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Abstract

Let F ⊂ 2[n] be a family of subsets. The diameter of F is the
maximum of the size of symmetric differences among pairs of mem-
bers of F . In 1966 Kleitman determined the maximum of |F| for fixed
diameter. However, this important classical result lacked a charac-
terisation of the families meeting the bound. This is remedied in the
present paper where a best possible stability result is established as
well.

In Section 4 we introduce a “parity trick” that provides an easy
way of deducing the odd case from the even case in both Kleitman’s
original theorem and in the stability version of it.

Subject classification codes: 05D05, 05C65

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set. The power set of [n] is
denoted by 2[n]. A subset F of 2[n] is called a family.

For i ∈ [n] we define F(i) =
{
F − {i} : i ∈ F ∈ F

}
and F(i) =

{F ∈ F : i /∈ F}. Note that both F(i) and F(i) are subsets of 2[n]−{i} and
|F| = |F(i)|+ |F(i)| holds.

Sometimes, in particular in coding theory, 2[n] is considered a metric space
with the distance of A,B ⊂ [n] defined as the size of the symmetric difference.
That is,

d(A,B) = |A \B|+ |B \ A|.

2[n] can be regarded as an elementary Abelian group of order 2n as well. One
defines the addition modulo 2, i.e., A+B = {i : i is contained in exactly one
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of A and B}. Of course, A + B = A \B ∪B \A is the symmetric difference
of A and B.

The diameter ∆(F) of a family F ⊂ 2[n] is simply

max{d(A,B) : A,B ∈ F} or equivalently,

max{|A + B| : A,B ∈ F}.

Let us note the obvious inequality

(0) |A + B| 5 |A ∪B|.

One can argue that extremal set theory emerged as an independent field
inside combinatorics through the many problems and conjectures posed by
Paul Erdős. Let us mention here two important classical results.

First define the function m(n, s) for n > s = 0 by

m(n, s) =


∑

05i5s/2

(
n
i

)
if s is even,

2 ·
∑

05i5s/2

(
n−1
i

)
if s is odd.

Katona Theorem ([Kat] (1964)). Suppose that F ⊂ 2[n] satisfies

(1) |F ∪ F ′| 5 s for all F, F ′ ∈ F .

Then for all n > s = 0

(2) |F| 5 m(n, s) holds.

Moreover, if n = s + 2 then equality holds in (2) iff F is of the following
form:

(i) s is even, F =
{
F ⊂ [n] : |F | 5 s

2

}
def
= K(n, s),

(ii) s is odd, F =
{
F ⊂ [n] :

∣∣F ∩ ([n]− {y})
∣∣ 5 s

2

}
def
= Ky(n, s), for some

fixed element y ∈ [n].

Kleitman Diameter Theorem ([Kle] (1966)). Suppose that F ⊂ 2[n] sat-
isfies

(3) |F + F ′| 5 s for all F, F ′ ∈ F .

Then for all n > s = 0

(4) |F| 5 m(n, s) holds.
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In view of (0), the bound (4) is stronger than (2). On the other hand, no
uniqueness is proved.

One of the aims of the present paper is to remedy this problem and for
n = s + 2 determine all families attaining equality in (4).

Let us mention that Kleitman proves (4) by reducing the problem on
|F + F ′| to that on |F ∪ F ′|. For this reason he introduces the very useful
operation of down-shift, Sj.

Definition 1. Let F ⊂ 2[n], j ∈ [n]. Define Sj(F) = {Sj(F ) : F ∈ F}
where

Sj(F ) =

{
F − {j} if j ∈ F ∈ F and (F − {j}) /∈ F ,
F otherwise.

Claim 1 (Kleitman [Kle]). |Sj(F)| = |F| and ∆
(
Sj(F)

)
5 ∆(F) hold. �

The following are easy to verify.

F̃(j) = F(j) ∩ F(j),(5)

F̃(j) = F(j) ∪ F(j) and(6)

|F̃(i)| = |F(i)|, F̃(i)| = |F(i)| for all i 6= j.(7)

Definition 2. For a family G ⊂ 2[n] and a set S ⊂ [n] we define G + S, the
translation of G by S, in the following way:

G + S = {G + S : G ∈ G}.

Note that ∆(G + S) = ∆(G) holds.

Our main result is the following.

Theorem 1. Let n = s + 2, s = 0 and let F ⊂ 2[n] satisfy ∆(F) 5 s. Then

|F| = m(n, s) implies that F is a translate of(8)

K(n, s) (for s even) or of Ky(n, s) (for s odd).

Moreover, the following stability results hold.
If s = 2d and F is not contained in any translate of K(n, s) then

(9) |F| 5
∑
05i5d

(
n

i

)
−
(
n− d− 1

d

)
+ 1.
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If s = 2d + 1 and F is not contained in any translate of Ky(n, s) (for any
y ∈ [n]) then

(10) |F| 5 2
∑
05i5d

(
n− 1

i

)
−
(
n− d− 2

d

)
+ 1 holds.

Let us mention that both (9) and (10) are best possible. We shall discuss
it in the next section.

2 Tools of proofs

Let us recall that a family C ⊂ 2[n] is called a complex (or down-set) if for all
D ⊂ C ∈ C, D ∈ C holds.

Claim 2 (Kleitman [Kle]). If C is a complex then

|C ∪ C ′| 5 ∆(C) holds for all C,C ′ ∈ C.

Proof. Set C ′′ = C ′ \ C. Then C ′′ ∈ C and C ∪ C ′ = C ∪ C ′′ = C + C ′′,
implying the statement.

As a matter of fact Kleitman deduced (4) from (2) by repeatedly applying
the down-shift Sj, 1 5 j 5 n. If we start with a family F ⊂ 2[n] satisfying
∆(F) 5 s then we end up with a complex C. In view of Claims 1 and 2
the complex C satisfies |C| = |F|, ∆(C) 5 s and even |C ∪ C ′| 5 s for all
C,C ′ ∈ C. Thus applying (2) to C yields (4).

We are going to imitate Kleitman’s approach. However, since Sj(F)
changes the structure of F , we have to be careful. On the other hand, if the
“end product” C is a complex which is not contained in K(n, s) or Ky(n, s)
then we can apply the following, recent stability theorem.

Theorem 2 ([F]). Suppose that F ⊂ 2[n] (n = s+2 = 2) satisfies |F∪F ′| 5 s
for all F, F ′ ∈ F . Then

(i) s = 2d and F 6⊂ K(n, s) then

(11) |F| 5
∑
05i5d

(
n

i

)
−
(
n− d− 1

d

)
+ 1.
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(ii) s = 2d + 1 and there is no y ∈ [n] such that F ⊂ Ky(n, s) then

(12) |F| 5
∑
05i5d

(
n

i

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
+ 1 holds.

For the unexperienced reader it might be not clear that the RHS of (12)
is less than m(n, 2d + 1). However, it follows from

2
∑
05i5d

(
n− 1

i

)
=
∑
05i5d

(
n

i

)
+

(
n− 1

d

)
.

Let us show the constructions giving equality in (11) and (12).
First we suppose that s = 2d and let D ∈

(
[n]
d+1

)
be a fixed d + 1-element

set. Define

H(n, s) =
{
H ⊂ [n] : |H| 5 d

}
∪ {D}\

{
H ∈

(
[n]

d

)
: H ∩D = ∅

}
.

Next consider the case s = 2d + 1 and fix a D ∈
(
[n−1]
d+1

)
. Define first the

intersecting family H0(n, s):

H0(n, s) =

{
H ∈

(
[n]

d + 1

)
: n ∈ H, H ∩D 6= ∅

}
∪ {D}.

Then define
H(n, s) = {H ⊂ [n] : |H| 5 d} ∪ H0(n, s).

It is easy to check that in both cases |H∪H ′| 5 s holds for all H,H ′ ∈ H(n, s).
Consequently, ∆(H(n, s)) 5 s. Therefore ∆(H(n, s) + S) 5 s for all S ⊂ [n]
as well.

In [F] it is also proven that unless s = 5, H(n, s) are the only families for
which equality holds in (11) and (12).

A family H ⊂
(
[n]
k

)
is called intersecting if H ∩H ′ 6= ∅ for all H,H ′ ∈ H.

It is called non-trivial if
⋂

H∈H
H = ∅. We shall use the following classical

result.

Hilton–Milner Theorem ([HM]). If H ⊂
(
[n]
k

)
is a non-trivial intersecting

family, n > 2k, then

|H| 5
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 holds. �
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During the proof we shall need also the following inequality. Let us recall
that two families A,B ⊂ 2[n] are called cross-intersecting if A ∩B 6= ∅ holds
for all A ∈ A, B ∈ B.

Proposition 1 (Frankl–Tokushige [FT], cf. also Wang–Zhang [WZ]). Sup-
pose that A,B ⊂

(
[n]
k

)
, n > 2k, are cross-intersecting, non-empty and A∩B =

∅. Then

(13) |A|+ |B| 5
(
n

k

)
−
(
n− k

k

)
holds. �

Note that (13) is a slight improvement over an inequality used by Hilton
and Milner [HM].

3 Proof of Theorem 2

We start with a family F ⊂ 2[n] satisfying ∆(F) 5 s. Define

S =
{
i : |F(i)| > |F(i)|

}
⊂ [n].

Then the translated family F̃ = F + S satisfies ∆(F̃) = ∆(F) and
∣∣F̃(i)

∣∣ 5∣∣F̃(i)
∣∣ for all i ∈ [n]. Without loss of generality we can consider F+S instead

of F . Thus we assume that |F(i)| 5 |F(i)| holds for all i ∈ [n] at the start.
If F is a complex then by Claim 2 one has |F ∪ F ′| 5 s for all F, F ′ ∈ F

and the statements follow directly from Theorem 1.
Suppose that F is not a complex. Since repeated applications of the

down-shift Sj, 1 5 j 5 n, eventually turn F into a complex, there must be
an intermediary family G satisfying the following:

|G| = |F|, ∆(G) 5 ∆(F) 5 s

and G is not a complex but Sj(G) is a complex. To have part of the argument
unified for s even and s odd, we use the symbol K(n, s) for s odd as well,
having Ky(n, s) in mind for some unspecified y ∈ [n]. If Sj(G) 6⊂ K(n, s),
applying Theorem 1 concludes the proof. Thus we assume that Sj(G) ⊂
K(n, s) holds. It might happen that G ⊂ K(n, s). In that case we backtrack
and consider the last G with G 6⊂ K(n, s) but Sj(G) ⊂ K(n, s) (by abuse of
notation we use the same letter j).
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Let us first consider the case s = 2d. There must exist some D ∈ G∩
(

n
d+1

)
such that j ∈ D and D−{j} /∈ G. Define the two families A and B as follows.

A =

{
A ∈

(
[n]

d

)
: j /∈ A, (A ∪ {j}) ∈ G

}
.

B =

{
B ∈

(
[n]

d

)
: B ∈ G

}
.

Claim 3. (i) A 6= ∅;
(ii) for A ∈ A one has A /∈ G;

(iii) A ∩ B = ∅;
(iv) A and B(j) are cross-intersecting.

Proof. (i) follows from D ∈ A.
(ii) Since Sj(G) contains no members of size exceeding d, Sj(A∪{j}) = A

must hold for A ∈ A. This implies A /∈ G.
(iii) A ∈ A ∩ B then j /∈ A and both A and A ∪ {j} are in G. Thus

Sj(A ∪ {j}) = A ∪ {j}, contradicting Sj(G) ⊂ K(n, s).
(iv) This follows from

∣∣(A ∪ {j}) + B
∣∣ 5 2d.

Let us note that B(j) = ∅ would imply

|G| 5 2|G(j)| 5 2
∑
05i<d

(
n− 1

i

)
=
∑
05i<d

(
n

i

)
+

(
n− 1

d− 1

)

which is smaller than the RHS of (9). Thus we may assume that B(j) 6= ∅
holds.

Applying Proposition 1 to A and B(j) ⊂
(
[n]−{j}

d

)
gives |A| + |B(j)| 5(

n−1
d

)
−
(
n−1−d

d

)
.

Since |B(j)| 5
(
n−1
d−1

)
, |A|+ |B| 5

(
n
d

)
−
(
n−d−1

d

)
follows.

Note that there are at most |A| + |B| sets of size d in Sj(G). Using
Sj(G) ⊂ K(n, s),

|F| = |Sj(G)| 5
∑
05i5d

(
n

i

)
−
(
n− d− 1

d

)
follows.

Now we consider the case s = 2d + 1. We set K(n, s) = Ky(n, s) for an
unspecified y ∈ [n], i.e., K(n, s) =

{
K ⊂ [n] : |K ∩ ([n] − {y})| 5 d

}
,
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G 6⊂ K(n, s) together with Sj(G) ⊂ K(n, s) imply the existence of some
D ⊂ [n] satisfying

∣∣D ∩ ([n] − {y})
∣∣ = d + 1, D ∈ G, D /∈ Sj(G) and more

importantly
∣∣Sj(D) ∩ ([n] − {y})

∣∣ 5 d. This is possible only for j 6= y and∣∣D ∩ ([n]− {y})
∣∣ = d + 1 and only in the case (D − {j}) /∈ G.

First we take care of the case when

(14) |G| 5 d + 1 holds for all G ∈ G.

Let us consider the subfamily H def
= G ∩

(
[n]
d+1

)
of all (d + 1)-sets in G.

Since ∆(H) 5 ∆(G) 5 2d + 1, H is an intersecting family. Should H be
a star, i.e., should there exist an element z ∈ [n] with z ∈ H for all H ∈ H,
then using (14), G ⊂ Kz(n, s) follows. This is a contradiction.

Consequently we may apply the Hilton–Milner Theorem to H and obtain
|H| 5

(
n−1
d

)
−
(
n−d−2

d

)
+ 1. This yields

|G| 5
∑
05i5d

(
n

i

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
+ 1,

as desired. Now suppose that there is some G ∈ G with |G| = d + 2.

Claim 4. {j, y} ⊂ G and |G| = d + 2.

Proof. Sj(G) ⊂ Ky(n, s) implies
∣∣Sj(G)∩ ([n]− {y})

∣∣ 5 d. Thus Sj(G) 6= G,
i.e., j ∈ G and Sj(G) = G − {j}. Since |Sj(G)| = |G| − 1, |G| = d + 2 and
y ∈ G follow as well.

Let us define again two families of sets

A = {A ⊂ ([n]− {j}) : |A ∩ ([n]− {y})| = d, A ∪ {j} ∈ G} ,
B = {B ⊂ ([n]− {j}) : |B ∩ ([n]− {y})| = d, B ∈ G} ,

In view of Sj(G) ⊂ Ky(n, s), A ∩ B = ∅ holds.
We are going to consider the four families A(y), A(y), B(y), B(y) ⊂(

[n]−{y,j}
d

)
. ∆(G) 5 2d + 1 implies that A(y) and B(y) and also A(y) and

B(y) are cross-intersecting.
By definition, G from Claim 4 provides us with a set, namely G− {j, y},

belonging to A(y). If B(y) 6= ∅, then (13) yields

|A(y)|+ |B(y)| 5
(
n− 2

d

)
−
(
n− 2− d

d

)
.
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Since A ∩ B = ∅, |A(y)|+ |B(y)| 5
(
n−2
d

)
holds as well.∣∣{G ∈ G : j ∈ G,

∣∣G ∩ ([n]− {y})
∣∣ = d

}∣∣ 5 2

(
n− 2

d− 1

)
is obvious.

We infer,

|G| 5 2
∑
05i<d

(
n− 1

i

)
+ 2

(
n− 2

d− 1

)
+ 2

(
n− 2

d

)
−
(
n− 2− d

d

)

= 2
∑
05i5d

(
n− 1

i

)
−
(
n− 2− d

d

)
, as desired.

Thus we may assume that B(y) = ∅. Absolutely the same argument works
if both B(y) and A(y) are nonempty. To conclude the proof we distinguish
two cases according to A(y) = ∅ or B(y) = ∅.

(a) A(y) = ∅
Recall that |F(y)| = |F(y)| held at the start and this is not altered by the
down-shift (cf. (5)–(7)). Therefore,

|G| = |G(y)|+ |G(y)| 5 2|G(y)| follows.

Note that the only sets of size at least d in G(y) = G(y)− (A(y) ∪ B(y)) are
sets H ⊂

(
[n]−{y}

d

)
with j ∈ H. These are at most

(
n−2
d−1

)
sets, implying

|G(y)| 5
∑
05i<d

(
n− 1

i

)
+

(
n− 2

d− 1

)
.

Therefore,

|G| 5 2
∑

05i5d−1

(
n− 1

i

)
+ 2

(
n− 2

d− 1

)
.

To conclude the proof in this case we need

2

(
n− 2

d− 1

)
5 2

(
n− 1

d

)
−
(
n− 2− d

d

)
.

Rearranging we get(
n− d− 2

d

)
5 2

(
n− 2

d

)
which holds trivially.
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(b) B(y) = ∅
Since B(y) = ∅ also, B = ∅ follows. This means that G + {j} ⊂ Ky(n, s).
What can be the members of G(j)? If H ∈ G(j), then j /∈ H implies H ∈
Sj(G). Thus

∣∣H∩([n]−{y})
∣∣ 5 d. Using B = ∅, even

∣∣H∩([n]−{y})
∣∣ 5 d−1

follows. Since j /∈ H implies H ⊂ ([n]− {j}), we infer

|G(j)| 5 2
∑

05i5d−1

(
n− 2

i

)
=
∑
05i5d

(
n− 1

i

)
−
(
n− 2

d

)
.

Consequently,

|G| 5 2|G(j)| 5 2
∑
05i5d

(
n− 1

i

)
− 2

(
n− 2

d

)
.

Since 2
(
n−2
d

)
>
(
n−2
d

)
>
(
n−2−d

d

)
, the proof is complete. �

4 The parity trick

Let p(n, s) denote the maximum-value of F ⊂ 2[n] satisfying ∆(F) 5 s.
By Kleitman’s theorem we know that p(n, s) equals m(n, s) from Katona’s
Theorem.

In this section we are going to give a simple proof of the following:

Proposition 4.1.

(15) p(n, 2d + 1) = 2p(n− 1, 2d) holds for n = 2d + 2.

Looking at the formulae for m(n, s) one can easily verify that (15) holds.
However, we are going to prove it without assuming any knowledge of the
actual formula for m(n, s) or p(n, s).

Proof. Let A ⊂ 2[n−1] satisfy |A| = p(n − 1, 2d) and ∆(A) 5 2d. Define
B = A∪{A∪{n} : A ∈ A}. Then |B| = 2|A| and ∆(B) = ∆(A)+1 5 2s+1
hold. This proves p(n, 2d + 1) = 2p(n− 1, 2d).

Let us prove the opposite inequality. For F ⊂ 2[n] satisfying ∆(F) 5
2d + 1 and |F| = p(n, 2d + 1) define the partition F = F0 ∪ F1 by

Fi =
{
F ∈ F : |F | ≡ i (mod 2)

}
.

10



Note that for F, F ′ ∈ Fi one has |F + F ′| ≡ 0 (mod 2) implying

∆(Fi) 5 2d for i = 0, 1.

At the first sight this gives only the bound |Fi| 5 p(n, 2d) which is insufficient
to prove (15).

Fortunately, one can do one more trick. Define Gi =
{
F ∩ [n − 1] :

F ∈ Fi

}
⊂ 2[n−1]. The point is that if F, F ′ ∈ Fi are distinct then |F | ≡

|F ′| (mod 2) implies |F + F ′| = 2. Consequently, F ∩ [n − 1] 6= F ′ ∩ [n − 1]
holds. Therefore |Gi| = |Fi| and ∆(Gi) 5 2d hold. By definition,

p(n, 2d + 1) = |F0|+ |F1| = |G0|+ |G1| 5 2p(n− 1, 2d)

follows concluding the proof of (15). �

Proposition 4.1 shows that the odd case is a consequence of the even case
in Kleitman’s Diameter Theorem.

Let us elaborate this approach and sketch how the above parity trick can
be used to derive the odd case of Theorem 1 from the even case.

Let F ⊂ 2[n] satisfy ∆(F) 5 2d + 1. Define Fi and Gi, i = 0, 1, as above.
If |F| = p(n, 2d+ 1) = 2p(n− 1, 2d), then |Fi| = |Gi| = p(n− 1, 2d) holds

for i = 0, 1. Applying the even case of Theorem 1, we infer that there exist
subsets S0 and S1 of [n− 1] such that

Gi =
{
G ⊂ [n− 1] : |G + Si| 5 d

}
, i = 0, 1.

There are three cases: S0 = S1, |S0 + S1| = 1 and |S0 + S1| = 2.
In the first case, G0 = G1 and

F0 ∪ F1 =
{
F ⊂ [n] : |F ∩ [n− 1]| 5 d

}
follow.

In the second case defining j by S0 + S1 = {j},∣∣F0∪F1

∣∣+S ′=
{
F ⊂ [n] : |F ∩ ([n]−{j})|5d

}
follows for some appropriateS ′.

In the third case one can easily find Ei ⊂ [n− 1], |Ei| 5 d, i = 0, 1 such that∣∣(S0 + E0) + (S1 + E1)
∣∣ = min

{
n− 1, 2d + |S0 + S1|

}
= 2d + 2.

Since S0 + E0 ∈ G0, S1 + E1 ∈ G1 we infer the existence of Fi ∈ Fi, i = 0, 1
with |F0 + F1| = 2d + 2, a contradiction.
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If either G0 or G1 satisfy Gi 6⊂ K(n− 1, 2d) + S for all choices of S ⊂ [n],
then applying (9) with n− 1 gives

(16) |Gi| 5
∑
05i5d

(
n− 1

i

)
−
(
n− d− 2

d

)
+ 1

for the corresponding i. For i′ = 1− i we still have

|Gi′| 5
∑
05i5d

(
n− 1

i

)
.

Adding these two inequalities gives (10). The hardest case is when Gi ⊂
K(n, s) + Si holds for an appropriate choice of Si, i = 0, 1. In the case
|S0 + S1| 5 1, F0 ∪ F1 = F ⊂ K(n, s) + S follows for a suitable choice of S.

Finally, if |S0 + S1| = 2 and neither G0 nor G1 verifies (16), then ∆(G0 ∪
G1) = 2d + 2 can be shown easily, the final contradiction.
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