(n, r, t)
∣∣ = 2n−t for n ≥ t,∣∣A1(n, r, t)
∣∣ = (r + t + 1) · 2n−t−r for n ≥ r + t.

Thus for n ≥ r + t,
∣∣A1(n, r, t)

∣∣ T ∣∣A0(n, r, t)
∣∣ is equivalent to

t T 2r − r − 1.

In [F91] the validity of m(n, r, t) = 2n−t was established for all (t, r) satisfying
t ≥ 2r − r − 1 except for the case t = 3, r = 4. A few years later the author
proved this case in a very long and messy way. Since it was not illuminative,
he never published it. The present proof is by no means short, however, it
proceeds via various results of some independent interest. Hopefully they
shed some light on the possible structure of large, r-wise t-intersecting fam-
ilies.

Let us recall that a family is called trivial if
⋂

F∈F
F 6= ∅. One of the

very first results on multiply intersecting families is the following beautiful
theorem.

Brace–Daykin Theorem ([BD]). Suppose that F ⊂ 2[n] is r-wise 1-intersecting
and F is not trivial. Then

(2) |F| ≤
∣∣A1(n, r, 1)

∣∣ =
r + 2

2r+1
· 2n.

Definition 3. Set

m∗(n, r, t) = max
{
|F| : F ⊂ 2[n], F is non-trivial and r-wise t-intersecting

}
.
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With this terminology the Brace–Daykin Theorem says that m∗(n, r, 1) =
(r + 2) · 2n−r−1 for n ≥ r + 1.

In [F91] the more general statement

(3) m∗(n, r, t) = (r + t + 1)2n−r−t

was proved for all but five pairs (r, t) satisfying t < 2r−r−1. We proved that
(3) holds for these “exceptional” pairs: (3, 2), (3, 3), (4, 8), (4, 9), (4, 10) as
well. In the present paper we include the proof for (3, 2) and (3, 3). Basically
the same approach applies to the cases with r = 4.

Theorem 4.

(i) m(n, 3, 4) = 2n−4,

(ii) m∗(n, 3, 3) =
7

8
· 2n−3,

(iii) m∗(n, 3, 2) =
3

4
· 2n−2.

Results involving several families, stated in the next section along with
(i) are applied to prove the following refinement of (2).

Theorem 5. Let F ⊂ 2[n] be non-trivial, r-wise 1-intersecting, r ≥ 3. Sup-
pose further that F is not contained in an isomorphic copy of A1(n, r, 1).
Then

(4) |F| ≤ r + 6

2r+2
· 2n.

2 Tools of proof and further results

Definition 6. For r ≥ 2, t ≥ 1 the families F1, . . . , Fr ⊂ 2[n] are called cross
t-intersecting if

∣∣F1 ∩ . . .∩Fr

∣∣ ≥ t holds for all choices of Fi ∈ Fi, 1 ≤ i ≤ r.

In [EKR] Erdős, Ko and Rado defined a very useful operation, called shift-
ing. It is well known that this operation maintains both r-wise t-intersecting
and cross t-intersecting properties (cf. [F87] or [F91] for details). Repeated
applications of shifting produce shifted families.

Definition 7. A family F ⊂ 2[n] is called shifted if for all 1 ≤ i < j ≤ n and
F ∈ F , i /∈ F , j ∈ F imply that (F − {j}) ∪ {i} is also in F .
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Noting that shifting does not change the size, |F| of the family, in view of
the above we are going to assume in the sequel that all families are shifted.

For a family F ⊂ 2[n] one defines its upward closure by F∗:

F∗ =
{
G ⊂ [n] : ∃F ∈ F , F ⊂ G

}
.

If F is r-wise t-intersecting then F∗ is r-wise t-intersecting as well. Ob-
viously, F∗ is a filter (up-set), i.e., F ⊂ G ⊂ [n] and F ∈ F imply G ∈ F .
Since we are dealing with upper bounds, we are going to assume that the
families in question are filters.

We are going to use the following, very convenient notations.
For ` ≤ n and B ⊂ [`] set F(B, `) =

{
F \ [`] : F ∈ F , F ∩ [`] = B

}
.

Note that

(2.1)
∑
B⊂[`]

|F(B, `)| = |F|.

If ` is fixed and it causes no misunderstanding then we often omit ` and write
F(B) instead.

The following important lemma was proved in [F91]. To illustrate the
strength and use of shiftedness, we present the easy proof.

Lemma 8. Let Fi ⊂ 2[n], 1 ≤ i ≤ r be cross t-intersecting, ` ≥ t, Bi ⊂ [`],
1 ≤ i ≤ r. Suppose that

∣∣B1∩. . .∩Br

∣∣<t. Then F1(B1),F2(B2), . . . ,Fr(Br) ⊂
2[`+1,n] are cross s-intersecting for s = t + (r − 1)`−

(
|B1|+ . . . + |Br|

)
.

Proof. Let us prove the statement using induction on s. Let Ai ∈ Fi(Bi) and
set Fi = Ai ∪Bi.

In the case s = 1,
∣∣F1 ∩ . . . ∩ Fr

∣∣ ≥ t and
∣∣B1 ∩ . . . ∩ Br

∣∣ < t imply∣∣A1 ∩ . . . ∩ Ar

∣∣ ≥ 1, as desired.
Let us do the induction step. Choose an element x, ` < x ≤ n contained

in A1 ∩ . . . ∩ Ar. We distinguish two cases.
(a)
∣∣B1 ∩ . . . ∩Br

∣∣ ≤ t− 2.
Choose an arbitrary element y ∈ [`] that is not contained in all of the

Bi, 1 ≤ i ≤ r. Since ` ≥ t, this is possible. Suppose by symmetry, y /∈ Br.
Define Br = Br ∪{y}, Ar = Ar−{x} and F r = Br ∪Ar. Since Fr is shifted,
F r ∈ Fr. Now

∣∣B1 ∩ . . . ∩ Br−1 ∩ Br

∣∣ ≤ t − 2 + 1 < t and we can apply

the induction hypothesis and infer
∣∣A1 ∩ . . . ∩ Ar−1 ∩ Ar

∣∣ ≥ s − 1. Since
A1 ∩ . . . ∩ Ar contains the element x in excess,

∣∣A1 ∩ . . . ∩ Ar

∣∣ ≥ s follows.

4



(b) B1 ∩ . . . ∩Br
def
= D satisfies |D| = t− 1.

We claim that there is some y ∈ [`] which is contained in at most r− 2 of
the Bi. Indeed, the opposite would mean |B1|+ . . .+ |Br| = (t−1) + (r−1)`
implying s = 1, a contradiction. Suppose again by symmetry that y /∈ Br

and define Ar, Br, F r as above.
The careful choice of y implies B1 ∩ . . . ∩ Br−1 ∩ Br = B1 ∩ . . . ∩ Br =

D. Since |D| = t − 1, we may apply the induction hypothesis and infer∣∣A1 ∩ . . .∩Ar

∣∣ =
∣∣A1 ∩ . . .∩Ar−1 ∩Ar

∣∣+ 1 ≥ (s− 1) + 1 = s, as desired.

Note that even if we start with a single family, i.e., F1 = F2 = . . . =
Fr the families F1(B1), . . . ,Fr(Br) are usually distinct. This is the reason
that when proving results for one family, one often needs bounds for several
families.

In [F91] various best possible bounds concerning |F1| · |F2| · . . . · |Fr| were
proved for cross s-intersecting families.

The following three inequalities will be useful for our proofs. Let F1,F2,F3

⊂ 2[n] be cross t-intersecting

|F1||F2||F3| ≤ 23(n−t) for t = 1, 2, 3,(2.2)

|F1||F2||F3| ≤ 23(n−t) · (
√

5− 1)3(t−3) for t ≥ 4,(2.3)

|F1||F2||F3| ≤ 23n ·
(

5

16

)3

for t = 1 assuming that Fi is(2.4)

non-trivial for i = 1, 2, 3.

Looking at formula (2.1) one understands that in many cases bounds
concerning the sum of |Fi| are needed. Below we present several such results.

Example 9. Suppose that n ≥ ` > r ≥ 2 and define

H(r)
1 =

{
H ⊂ [n] : |H ∩ [`]| ≥ r

}
,

H(r)
p =

{
H ⊂ [n] : |H ∩ [`]| ≥ `− 1

}
, 2 ≤ p ≤ r.

Claim 10. H(r)
1 , . . . ,H(r)

r are cross-intersecting and non-trivial.

Proof. Non-triviality is obvious. Choose Hp ∈ H(r)
p , 1 ≤ p ≤ r and set Gp =

[`]\Hp. The definition implies |G1|+ |G2|+ . . .+ |Gr| ≤ (`−r)+r−1 = `−1.
Thus H1 ∩ . . . ∩Hr ∩ [`] 6= ∅ follows.
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For r = 2 and ` arbitrary,
∣∣H(2)

1

∣∣ +
∣∣H(2)

2

∣∣ = 2n is easy to check. On the
other hand, setting ` = n one has∣∣H(r)

1

∣∣ / 2n −→ 1 as n −→∞.

Theorem 11. Let n > r ≥ 2. Suppose that Fi ⊂ 2[n], 1 ≤ i ≤ r are
non-trivial, cross-intersecting families. Then

(2.5) |F1|+ . . . + |Fr| ≤ 2n

with strict inequality unless r = 2.

Example 12. Let n ≥ 2, r ≥ 2 and define

B1 =
{
B ⊂ [n] : B ∩ [2] 6= ∅

}
,

Bp =
{
B ⊂ [n] : [2] ⊂ B

}
, 2 ≤ p ≤ r.

Note that B1, . . . ,Br are cross-intersecting, B1 is non-trivial, moreover

(2.6) |B1|+ . . . + |Br| = 2n

(
1 +

r − 2

4

)
.

Example 13. Let n ≥ 3, r ≥ 2 and define

Ci =
{
C ⊂ [n] : |C ∩ [3]| ≥ 2

}
, i = 1, 2;

Cj =
{
C ⊂ [n] : [3] ⊂ C

}
, 3 ≤ j ≤ r.

Note that C1, . . . , Cr are cross-intersecting with C1 and C2 non-trivial. One
has,

(2.7) |C1|+ . . . + |Cr| = 2n

(
1 +

r − 2

8

)
.

We succeeded in proving that both these examples are best possible.

Theorem 14. Let s = 1 or 2, n > s, r ≥ 3. Suppose that Fi ⊂ 2[n],
1 ≤ i ≤ r, F1, . . . ,Fr are non-empty and cross-intersecting. Suppose also
that Fi is non-trivial for 1 ≤ i ≤ s. Then (i) or (ii) hold.

(i) s = 1 and

(2.8) |F1|+ . . . + |Fr| ≤ 2n

(
1 +

r − 2

4

)
.

(ii) s = 2 and

(2.9) |F1|+ . . . + |Fr| ≤ 2n

(
1 +

r − 2

8

)
.
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Let us mention that in the 1-intersecting case F ⊂ 2[n] is non-trivial iff(
[n]
n−1

)
⊂ F . Therefore if F , G are both non-trivial then F ∩ G is non-trivial

also. Noting |F ∩G|+ |F ∪G| = |F|+ |G|, this justifies the following general
assumption.

Lemma 15. In the proof of Theorems 11 and 14 we may assume that the
families are nested, i.e., F1 ⊃ . . . ⊃ Fr holds.

Proof. If for some 1 ≤ a < b ≤ r, Fa 6⊃ Fb then replace them by Fa∪Fb and
Fa ∩Fb. Non-triviality and cross-intersecting properties are maintained and
eventually we get nested families.

Let us close this section with two inequalities.

Lemma 16. Let a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ 0 be real numbers satisfying
a + b ≤ 16 and abc ≤ 125. Then (i) and (ii) hold.

(i) If a + b + c + d + e + f ≥ 30 then a = b = c = d = e = f = 5.
(ii) If a + b + c + d ≥ 20 and a ≤ 8 then a = b = c = d = 5.

Proof. We prove both statements arguing indirectly. Let us choose a counter-
example with a− c as large as possible.

(i) Replacing c, d, e, f by their average (c + d + e + f)/4 will not alter
a + b + c + d + e + f and can only increase a− c. Thus we may assume that
c = d = e = f .

Note that for a positive ε, (a + ε)(b − ε) < ab. Consequently, the maxi-
mality of a− c implies b = c.

Define x ≥ 0 by b = 5− x. Note that a + b ≤ 16 implies c ≥ 30−16
5

= 3.5
and thereby x ≤ 1.5. On the other hand a + b + c + d + e + f ≥ 30 entails
a ≥ 5 + 5x = 5(1 + x).

Let us conclude the proof by showing that

abc ≥ 5(1 + x)(5− x)2 > 125 holds for 0 < x < 1.5.

Dividing by 5 and rearranging yields

x(15− 9x + x2) > 0

and both terms are positive for 0 < x < 15
9

where 15
9

= 5
3
> 1.5.

(ii) Again we may assume that c = d. Arguing as above, either b = c = d
or a = 8 follow. In the first case set x = 5 − b. Then a ≥ 5 + 3x, in
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particular, 0 < x < 1. Showing that (5 + 3x)(5 − x)2 > 125 we get the
desired contradiction. Rearranging yields 25x(1 − x) + 3x3 > 0 which is
obviously true for 0 < x < 1.

The last case is a = 8. Now a+b+c+d ≥ 20 implies b+c+d = b+2c ≥ 12.
Define x by c = 4 − x. Then b ≥ 4 + 2x, 0 ≤ x ≤ 2. In order to

get the final contradiction we prove 8(4 + 2x)(4 − x) > 125 for this range.
Rearranging yields

3 + 32x− 16x2 = 3 + 16x(2− x) > 3 for 0 ≤ x ≤ 2.

3 The proof of Theorems 11 and 14

For n ≤ r and an arbitrary choice of r non-trivial families it is clear that they
are not cross-intersecting. Thus Theorem 11 holds in this range. Theorem 14
is also easy to check for n ≤ 2.

We prove both theorems simultaneously using induction on n. The proof
will consist of two logical steps.

Step 1. We prove Theorem 14 for n, assuming that Theorem 11 holds for
the same n.

Step 2. We prove Theorem 11 for n, assuming that Theorem 14 holds for
all n′ with n′ < n.

Recall that by Lemma 15 we may assume that F1 ⊃ . . . ⊃ Fr.
Step 1. In the case r = 2 both (2.8) and (2.9) reduce |F1| + |F2| ≤ 2n

which is true by F1 ∩
{

[n] \ F2 : F2 ∈ F2

}
= ∅. We apply induction on r.

Suppose that r ≥ 3 and the statement holds for r replaced by r − 1.
Let us first deal with (i), i.e., s = 1. Since the right-hand side of (2.9)

is smaller than that of (2.8), we may assume that F2, . . . ,Fr are trivial. By
shiftedness 1 ∈ F for all F ∈ Fi, 2 ≤ i ≤ r.

On the other hand, F1 is non-trivial, forcing [2, n] ∈ F1.
Recall the standard notations:

F(i) =
{
F \ {i} : i ∈ F ∈ F

}
,

F(i) =
{
F : i /∈ F ∈ F

}
.

Now ∣∣Fj(1)
∣∣ =

∣∣Fj

∣∣ for 2 ≤ j ≤ r
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since [2, n] ∈ F1, F2(1), . . . ,Fr(1) are cross-intersecting. We infer
∣∣F2(1)

∣∣ +∣∣Fr(1)
∣∣ ≤ 2n−1 implying

∣∣Fr

∣∣ =
∣∣Fr(1)

∣∣ ≤ 2n
/

4. Thus (2.8) follows from
the induction hypothesis applied to F1, . . . ,Fr−1.

Let now s = 2. By Theorem 11, Fr is trivial. Should |Fr| = |Fr(1)| ≤
2n−3 hold, we would obtain (2.9) by induction on r. From now on we assume
that

(3.1) |Fr(1)| > 2n−3.

Let us choose q so that Fq is non-trivial but Fq+1 is trivial. By the
assumptions 2 ≤ q < r. Apply the induction hypothesis (n replaced by
n− 1) to the two set of families

F1(1),F2(1), . . . ,Fq(1),Fq+1(1), . . . ,Fr(1) and

F1(1),F2(1), . . . ,Fr(1).

These are all families on [2, n] and F1(1) and F2(1) are necessarily non-trivial.
Thus we may use (2.8) and infer

∣∣F1(1)
∣∣+∣∣F2(1)

∣∣+. . .+
∣∣Fq(1)

∣∣+∣∣Fq+1(1)
∣∣+. . .+

∣∣Fr(1)
∣∣ ≤ 2n−1

(
1+

r−2

4

)
,

(3.2)

∣∣F1(1)
∣∣+∣∣F2(1)

∣∣+. . .+ +
∣∣Fr(1)

∣∣ ≤ 2n−1
(

1+
r−2

4

)
.

(3.3)

In the case q = 2, adding (3.2) and (3.3) yields∑
1≤i≤r

∣∣Fi

∣∣ ≤ 2n

(
1 +

r − 2

4

)
−
∣∣F3(1)

∣∣− . . .−
∣∣Fr(1)

∣∣
= 2n

(
1 +

r − 2

8

)
+
∑

3≤p≤r

(
2n−3 −

∣∣Fp(1)
∣∣) < 2n

(
1 +

r − 2

8

)
,

as desired.
Suppose next q = 3. In view of Theorem 11, r ≥ 4. Since F3(1) is

non-trivial, we may apply (2.9) instead of (2.8) and replace (3.3) by

∣∣F1(1)
∣∣+
∣∣F2(1)

∣∣+ . . . +
∣∣Fr(1)

∣∣ ≤ 2n−1
(

1 +
r − 2

8

)
.
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Adding this to (3.2) yields∑
1≤i≤r

∣∣Fi

∣∣ ≤ 2n

(
1 +

r − 2

8

)
+ 2n · r − 2

16
−
∑

4≤p≤r

∣∣Fp(1)
∣∣.

Using (3.1), (2.9) follows from

2n r − 2

16
≤ r − 3

8
· 2n, i.e.,

r − 2 ≤ 2(r − 3) which is valid for r ≥ 4.

The last case is q ≥ 4. Actually, this is an easy case. We apply (2.9) to the
two sets of families

F1(1),F2(1),F3(1), . . . ,Fq(1),Fq+1(1), . . . ,Fr(1) and

F1(1),F2(1),F3(1), . . . ,Fr(1).

Adding the two inequalities yields∑
1≤i≤r

∣∣Fi

∣∣+
∑

q<p≤r

∣∣Fp(1)
∣∣ ≤ 2n

(
1 +

r − 2

8

)
,

which is sufficient by large.
Step 2, i.e., the proof of Theorem 11 is harder. We need a lemma of some

independent interest.

Proposition 17. Let k ≥ 1 and suppose that the non-empty families
F1, . . . ,F2k ⊂ 2[n] are cross k-intersecting. Then

(3.4)
∑

1≤i≤2k

∣∣Fi

∣∣ ≤ 2n.

Proof. Apply induction on k. The case k = 1 is trivial. Also, in the case of
n < k, the statement holds because there is no collection of families satisfying
the assumption. If n = k, the only choice is Fi = {[k]} and equality holds in
(3.4).

We apply induction on n. Without loss of generality F1 ⊃ F2 ⊃ . . . ⊃
F2k . Let us distinguish three cases.

(a) F1(1) = ∅.
In this case

∣∣Fi

∣∣ =
∣∣Fi(1)

∣∣ for all i.
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Since both collections{
Fi(1) : 1 ≤ i ≤ 2k, i odd

}
and{

Fi(1) : 1 ≤ i ≤ 2k, i even
}

satisfy the induction hypothesis on [2, n] with k replaced by k − 1,∑
1≤i≤2k

∣∣Fi(1)
∣∣ ≤ 2 · 2n−1 = 2n follows.

(b) F2(1) 6= ∅.
In this case both F1 and F2 are non-trivial. Define

Gi =

{
{[2, n]} if Fi(1) = ∅,
Fi(1) otherwise.

Let us define two collections of 2k families on [2, n]{
G1,F2(1),G3, . . . ,G2k−1,F2k(1)

}
and{

F1(1),G2,F3(1), . . . ,F2k−1(1),G2k
}
.

We claim that both are collections of 2k non-empty and cross k-intersecting
families. If we could find 2k sets H1, . . . , H2k from the first collection such
that their intersection has size less than k, then we just note that G1 ∈ F1

and Hi ∪ {1} ∈ Fi for every i ≥ 2. This provides us with 2k sets from the
original families which intersect in less than k elements, a contradiction.

The same argument applies to the second collection, proving the claim.
Now, the induction hypothesis with n replaced by n − 1 gives 2n−1 as

an upper bound for the sum of the size of the families. Since for every i,∣∣Gi∣∣+
∣∣Fi(1)

∣∣ ≥ ∣∣Fi

∣∣, adding these two inequalities proves (3.4).
(c) F1 is non-trivial but F2(1) = ∅.
Since

∣∣Fi

∣∣ =
∣∣Fi(1)

∣∣ for 2 ≤ i ≤ 2k, applying the induction hypothesis to
F1(1),F2(1), . . . ,F2k(1) gives∣∣F1(1)

∣∣+
∑

2≤i≤2k

∣∣Fi

∣∣ ≤ 2n−1.

Now the obvious inequality
∣∣F1(1)

∣∣ < 2n−1 shows that (3.4) holds with strict
inequality.
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Corollary 18. Suppose that r < 2k and F1, . . . ,Fr ⊂ 2[n] are non-empty,
cross k-intersecting families. Then

(3.5)
∑
1≤i≤r

∣∣Fi

∣∣ ≤ 2n − (2k − r).

Proof. Simply define Fj = {[n]} for r < j ≤ 2k and apply (3.4) to the 2k

families Fj, 1 ≤ j ≤ 2k.

Proof. Now we return to the proof of Theorem 11. The case r = 2q, q ≥ 2 is
relatively easy. We do not even need Step 1.

Let us consider two collections of 2q families each:

F1(1), . . . ,Fq(1),Fq+1(1), . . . ,F2q(1) ⊂ 2[2,n],

F1(1), . . . ,Fq(1),Fq+1(1), . . . ,F2q(1) ⊂ 2[2,n].

Applying Lemma 8 with ` = 1 and q of the Bi = [1] and the remaining q being
Bi = ∅ shows that both are collections of non-empty, cross q-intersecting
families. Since 2q ≥ q, we can apply Corollary 18 to both collections:∑

1≤i≤q

∣∣Fi(1)
∣∣+

∑
q<j≤2q

∣∣Fj(1)
∣∣ ≤ 2n−1

and ∑
1≤i≤q

∣∣Fi(1)
∣∣+

∑
q<j≤2q

∣∣Fj(1)
∣∣ ≤ 2n−1

(with strict inequality unless q = 2). Adding the above two inequalities
proves Theorem 11 for r = 2q, q ≥ 2.

For r = 2q + 1, q ≥ 3 the same argument works because of 2q > 2q + 1.
Indeed, even for the ‘worse’ collection F1(1), . . . ,Fq(1), Fq+1(1), . . . ,F2q+1(1)
we get the cross q-intersecting property and may apply (3.5). Thus only two
cases, r = 3 and r = 5 remain. We deal with them separately.

Step 2, r = 3.
It is here that we shall also use the induction hypothesis in its strongest

form. Namely, we suppose that Theorem 14 holds for n− 2.
We distinguish two subcases.
(i) Fi(1) is trivial, i = 1, 2, 3.
This means that Fi(∅, [2]) = ∅ for i = 1, 2, 3.

12



Let us consider the 3× 3 = 9 families:

F1([2], [2]), F2({1}, [2]), F3({2}, [2]);

F2([2], [2]), F3({1}, [2]), F1({2}, [2]);

F3([2], [2]), F1({1}, [2]), F2({2}, [2]).

Since [2]∩{2}∩ {1} = ∅, these are cross-intersecting on [3, n] and Fi([2], [2])
is non-trivial for i = 1, 2, 3. Applying Theorem 14 (i) with r = 3 to each
of the three triples of families shows that the sum of their sizes is at most
5
4
· 2n−2. Recalling Fi(∅, [2]) = ∅ for i = 1, 2, 3, we infer∣∣F1

∣∣+
∣∣F2

∣∣+
∣∣F3

∣∣ ≤ 3 · 5

4
2n−2 < 2n, as desired.

(ii) F1(1) is non-trivial.
We may apply the induction hypothesis (Theorem 11 with n replaced by

n− 1) to F1(1),F2(1),F3(1) ⊂ 2[2,n] and infer∣∣F1(1)
∣∣+
∣∣F2(1)

∣∣+
∣∣F3(1)

∣∣ < 2n−1.

On the other hand, by Lemma 8 the families F1(1), F2(1), F3(1) are cross
2-intersecting on [2, n]. Now Corollary 18 implies∣∣F1(1)

∣∣+
∣∣F2(1)

∣∣+
∣∣F3(1)

∣∣ < 2n−1.

Adding these two inequalities yields∣∣F1

∣∣+
∣∣F2

∣∣+
∣∣F3

∣∣ < 2 · 2n−1 = 2n, as desired.

Step 2, r = 5. We distinguish two cases again
(i) F1(1) is trivial, i.e., F1(∅, [2]) = ∅.
In this case Fi(∅, [2]) = ∅ for 1 ≤ i ≤ 5. Therefore Σ|Fi| is the sum

of the sizes of the following 15 families: Fi(B) := Fi(B, [2]), 1 ≤ i ≤ 5,
B = {1}, {2} or [2]. Divide them into the following 3 groups.

F1([2]),F2({1}),F3({1}),F4({2}),F5({2});
F1({2}),F2([2]),F3([2]),F4({1}),F5({1});
F1({1}),F2({2}),F3({2}),F4([2]),F5([2]).

In view of Lemma 8 families of the first group are cross 3-intersecting on
[3, n]. By the induction hypothesis their sizes add up to less than 2n−2.

13



The remaining two groups are cross-intersecting and each of them con-
tains two non-trivial families, Fi([2]) (i = 2, 3 and i = 4, 5). By the in-
duction hypothesis for Theorem 14 (ii), the sum of their sizes is at most(
1 + 5−2

8

)
2n−2, each. Thus the sum of the sizes of the 15 families is less than

33
4
· 2n−2 < 2n as desired.
(ii) F1(1) is non-trivial
Since F1(1), F2(1), . . . ,F5(1) are non-trivial cross-intersecting, the in-

duction hypothesis yields∣∣F1(1)
∣∣+

∑
2≤i≤5

∣∣F2(1)
∣∣ < 2n−1.

On the other hand by Lemma 8 the five families F1(1) and Fj(1), 2 ≤ j ≤ 5
are cross 4-intersecting on [2, n]. By Corollary 18:∣∣F1(1)

∣∣+
∑

2≤j≤5

∣∣Fj(1)
∣∣ < 2n−1.

Adding the above two inequalities proves∑
1≤i≤5

∣∣Fi

∣∣ < 2n as desired.

4 Proof of Theorem 4 (i)

We prove Theorem 4 also by induction. In this section we assume that both
(i) and (ii) hold for lesser values of n and prove the validity of (i). Let us
note that for 4 ≤ n ≤ 6 the only 3-wise 4-intersecting families are those
containing 4 fixed elements of [n]. Also, for n = 7 it is easy to check that the
only exception is A1(7, 4) = {A ⊂ [7] : |A| ≥ 6}. Let n ≥ 8 and assume that
F ⊂ 2[n] is a shifted filter. Moreover,

(4.0) |F| ≥ 2n−4.

Since
∣∣A0(n, 4)

∣∣ =
∣∣A1(n, 4)

∣∣ = 2n−4 we may assume that F 6⊂ A0(n, 4)
and F 6⊂ A1(n, 4) hold. By shiftedness the second implies

(4.1) F([5], [7]) 6= ∅.

14



From the first one we infer

(4.2) F is non-trivial.

Indeed, if F(1) = ∅ then |F| = |F(1)| and F(1) is a 3-wise 3-intersecting
family on [2, n]. Thus |F| = |F(1)| ≤ 2(n−1)−3 = 2n−4 follows.

One can say a little more:

(4.3) F(1) is non-trivial.

Indeed, by (4.2) one has
(
[n] \ {i}

)
∈ F for all i ∈ [n]. Consequently(

[2, n] \ {i}
)
∈ F(1) for all i ∈ [2, n]. The induction hypothesis implies

(4.4) |F(1)| ≤ 7

8
2n−4.

This and (4.0) entail

(4.5)
∣∣F(1)

∣∣ > 2n−7.

Note that Lemma 8 implies that F(1) is 3-wise 6-intersecting.

(4.6) [2, 7] /∈ F(1).

Indeed, if [2, 7] ∈ F(1) ⊂ F then
(
[7] \ {i}

)
∈ F for all i ∈ [7] follows by

shiftedness. This easily implies F ⊂ A1(n, 4), a contradiction.
Combining with (4.5) we conclude that there is some F ∈ F(1) with

[2, 7] 6⊂ F . Since F is a shifted filter, ([2, 6] ∪ [8, n]) ∈ F . Thus:

(4.7) F([2, 6], [6]) is non-trivial.

To simplify notation we set F(B) = F(B, [6]). By shiftedness for every
B ∈

(
[6]
5

)
one has

F(B) ⊃ F([2, 6]).

Note that if B1, B2, B3 ∈
(
[6]
5

)
are distinct then

∣∣B1 ∩B2 ∩B3

∣∣ = 3. Together
with (4.7) this implies

Let B1, B2, B3 ∈
(

[6]

5

)
be distinct.(4.8)

Then F(B1),F(B2),F(B3) are non-trivial and cross-intersecting.

The following lemma is central for our estimations.
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Lemma 19. Suppose that G1,G2, . . . ,G6 ⊂ 2[m] are non-empty non-trivial
families with any three of them cross-intersecting. Then

(4.9)
∑
1≤i≤6

∣∣Gi∣∣/2m ≤ 6× 5

16
=

15

8
.

Proof. We want to use Lemma 16. In order to do that we suppose by sym-
metry

∣∣G1∣∣ ≥ . . . ≥
∣∣G6∣∣ and denote

∣∣Gi∣∣ / 2m−4, i = 1, 2, . . . , 6 in this order
by a, b, c, d, e, f .

Since G3 is non-empty and G1,G2,G3 are cross-intersecting
∣∣G1∣∣ +

∣∣G2∣∣ ≤
2m, i.e., a + b ≤ 16 follows.

Also, (2.4) implies abc ≤ 125. Now (i) of Lemma 16 implies a + b + c +
d + e + f ≤ 30 (with equality iff all are equal to 5), proving (4.9).

Remark. Let us mention that Lemma 16 (ii) implies that if we knew that
|G1| ≤ 2n−1, then we could arrive at the analogous conclusion for four families
(instead of six). We do not use this fact in the present paper but it might be
useful in other situations.

Let us first conclude the proof in the case that F([6]) is not intersecting.
This assumption implies the existence of G,H ∈ F with G ∩ H = [6].

Thus
∣∣F ∩ [6]

∣∣ ≥ 4 for all F ∈ F .
Since F 6⊂ A0(n, 4), F([6]) and F([4]) are cross-intersecting. This yields

(4.10) |F([6])|+ |F([4])| ≤ 2n−6.

For B ⊂
(
[6]
4

)
, B 6= [4], Lemma 8 implies that F(B) is 3-wise 4-intersecting.

Thus by the induction hypothesis

(4.11) |F(B)| ≤ 2n−10 for B ∈
(

[6]

4

)
, B 6= [4].

Adding (4.9), (4.10) and (4.11) yields

(4.12) |F|/2n−6 ≤ 15

8
+ 1 +

14

16
= 3

3

4
< 4, as desired.

Consequently, we may suppose that F([6]) is intersecting, implying

(4.13) |F([6])| ≤ 1

2
· 2n−6.
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Now we distinguish two cases according whether |F([4])|
/

2n−6 is smaller
than 1/4 or not. In the first case (4.10) is improved to

(4.14) |F([6])|+ |F([4])| < 3

4
2n−6.

Instead of (4.12) we obtain∑
B⊂[6]
|B|≤4

F(B)
/

2n−6 < 3
1

2
.

To conclude the proof we need

(4.15)
∑
B⊂[6]
|B|≤3

|F(B)|
/

2n−6 ≤ 1

2
.

This will be easy but we need to invoke a simple result from [F91].

Definition 20. For integers n ≥ t ≥ 1 define

m(n, t) = max
{
|H| : H ⊂ 2[n], H is 3-wise t-intersecting

}
.

In [F91] we proved the following inequality:

(4.16) m(n, t + 1) <
(√

5− 1
)
m(n, t)/2.

Using the induction hypothesis in the form m(n, 4)
/

2n ≤ 1
16

we infer

(4.17) m(n, 4 + s)
/

2n <

(√
s− 1

2

)s

· 1

16
.

Using (4.17) (with n replaced by n − 6) for B ⊂ [6], |B| ≤ 3 and invoking
Lemma 8 we get the following upper bounds:

|F(B)|
/

2n−6 ≤

(√
5− 1

2

)3

· 1

16
< 0.015 for B ∈

(
[6]

3

)
,(4.18)

|F(B)|
/

2n−6 ≤

(√
5− 1

2

)6

· 1

16
< 0.004 for B ∈

(
[6]

2

)
,(4.19)
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|F(B)|
/

2n−6 ≤

(√
5− 1

2

)9

· 1

16
< 0.001 for B ∈

(
[6]

1

)
,(4.20)

|F(∅)|
/

2n−6 ≤

(√
5− 1

2

)12

· 1

16
< 0.0003.(4.21)

The above bounds are easy to compute by hand. Just use
(√

5−1
2

)3
=
√

5−
2 < 1

4
.

Since 20×0.015+(15+6+1)×0.004 = 0.388 < 0.5, |F| < 2n−4 is proved
if (4.14) holds.

In the last case we use |F([4])|
/

2n−6 ≥ 1
4

to improve on |F(B)| for

B ∈
(
[6]
4

)
, B 6= [4].

In view of Lemma 8 the three families F([4]),F([4]),F(B) are cross 4-
intersecting.

For this case in [F91] we proved

|F([4])| · |F([4])| · |F(B)| ≤

(
2n−6 ·

√
5− 1

16

)3

.

Using |F([4])| ≥ 2n−6 / 4 we infer

|F(B)|
/

2n−6 <

√
5− 2

32
<

1

128
.

There are 14 subsets B ∈
(
[6]
4

)
, B 6= [4]. Their contribution was 14

16
= 7

8

before. Now it is less than 14
128

= 7
64

< 0.11.
Together with the sets B ⊂ [6], |B| ≤ 3 it is still 0.11 + 0.388 < 0.5 < 7

8

completing the proof of |F| < 4 · 2n−6 = 2n−4. � �
Let us mention that the proof actually gives that (among shifted families)

the only families achieving equality are A0(n, 4) and A1(n, 4). One can even
extract the upper bound |F| ≤ 2n−4 · 15

16
assuming that F 6⊂ A0(n, 4), F 6⊂

A1(n, 4).

5 The proof of Theorem 4 (ii) and (iii)

Let us start with the easy proof of (iii).
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Let F ⊂ 2[n],
(

[n]
n−1

)
⊂ F and F is 3-wise 2-intersecting. Now Lemma 8

implies that F(1) is 3-wise 4-intersecting. By the induction hypothesis∣∣F(1)
∣∣ ≤ 2n−1 · 1

16
.

Since [n]\{2} is in F , F(1) is a non-trivial 3-wise intersecting family. By
the Brace–Daykin Theorem |F(1)| ≤ 2n−1 · 5

16
.

We infer

|F| = |F(1)|+
∣∣F(1)

∣∣ = 2n−1 · 6

16
= 2n−2 · 3

4
as desired. �

Using Theorem 5 it follows that in case of equality F(1) =
{
G ⊂ [2, n] :

|G ∩ [2, 5]| ≥ 3
}

. This in turn easily implies F =
{
F ⊂ [n] : |F ∩ [5]| ≥ 4

}
.

Now we turn to the proof of (ii). For the rest of this section let F ⊂ 2[n]

be non-trivial 3-wise 3-intersecting. For B ⊂ [5] define F(B) =
{
A ⊂ [6, n] :

A ∪B ∈ F
}

. Of course,

(5.0) |F| =
∑
B⊂[5]

|F(B)|.

Define Dj = [5] \ {j}, j = 1, . . . , 5. Note that [4] = D5. Note also that
shiftedness implies F(D1) ⊂ F(D2) ⊂ F(D3) ⊂ F(D4) ⊂ F(D5). For
1 ≤ a < b < c ≤ 5,

∣∣Da ∩Db ∩Dc

∣∣ = 2, implying that

(5.1) F(Da), F(Db), F(Dc) are cross-intersecting.

Let us first prove that (ii) holds if F(D1) is trivial.
If F({2, 3, 4, 5}) is trivial then

(
[2, 5] ∪ [7, n]

)
/∈ F . Using shiftedness

[2, 6] ⊂ F follows for all F ∈ F(1). Indeed, the contrary means the existence
of F ∈ F(1) with i /∈ F for some 2 ≤ i ≤ 6. Shifting 6 to i we get
a subset of [2, 5] ∪ [7, n] in F . Now [2, 6] ⊂ F for all F ∈ F(1) yields∣∣F(1)

∣∣ ≤ 2n−6 ≤ 1
8
2n−3.

Since F(1) is non-trivial, 3-wise 2-intersecting, (iii) gives

|F(1)| ≤ 3

4
2n−3.

Thus

|F| =
∣∣F(1)

∣∣+
∣∣F(1)

∣∣ ≤ 7

8
· 2n−3, as desired.

From now on we may assume that F(D1) is non-trivial. Moreover, F(D1) ⊂
F(Di) for 2 ≤ i ≤ 5 implies that F(Di) is non-trivial for all 1 ≤ i ≤ 5.
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Using Theorem 11 for r = 3 gives

(5.2)
∣∣F(D3)

∣∣+
∣∣F(D4)

∣∣+
∣∣F(D5)

∣∣ ≤ 2n−5.

In view of (5.1), D(1) and D(2) are both 3-wise intersecting. Since they are
non-trivial,

(5.3)
∣∣F(Di)

∣∣ ≤ 5

16
2n−5, i = 1, 2

follows from the Brace–Daykin Theorem.
Let us prove next

(5.4)
∣∣F([3])

∣∣+
∣∣F([5])

∣∣ ≤ 2n−5.

Indeed, the contrary would force the existence of G ∈ F([3]) and H ∈ F([5])
satisfying G∩H = ∅. This would entail [3] ⊂ F for all F ∈ F , contradicting
non-triviality.

For B ⊂ [5], B 6= [3] using Lemma 8 we infer that F(B) is 3-wise 4-
intersecting. By (ii),

(5.5) |F(B)| ≤ 2n−5 · 1

16
.

Let now B ∈
(
[5]
2

)
. Then Lemma 8 implies that F(B) is 3-wise 7-inter-

secting. Thus

(5.6) |F(B)| < 2n−5

(√
5− 1

2

)3

· 1

16
< 2n−5 · 1

64
.

Since F(B′) ⊂ F(B) is obvious for all B′ ⊂ B, we may use (5.6) for all(
5
2

)
+
(
5
1

)
+
(
5
5

)
= 16 sets B ⊂ [5], |B| ≤ 2. Together with (5.0), (5.2), (5.3),

(5.4), (5.5) we obtain

|F| ≤ 2n−5
(

1 +
10

16
+ 1 +

9

16
+

4

16

)
< 2n−3. � �

Now the proof of Theorem 4 is complete.
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6 The proof of Theorem 5 in the case r = 3

Suppose that F ⊂ 2[n] is 3-wise intersecting, non-trivial, F 6⊂ A1(n, 3). For
A ⊂ [2] define F(A) =

{
B ⊂ [3, n] : A ∪B ∈ F

}
. Obviously,

(6.0) |F([2])|+ |F({1})|+ |F({2})|+ |F(∅)| = |F|.

Let us first consider the case when F(∅) 6= ∅. Note that this implies that
F([2]) is intersecting, whence

(6.1) |F([2])| ≤ 1

2
2n−2 = 2n−3.

In view of Lemma 8, F({1}), F({1}), F({2}) are cross 2-intersecting. In
view of (2.2),

(6.2)
(
|F({1})|

/
2n−2)2 · |F({2})|

/
2n−2 ≤

(
1

4

)3

.

We want to use this to prove

(6.3) |F({1})|+ |F({2})| ≤ 9

16
2n−2.

Set b = 16 · |F({1})|
/

2n−2, c = 16 · |F({2})|
/

2n−2. Then (6.2) transforms
to b2c ≤ 43 = 64. From (6.1) and F({2}) ⊂ F({1}) ⊂ F([2]), c ≤ b ≤ 8
follows.

We need a simple, analytical inequality.

Lemma 21. Let b ≥ c be positive real numbers satisfying b ≤ 8 and

(6.4) b2c ≤ 64.

Then

(6.5) b + c ≤ 9 with equality iff b = 8, c = 1.

Proof. First note that b ≤ 4 would imply b+c ≤ 8. If b = 8 then (6.4) implies
c ≤ 1, yielding (6.5). Thus we may assume that 4 < b < 8. Should (6.4) fail
for some pair (b, c) then we can decrease c to 9− b while maintaining (6.4).
However,

b2(9− b)− 64 = (8− b)(b2 − b− 8) is strictly positive

in the range 4 < b < 8, a contradiction.
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Now (6.3) follows from (6.5). In view of Lemma 8 the family F(∅) is
3-wise 5-intersecting. Using Theorem 4 (i) and (4.12) we infer

(6.6) |F(∅)| ≤ 2n−2 · 1

16
·
√

5− 1

2
< 2n−2/16.

Together with (6.0), (6.1) and (6.3) we infer

|F| < 2n−2
(

1

2
+

9

16
+

1

16

)
= 2n ·

(
1

4
+

1

32

)
as desired.

Let now F(∅) = ∅, that is, F ∩ [2] 6= ∅ for all F ∈ F . Let us mention that
both A0(n, 1) and A1(n, 1) have this property.

Since [2] ∩ {1} ∩ {2} = ∅, the three families F([2]), F({1}), F({2}) are
cross-intersecting. Note that F 6⊂ A0(n, 1) implies F({2}) 6= ∅. This in turn
implies that F([2]) is non-trivial.

If F({1}) is non-trivial, then Theorem 14 (ii) yields

|F| = |F([2])|+ |F({1})|+ |F({2})| ≤ 9

8
· 2n−2 =

(
1

4
+

1

32

)
2n, as desired.

Thus we may assume that F({1}) is trivial. Since F({2}) ⊂ F({1}), F({2})
is trivial as well. Consequently,

∣∣F ∩ [3]
∣∣ ≥ 2 for all F ∈ F .

Now we switch from [2] to [3] and define

Di = {D ⊂ [4, n] : (D ∪ [3] \ {i}) ∈ F} , i = 1, 2, 3.

Set also

D0 = {D ⊂ [4, n] : D ∪ [3] ∈ F} .

Since {1, 2} ∩ {1, 3} ∩ {2, 3} = ∅, D1,D2,D3 are cross-intersecting. F 6⊂
A0(n, 1) implies that none of them is empty. If all were trivial, shiftedness
would imply 4 ∈ D for all D ∈ Di, i = 1, 2, 3. Thereby it would follow that
|F ∩ [4]| ≥ 3 for all F ∈ F . That is, F ⊂ A1(n, 1), a contradiction.

Consequently, we may assume that D3 is non-trivial. Applying Theo-
rem 14 (i) and

∣∣D0

∣∣ ≤ 2n−3 we deduce

|F| =
∣∣D0

∣∣+
∣∣D1

∣∣+
∣∣D2

∣∣+
∣∣D3

∣∣ ≤ 2n−3 +
5

4
2n−3 = 2n−2 + 2n−5,

concluding the proof of Theorem 5. �
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7 Doubly non-trivial r-wise intersecting fam-

ilies

Let r ≥ 3 be an integer, n ≥ r + 2 and define

G(n, r) = {G ⊂ [n] : G ∩ [r + 2] = [r + 2] \ {i}, 1 ≤ i < r} ,
H(n, r) = {H ⊂ [n] : [r − 1] ⊂ H, H ∩ {r, r + 1, r + 2} 6= ∅} .

It is easy to check that G(n, r)∩H(n, r) = ∅, |G(n, r)| = r−1
2r+2 ·2n, |H(n, r)| =

7
2r+2 ·2n and D(n, r) := G(n, r)∪H(n, r) is r-wise intersecting with D(n, r) 6⊂
Ai(n, r, 1) for i = 0, 1. (We call such a family doubly non-trivial.)

With this terminology Theorem 5 can be stated as:

Theorem 22. Suppose that n, r are integers, n ≥ r + 2 ≥ 5. Let F ⊂ 2[n] be
doubly non-trivial and r-wise intersecting. Then

(7.1) |F| ≤ |D(n, r)| = r + 6

2r+2
· 2n.

Proof. We proved the case r = 3 in the preceding section. We prove (7.1) by
applying induction on r. Let r ≥ 4 and suppose that (7.1) holds for r − 1.

Claim 23. F(1) ⊂ 2[2,n] is doubly non-trivial and (r − 1)-wise intersecting.

Proof of the claim. If G1, . . . , Gr−1 ∈ F(1) satisfy G1 ∩ . . . ∩ Gr−1 = ∅ then
Gi ∪ {1} ∈ F for i = 1, . . . , r − 1 and these r − 1 sets intersect in {1}.
Thus 1 ∈ F holds for all F ∈ F . This contradicts the assumption that F is
(doubly) non-trivial. Since

(
[n]
n−1

)
⊂ F ,

(
[2,n]
n−2

)
⊂ F(1) is immediate.

Similarly, F 6⊂ A1(n, 1) implies the existence of F̃ ∈ F satisfying F̃ ∩
[r + 1] = [r − 1]. Now F̃ \ {1} ∈ F(1) and

(
F̃ \ {1}

)
∩ [2, r + 1] = [2, r − 1]

concludes the proof of F(1) being doubly non-trivial.

Applying the induction hypothesis to F(1) yields

(7.2) |F(1)| ≤ (r − 1) + 6

2r+1
· 2n−1 =

r + 5

2r+2
· 2n.

In order to prove (7.1) it is sufficient to show

(7.3)
∣∣F(1)

∣∣ ≤ 2n−r−2.
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Proof of (7.3). Let us first prove that for 2 ≤ s ≤ r, F(1) is s-wise (2r− s)-
intersecting.

For s = r it follows from Lemma 8 (and the fact that F(1) ⊂ F is r-wise
intersecting). Arguing indirectly, let s be the largest integer such that F(1)
is not (2r − s)-intersecting. Using shiftedness there exist F1, . . . , Fs ∈ F(1)
such that F1 ∩ . . . ∩ Fs = [2, 2r − s].

By the maximal choice of s, F(1) is (s+ 1)-wise (2r− s− 1)-intersecting.
Consequently [2, 2r − s] ⊂ F for all F ∈ F(1). For s ≤ r − 2 this implies
directly that

∣∣F(1)
∣∣ < 2n−r−2, i.e., (7.3) holds.

Let s = r − 1. Define H1 = F1, Hi =
(
Fi \ {i}

)
∪ {1} for 2 ≤ i ≤ r − 1

and Hr = F̃ (from the proof of Claim 23). Since H1 ∩ . . . ∩Hr = ∅, we have
a contradiction.

For r ≥ 5 the inequality (7.3) follows from m(n − 1, r − 1, r + 1) =
2(n−1)−(r+1) = 2n−r−2.

To prove (7.3) in the last case, r = 4 we have to work harder. We
distinguish two cases according as F(∅, [2]) is empty or not.

If F(∅, [2]) = ∅ then
∣∣F(1)

∣∣ =
∣∣F({2}, [2])

∣∣. Since F(1) is 3-wise 5-
intersecting, F({2}, [2]) is 3-wise 4-intersecting, yielding∣∣F(1)

∣∣ ≤ 2(n−2)−4 = 2n−6 as desired.

Let us suppose now that F(∅, [2]) 6= ∅ and forget about (7.3).

Claim 24. F([2], [2]) is doubly non-trivial 3-wise intersecting.

Proof of the claim. Since F(∅, [2]) 6= ∅, [3, n] ∈ F . By shiftedness {1, 2} ∪
[5, n] is also in F , i.e., [5, n] ∈ F([2], [2]), proving doubly non-triviality. Also,
[3, n] ∈ F implies that F([2], [2]) is 3-wise intersecting.

Using the case r = 3 we obtain

(7.4) |F([2], [2])| ≤
(

1

4
+

1

32

)
2n−2 =

4.5

64
2n.

Note that F(∅, [2]) ⊂ F({2}, [2]) ⊂ F({1}, [2]). Let us show that F({1}, [2])
is 3-wise 4-intersecting. Suppose the contrary and take G1, G2, G3 ∈ F({1}, [2])
so that G1 ∩G2 ∩G3 = {3, 4, 5}. By shiftedness Fi =

(
Gi \ {i}

)
∪{1, 2} is in

F for i = 3, 4, 5. However, [3, n] ∩ F3 ∩ F4 ∩ F5 = ∅, a contradiction.
Using Theorem 4 we infer

(7.5)
∣∣F({1}, [2])

∣∣ ≤ 2n−6.
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Consequently

|F| ≤
∣∣F([2], [2])

∣∣+ 3
∣∣F({1}, [2])

∣∣ ≤ 4.5 + 3

64
2n <

10

64
· 2n

completing the proof.

8 Shifted versus non-shifted

As a matter of fact, the proof that we have given for Theorem 22 is only for
shifted families.

The problem is that shifting does not alter non-triviality but it might
very well happen that it pushes a family inside A1(n, r, 1).

To deal with this case we need to recall the definition of the process of
shifting, namely the j → i shift, Sij.

Definition 25. Given a family F ⊂ 2n and 1 ≤ i < j ≤ n one defines
Sij(F) = {Sij(F ) : F ∈ F} where

Sij(F ) =

{
F ′ := (F − {j}) ∪ {i} if i /∈ F, j ∈ F and F ′ /∈ F ,
F otherwise.

For a fixed r ≥ 3 and a set B ∈
(

[n]
r+1

)
define the isomorphic copy A(B)

of A1(n, r, 1) by A(B) = {F ⊂ [n] : |F ∩B| ≥ r}. Note that A1(n, r, 1) =
A([r + 1]).

In the proof of Theorem 22 we start with a non-trivial r-wise intersecting
family F ⊂ 2[n] such that F 6⊂ A(B) for all B ∈

(
[n]
r+1

)
. A problem arises if

for some 1 ≤ i < j ≤ n, Sij(F) ⊂ A(B). Let us prove that (7.1) holds in this
case. To make notation simple we assume A = [r + 1], i = r + 1, j = r + 2.

Proposition 26. Suppose that F ⊂ 2[n] is doubly non-trivial, r-wise inter-
secting (r ≥ 3) and Sr+1,r+2(F) ⊂ A1(n, r, 1) then

(8.1) |F| < r + 6

2r+2
· 2n.

Proof. First of all let us note that Sr+1,r+2 does not change the intersection
F ∩ [r]. Thus

(i) |F ∩ [r]| ≥ r − 1 for all F ∈ F .
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Set F0 = {F ∈ F , [r] ⊂ F}. Clearly,

(ii) |F0| ≤ 2n−r =
4

2r+2
· 2n.

As a matter of fact, assuming that |F| is maximal, in view of (i) equality
follows in (ii). For 1 ≤ p ≤ r let us define three families

Bp(q) =
{
F ∈ F : F ∩ [r + 2] = [r + 2] \ {p, q}

}
for q = r + 1, r + 2;

Bp(0) =
{
F ∈ F : F ∩ [r + 2] = [r + 2] \ {p}

}
.

Now F \ F0 is partitioned in these 3r families. We need to prove

(iii)
∑

1≤p≤r

(∣∣Bp(r + 1)
∣∣+
∣∣Bp(r + 2)

∣∣+
∣∣Bp(0)

∣∣) <
r + 2

2r+2
· 2n.

Without loss of generality F is a filter, implying

(iv) Bp(q) ⊂ Bp(0) for q = r + 1, r + 2.

Also, Sr+1,r+2(F) ⊂ A1(n, r, 1) implies

(v) Bp(r + 1) ∩ Bp(r + 2) = ∅.

Since F 6⊂ A1(n, r, 1), we may assume by symmetry that

(vi) B1(r + 1) 6= ∅.

Since F 6⊂ A
(
[r] ∪ {r + 2}

)
, we may assume by symmetry that either (vii)

or (viii) hold.

(vii) B2(r + 2) 6= ∅,

(viii) B1(r + 2) 6= ∅ but Bp(q) = ∅ for all 2 ≤ p ≤ r, q = r + 1, r + 2.

Note that (iv) and (v) imply

(ix)
∣∣Bp(r + 1)

∣∣+
∣∣Bp(r + 2)

∣∣+
∣∣Bp(0)

∣∣ ≤ 2

2r+2
· 2n.

In case of (viii) we immediately obtain∣∣F \ F0

∣∣ ≤ (2 + (r − 1))
2n

2r+2
<

(r + 2)

2r+2
· 2n, as desired.
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Thus we may assume that (vii) holds.
Let us note that

∣∣Bp(0)
∣∣ ≤ 2n−r−3 would imply that (ix) holds with 1

2r+2 ·2n

for the corresponding p. Should this be the case for all 1 ≤ p ≤ r, we would
get ∣∣F \ F0

∣∣ ≤ r

2r+2
2n <

r + 2

2r+2
· 2n.

Thus we may assume by symmetry that B3(0) > 1
2
· 2n−r−2, whence B3(0) is

non-trivial on [r + 3, n].
Note that Bp(0) = ∅ would imply F ⊂ A

(
[r + 2] \ {p}

)
, contradicting

doubly non-triviality.
Thus we infer that the r families B1(r+1), B2(r+2), B3(0), . . . , Br(0) are

all non-empty with B3(0) non-trivial. Applying Theorem 14 (i) we obtain

(x)
∣∣B1(r + 1)

∣∣+
∣∣B2(r + 2)

∣∣+
∑

3≤p≤r

∣∣Bp(0)
∣∣ ≤ r + 2

4
· 2n−r−2.

If both B1(r+2) and B2(r+1) are non-empty then the same argument applies
to the r-wise cross-intersecting families B1(r+ 2),B2(r+ 1),B3(0), . . . ,Br(0).
Adding the corresponding inequality to (x) and using

∣∣Bp(r+1)
∣∣+∣∣Bp(r+2)

∣∣ ≤∣∣Bp(0)
∣∣ we infer∣∣F \ F0

∣∣ ≤ ∣∣B0(1)
∣∣+
∣∣B0(2)

∣∣+
r + 2

2
· 2n−r−2 ≤ r + 6

2
· 2n−r−2.

Since r+6
2

< r + 2 for r ≥ 3, we are done.
The case B1(r+2) = B2(r+1) = ∅ is even easier. We can take the double

of (ix) and arrive at the same conclusion.
Using symmetry there is only one more case left, B1(r + 2) 6= ∅ but

B2(r + 1) = ∅.
For this last case we note that doubling (ix) still yields∣∣F \ F0

∣∣ ≤ ∣∣B0(1)
∣∣+
∣∣B0(2)

∣∣+
∣∣B1(r + 2)

∣∣− ∣∣B1(r + 1)
∣∣+

r + 2

2
2n−r−2.

For r ≥ 4, r+2
2

+ 3 ≤ r + 2 and we still obtain
∣∣F \ F0

∣∣ < (r + 2) · 2n−r−2.
The only remaining subcase is r = 3. If

∣∣B2(0)
∣∣ ≤ 1

2
· 2n−r−2,

∣∣B2(0)
∣∣ +∣∣B2({r + 1})

∣∣+ ∣∣B2({r + 2})
∣∣ ≤ 2n−r−2 and

∣∣F \F0

∣∣ ≤ (2 + 1 + 2) · 2n−r−2 =
5
32

2n−5 follows.
Since we could exchange 2 and 3, we may assume that B3(r + 1) = ∅ and

B3(r + 2) 6= ∅.
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Apply (2.8) to B1(r + 2), B2(0) and B3(r + 2).

(xi)
∣∣B1(r + 1)

∣∣+
∣∣B2(0)

∣∣+
∣∣B3(r + 2)

∣∣ ≤ 5

4
· 2n−r−2.

Using (x):∣∣F \ F0

∣∣ ≤ ∣∣B1(r + 2)
∣∣+
∣∣B1(0)

∣∣− ∣∣B1(r + 1)
∣∣+

5

2
2n−5 <

9

2
2n−5 < 5 · 2n−5,

completing the proof.
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