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Abstract

Let H be a hypergraph of rank k, that is, |H|5 k for all H∈H.
Let ν(H) denote the matching number, the maximum number of pair-
wise disjoint edges in H. For a vertex x let H(x) be the hypergraph
consisting of the edges H ∈ H with x /∈ H. If ν(H(x)) = ν(H) for
all vertices, H is called resilient. The main result is the complete de-
termination of the maximum number of 2-element sets in a resilient
hypergraph with matching number s. For k = 3 it is

(
2s+1
2

)
while for

k = 4 the formula is k ·
(
s+1
2

)
. The results are used to obtain a stability

theorem for k-uniform hypergraphs with given matching number.

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set and let F ⊂ 2[n] be
a family of sets. The matching number ν(F) is the maximum number of
pairwise disjoint members of F . If ∅ /∈ F then ν(F) 5 n holds.

Set F(i) = {F ∈ F : i /∈ F} and F(i) =
{
F − {i} : i ∈ F ∈ F

}
.

Definition. A family F is called resilient if ν
(
F(i)

)
= ν(F) for all i ∈ [n].

In the present paper we shall investigate mainly resilient k-graphs H ⊂(
[n]
k

)
with prescribed matching number s, i.e., ν(H) = s.

Nevertheless let us recall an important conjecture of Erdős [E].
First we define two families A1(n, k, s) and Ak(n, k, s) of matching num-

ber s.

A1(n, k, s) =

{
A ∈

(
[n]

k

)
: A ∩ [s] 6= ∅

}
,
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Ak(n, k, s) =

(
[k(s+ 1)− 1]

k

)
.

Erdős Matching Conjecture ([E]). Suppose that n = k(s + 1) and F ⊂(
[n]
k

)
satisfies ν(F) 5 s. Then

(1) |F| 5 max
{
|A1(n, k, s)|, |Ak(n, k, s)|

}
.

Let us note that Ak(n, k, s) is resilient but A1(n, k, s) is not. For conve-

nience let us introduce the function e(n, k, s)=max
{
|F| : F⊂

(
[n]
k

)
, ν(F)5s

}
.

Using the obvious inequality |F(i)| 5
(
n−1
k−1

)
, one has

(2) |F| 5 e(n− 1, k, s− 1) +

(
n− 1

k − 1

)
if F is not resilient.

In case e(n − 1, k, s − 1) =
∣∣A1(n − 1, k, s − 1)

∣∣ =
(
n−1
k

)
−
(
n−s
k

)
, (2) gives

|F| 5
(
n
k

)
−
(
n−s
k

)
=
∣∣A1(n, k, s)

∣∣, establishing (1). In [F1] it is shown that
even if e(n − 1, k, s − 1) =

∣∣Ak(n − 1, k, s − 1)
∣∣ holds, (2) is sufficient to

prove (1). That is, induction works if F ⊂
(
[n]
k

)
is not resilient.

This fact shows that in order to solve the Erdős Matching Conjecture it
is sufficient to consider resilient families.

One can approach resilience from a different side.
Let us define the rank, r(F) of a family as max{|F | : F ∈ F}. Having

a family F ⊂ 2[n], r(F) = k with ν(F) = s one can add to it successively
subsets G ⊂ [n], |G| 5 k such that ν(F ∪{G}) = s holds as well. Eventually,
we obtain a family Fmax of rank k, ν(Fmax) = s to which no more sets of
size at most k can be added without increasing the matching number. Such
a family is called saturated. Let us note that Fmax may be not unique.

Note that ν
(
F(i)

)
< s is equivalent to ν(F ∪ {i}) = s. That is, we have

F is resilient iff there is no saturated family(3)

Fmax for F containing a 1-element set.

Let F ⊂
(
[n]
k

)
be resilient and let us fix a saturated family Fmax ⊂ 2[n] of

rank k, containing F . Partition Fmax according to the size of its members:

Fmax = F2 ∪ . . . ∪ Fk where F` =
{
F ∈ Fmax : |F | = `

}
.

Let us remark that if F is resilient then Fmax is resilient as well.
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Consider the following family:

A2(n, k, s) =

{
A ∈

(
[n]

k

)
:
∣∣A ∩ [2s+ 1]

∣∣ = 2

}
.

Note that ν
(
A2(n, k, s)

)
= s for n = ks and that in every saturated family

Fmax containing A2(n, k, s) one has F2 =
(
[2s+1]

2

)
as long as n = k(s+ 1).

Let us define a quite different resilient family. First consider the (k−1)s-
element set [s + 2, ks + 1] and let H1 ∪ H2 ∪ . . . ∪ Hs be a partition of it
where H1 consists of the largest k− 1 elements, H2 of the next largest k− 1
elements, etc., Hs consists of the smallest k − 1 elements of [s + 2, ks + 1].
Next set Fi = {i + 1} ∪ Hi, i = 1, . . . , s. Note that F1, F2, . . . , Fs partition
[2, ks+ 1].

Let us define the graph G = G(k, s) ⊂
(
[ks+1]

2

)
by defining all edges (a, b)

with a < b. These are

(1, b) for b 5 ks+ 1

(2, b) for b 5 k × (s− 1) + 2

(3, b) for b 5 k × (s− 2) + 3 etc.

(s, b) for b 5 k × 1 + s.

Then |G| = sk + (s − 1)k + . . . + k = k
(
s+1
2

)
holds. For k = 4 this is more

than
(
2s+1
2

)
.

Now we can define the family B(n, k, s).

B(n, k, s) = {F1, . . . , Fs} ∪
{
F ∈

(
[n]

k

)
: ∃E ∈ G, E ⊂ F

}
.

Definition. We say that F ⊂
(
[n]
k

)
is saturated if ν(F ∪ {H}) > ν(F) holds

for all H ∈
((

[n]
k

)
−F

)
.

In the same way a family F of rank k is called saturated if ν(F ∪{H}) >
ν(F) holds for all |H| 5 k, H /∈ F .

Proposition 1.1. ν(B(n, k, s)) = s and B(n, k, s) is saturated.

Proof. First let us show that ν(B(n, k, s)) = s holds. The pairwise disjoint
sets F1, . . . , Fs show that ν(B(n, k, s)) = s. On the other hand it should be
clear that B ∩ [s + 1] 6= ∅ for all B ∈ B(n, k, s). Should B0, . . . Bs be s + 1
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pairwise disjoint members of B(n, k, s) then after suitably renumbering them
Bi ∩ [s + 1] = {i + 1} must hold. Since the only member B ∈ B(n, k, s)
satisfying B ∩ [s] = ∅ is B = Fs, Bs = Fs.

Next let us look at Bs−1 satisfying Bs−1 ∩ [s + 1] = {s}. Since all the
edges E ∈ G satisfying E ∩ [s + 1] = {s} are joining {s} to a vertex of Fs,
E 6⊂ Bs−1 is impossible. Thus Bs−1 = Fs−1 follows.

Repeating this argument we can prove Bs−2 = Fs−2, . . . , B1 = F1. Then
looking at B0 satisfying B0∩[s+1] = {1} find again that E ⊂ B0 is impossible
because the neighbourhood of 1 in G is exactly F1∪ . . .∪Fs. Therefore there
is no admissible choice for B0. This proves ν(B(n, k, s)) 5 s.

Let H ∈
(
[n]
k

)
, H /∈ B(n, k, s). By definition, H cannot contain any edge

of G = F2. In particular, |H ∩ [s]| 5 1 holds.
Suppose first that H∩[s] = ∅. Note that in B(n, k, s) there is a unique set,

Fs which is disjoint to [s]. Since H /∈ F , H 6= Fs holds. Let ys be an arbitrary
element of Fs \H. Then (s, ys) ∈ G and it is disjoint to H. Look at the set
of neighbours of j, 1 5 j < s, exceeding s. There are (s+ 1− j)(k− 1) + 1 of
them. This guarantees that we can choose successively the neighbours yj of j
for j = s− 1, . . . , 1 such that yj > s and they are distinct and disjoint to H.
In this way we obtain s+ 1 pairwise disjoint sets H, (s, ys), . . . , (1, y1). Using
n = k(s+ 1), we can lift them to s+ 1 pairwise disjoint sets in B(n, k, s).

Let now H satisfy
∣∣H ∩ [s]

∣∣ = {i} for some 1 5 i 5 s. Define H0 =
H − {i}. Since in G the vertex i is connected to all j, s+ 1 5 j 5 (s+ 1) +

((k − 1)s+ 1− i) def
= i(k, s), H0 ⊂ [i(k, s) + 1, n] must hold. The formula for

i(k, s) might look horrible but i(k, s) is simply the last element of Fi+1. I.e.,
the requirement is that H0∩

(
[s+1]∪Fs∪ . . .∪Fi+1

)
= ∅. This shows already

that H,Fs, . . . , Fi+1 are pairwise disjoint. We are going to adjoin to them
i more sets, actually edges of G that are disjoint to them and also pairwise
disjoint among themselves. In this way we show ν

(
Fmax ∪ {H}

)
= s+ 1 and

conclude the proof.
To accomplish our task first note that H /∈ F implies H 6= Fi. Choose

yi ∈ Fi \H and take the edge (i, yi) ∈ G.
Then just as in the above case, we can continue by successively choosing

(`, y`) ∈ G for ` = i − 1, i − 2, . . . , 1 because ` is having more and more
neighbours in G as ` decreases.

Our main result is the following.
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Theorem 1. Let F ⊆
(
[n]
k

)
be resilient with ν(F) = s. Then for k = 3

(4) |F2| 5
(

2s+ 1

2

)
holds for all saturated families Fmax containing F .

For k = 4 one has

(5) |F2| 5 k

(
s+ 1

2

)
for all saturated families Fmax,F ⊂ Fmax.

The paper is organised as follows. In the next section we discuss shifting,
an important operation on families that does not increase the matching num-
ber. Then we give the easy proof that (4) and (5) hold for shifted families.

The reason for considering the shifted case separately is two-fold. First,
if one is working toward a proof of the Erdős Matching Conjecture, it is
sufficient to consider shifted families (cf. e.g. [F2]). Second, the proof for this
special case is much simpler but still conveys the flavour of the proof of the
general case.

In Section 3 we prove (4) and (5) in full generality.
In Section 4 Theorem 1 is used to prove a Hilton–Milner-type result.
The final section is devoted to further problems.

2 Shifted families

For a family F ⊂ 2[n] and fixed integers i and j, 1 5 i < j 5 n one defines
the (i, j)-shift Si,j(F) = {Si,j(F ) : F ∈ F} where

Si,j(F ) =

{
F ′ = (F − {j}) ∪ {i} if i /∈ F, j ∈ F, F ′ /∈ F ;

F otherwise.

Note that |F ′| = |F | and the definition imply that the (i, j)-shift does not
change the size of the sets in F , neither |F|. The fact that ν

(
Si,j(F)

)
5 ν(F)

is easy to verify.
Let us consider the pentagon with edge-set

E =
{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}

}
.

Applying the (1, 5)-shift produces

S1,5(E) =
{
{1, 2}, {2, 3}, {3, 4}, {4, 1}, {5, 1}

}
which is no longer resilient. I.e., resilience is not invariant under shifting.
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Definition. The family F ⊂ 2[n] is called shifted if
(
(F − {j}) ∪ {i}

)
∈ F

holds for all 1 5 i < j 5 n provided i /∈ F , j ∈ F .

In view of the above, trying to prove the Erdős Matching Conjecture, one
can always assume that F ⊂

(
[n]
k

)
is shifted. For two distinct k-element sets

A = {a1, . . . , ak} and B = {b1, . . . , bk}, where a1 < · · · < ak, b1 < · · · < bk
we say that A is smaller than B if ai 5 bi for all 1 5 i 5 k. This defines
the so-called shifting partial order. By giving priority to smaller sets (in the
shifting partial order) throughout the adding process one can assume that
the saturated family Fmax is shifted as well.

Theorem 2.1. Suppose that F ⊂
(
[n]
k

)
is shifted, resilient with ν(F) = s.

Then for any saturated family Fmax containing F one has

|F2| 5
(

2s+ 1

2

)
for k = 3 and(2.1)

|F2| 5 k

(
s+ 1

2

)
for k = 4.(2.2)

Proof. Since F is resilient, ν
(
F(1)

)
= s holds. Let us choose a matching

F1, . . . , Fs in Fmax(1) such that the size of Z
def
= F1 ∪ . . . ∪ Fs is as small as

possible. Let us reorder Fi so that for some q, 0 5 q 5 s, |Fi| = 2 for i 5 q
and |Fi| = 3 for i > q hold.

For notational convenience we set G = F2, the collection of 2-element sets
in Fmax. Then G ⊂ Fmax is a shifted graph satisfying ν(G) 5 s.

Claim 2.1. We can suppose that Z = [2, |Z|+ 1].

Proof. Suppose that j ∈ Z for some j > |Z| + 1. Then there is some
1 < i 5 |Z| + 1 with i /∈ Z. Choose the unique set Fr from the matching
with j ∈ Fr. Since Fmax is shifted, we can replace Fr by

(
Fr − {j}

)
∪ {i}.

Repeating this operation leads eventually to Z = [2, |Z|+ 1].

Since ν(Fmax) = s, F ∩ [2, |Z| + 1] 6= ∅ holds for all F ∈ Fmax. In
particular, (1, j) /∈ G for j > |Z| + 1. Using the shiftedness of G, (i, j) /∈ G
follows for all i, that is G ⊂

(
[|Z|+1]

2

)
holds.

For two disjoint sets P and Q let e(P,Q) denote the number of edges in
G between P and Q.
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Claim 2.2. For 1 5 i < j 5 s, one of the following holds.

j 5 q and e(Fi, Fj) 5 4,(2.3)

j > q and e(Fi, Fj) 5 max
{
|Fi|, |Fj|

}
.(2.4)

Proof. If j 5 q then |Fi| = |Fj| = 2 imply (2.3). Let j > q. We claim that
there are no two disjoint edges E,E ′ ∈ G connecting Fi and Fj. Indeed,
otherwise we could replace Fi and Fj by E and E ′ to obtain a matching of
total size smaller than |Z|. This would contradict the minimal choice of Z.

Now (2.4) follows from the fact that the only bipartite graphs with match-
ing number one are the stars.

Observing that for j > q, by the minimal choice of Z, Fj contains no edge
of G, we can list and estimate the types of possible edges in G.

(a) (1, r): at most |Z|, one for each r ∈ Z;
(b) inside Fi: one for each 1 5 i 5 q;
(c) between Fi, Fj: at most 4 for j 5 q, at most k otherwise.
Using |Z| = |F1|+ . . .+ |Fs| 5 2s+(k−2)(s−q) let us deduce the desired

bounds.
(i) k = 3

|G| 5 2s+(s−q)+q+

((
s

2

)
−
(
q

2

))
×3+

(
q

2

)
×4 5 3s+4

(
s

2

)
=

(
2s+ 1

2

)
.

(ii) k = 4

|G| 5 2s+ q + (k − 2)(s− q) +

(
s

2

)
× k 5 k

(
s+

(
s

2

))
= k

(
s+ 1

2

)
.

Let us now analyse the case of equality. If k = 3 then k < 4 implies that
the inequality is strict unless q = s. That is, |Z| = 2s and G ⊂

(
[2s+1]

2

)
hold.

Consequently, |G| =
(
2s+1
2

)
holds iff G is the complete graph on the vertex

set [2s+ 1].
If k = 4 then in order to have equality in (ii), |F1| = . . . = |Fs| = k must

hold.
To determine the exact structure of G let ai be the smallest element of Fi

for 1 5 i 5 s and let us number the Fi in increasing order: a1 < a2 < . . . < as.
Since we have equality in (ii), there are exactly k edges between Fi and Fj

for every 1 5 i < j 5 s.
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Claim 2.3. The k edges between Fi and Fj are (ai, b) such that b ∈ Fj (for
all 1 5 i < j 5 s).

Proof. Since there are no two independent edges between Fi and Fj, the
induced bipartite graph must be a star. By shiftedness the center of the star
is ai or aj. However, if it is aj then we can take a vertex c ∈ Fi − {ai} and
look at (aj, c) ∈ G. Recalling that G is shifted and ai < aj, (ai, c) ∈ G
follows. Replacing Fi by (ai, c) we get a contradiction with the minimal
choice of Z.

In the same way we obtain that every element of Fi − {ai} is larger than
every element of Fj − {aj}. It follows that ai = i + 1 for i = 2, . . . , s. Also
Fi−{ai} =

{
(k− 1)(s− i) + s+ 2, (k− 1)(s− i) + s+ 3, . . . , (k− 1)(s− i) +

s+ k
}

.

3 General families

Let us consider F ⊂
(
[n]
k

)
, ν(F) = s, F is both saturated and resilient. Let

Fmax be a non-extendable family of rank k containing F . Then Fmax itself is
saturated as well. Our goal is to estimate |G| where G = Fmax ∩

(
[n]
2

)
is the

graph of 2-element sets in Fmax.
Let x be a vertex of maximal degree in G. Let us fix a matching {F1, ..., Fs}

⊂ Fmax(x) for which Z
def
= F1∪ . . .∪Fs has minimal size. Many of the simple

statements that we had for shifted families remain valid.
To make the proofs smooth and short, let us describe the situations that

cannot occur.
For disjoint sets P,Q let B(P,Q) denote the bipartite graph with partite

sets P and Q, edge-set (P ×Q)∩G. Set Y = [n]− ({x}∪Z). In what follows
edge always means an edge in G.

(α) Any edge from x to a vertex in Y would increase ν(Fmax).

(β) If B(Fi, Y ) 6= ∅ then |Fi| = 2 as otherwise replacing Fi by that edge
decreases |Z|.

(γ) Even for |Fi| = 2, ν
(
B(Fi, Y )

)
5 1 (otherwise ν(Fmax) > s).

(δ) If |Fj| > 2 then ν
(
B(Fi, Fj)

)
5 1 for all i 6= j (otherwise replacing

Fi, Fj by two independent edges makes |Z| smaller.
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Let us note that a bipartite graph of matching number 1 is a star. We use
this to divide the 2-sets among the Fi into 4 groups. Let |F1| = . . . = |Ft| = 2,
|Fj| = 3 for t < j 5 s. We partition [t] into T0 ∪ T1 ∪ T2 ∪ T3 as follows.

i ∈ [t] is in T0 (T1) if |B(Fi, Y )| = 0 (= 1), respectively.
i ∈ T2 if there is xi ∈ Fi which is joined to at least two vertices in Y .

(Both for i ∈ T1 and T2 we set Fi = {xi, zi}, where B(zi, Y ) = ∅.)
i ∈ T3 if there is a vertex y = y(Fi) ∈ Y which is joined to both vertices
of Fi.
The following statements follow easily from ν(Fmax) = s or the minimality

of |Z|.

(ε) B(x, Fi) = ∅ if i ∈ T3.

(ζ) If i ∈ T3 and j > t then B(Fi, Fj) = ∅.
For i ∈ T1∪T2 let Fi = {xi, zi} where zi is the vertex with no neighbours
in Y .

(η) (x, zi) /∈ G, for i ∈ T1 ∪ T2.

(ϑ) (z, zi) /∈ G for z ∈ Fj, j ∈ T3 and i ∈ T2.

(ι) If i ∈ T1 ∪ T2 then B(zi, Fj) = ∅ for t < j 5 s.

We cannot say much about T0 unconditionally. However, knowing that
both or at least one of its vertices are connected to x some restrictions
arise. Define Fi = {xi, zi} for i ∈ T0.

(κ) If (x, xi), (x, zi) ∈ G then B(Fi, Fj) = ∅ for i ∈ T0, j ∈ T3.

(λ) If (x, xi) ∈ G then (zi, zi′) /∈ G for i ∈ T0, i′ ∈ T1 ∪ T2.

Now the preparation is finished, we are ready to prove Theorem 1. Let
us restate it with G instead of F2.

Theorem 3.1. Let F ⊂
(
[n]
k

)
be saturated for ν(F) = s. Let F ⊂ Fmax,

r(Fmax) = s and Fmax is saturated, G = Fmax ∩
(
[n]
2

)
. If F is resilient then

(i) and (ii) hold.
(i) If k = 3 then |G| 5

(
2s+1
2

)
.

(ii) If k = 4 then |G| 5 k
(
s+1
2

)
.
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Proof of the theorem. We continue using the notation of this section. To
estimate |G| let x be a vertex of maximal degree in G. We freely use the
statements (α) ∼ (λ). First let us observe

(3.1) |B(Fi, Fj)| 5 k holds (by (δ))

whenever t < j 5 s and

(3.2)
∣∣B(Fi, Fj)

∣∣ 5 4 for 1 5 i < j 5 t.

Let us also note that we showed above that (zi, zj) /∈ G in many cases. If x
is connected to some vertex of Fi ∪ Fj then (3.2) can be replaced by

(3.3)
∣∣B(Fi, Fj)

∣∣ 5 3 if (i, j) ⊂ T1 ∪ T2 ∪ T3.

(Indeed, B(Fi, Fj) = 4 implies that |Fi ∪Fj| = 4 and these four vertices span
a complete graph.) If i ∈ T0 and j ∈ T1 ∪ T2 ∪ T3 but B(x, Fi) 6= ∅ then (3.3)
holds as well.

Let d = |G(x)| be the degree of x. Then

(3.4) d 5 2× |T0|+ |T1|+ |T2|+ |Ft+1|+ . . .+ |Fs| holds.

We are going to prove the theorem by altering the graph G gradually. For
notational convenience we keep denoting the newer and newer graphs by the
same letter G. We are going to be careful in keeping x as a vertex of maximum
degree and safeguarding the validity of (3.4). We achieve the latter by never
connecting x to any vertex outside F1 ∪ . . . ∪ Fs.

First consider Fj with j ∈ T3. By (ζ) there are no edges in B(Fi, Fj) for
i ∈ [t+ 1, s]. However, in (3.1) we allow for k edges in it.

Let us remove the vertices y(Fj) for all j ∈ T3 and put in edges (x, z) for
all z ∈ Fj, j ∈ T3.

We maintained the number of edges in G and to our disadvantage we
increased d = |G(x)| by 2× |T3|.

In the new situation T3 = ∅.
Next we consider the vertex xi in Fi for i ∈ T1∪T2. If (x, xi) /∈ G then we

put this edge into G and remove one edge (xi, y) with y ∈ Y . This increases
|G(x)| but leaves |G| unchanged. If in the new graph B(xi, Y ) = ∅, we move
i into T0. For the remaining i we rename T1 ∪ T2 simply to T1.
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Finally, we join x to all vertices in Fi for i ∈ T0 (if not previously joined).
Note that the degree of x still verifies (3.4) with the new T0 and T1 (and
T2 = ∅). The RHS corresponds to the size of(⋃

i∈T0

Fi

)
∪ {xi : i ∈ T1} ∪ (Ft+1 ∪ . . . ∪ Fs).

Our next plan is to gradually replace the edges (xi, y) for some y ∈ Y for
xi ∈ Fi, i ∈ T1 by edges of the form (xi, z) for z ∈ Z.

If (xi, y) ∈ G and (xi, z) /∈ G for some z ∈ Fj, t < j 5 s, then we can
do it in view of (ι) without destroying the validity of

∣∣B(Fi, Fj)
∣∣ 5 k. Once

(xi, z) ∈ G for all z ∈ Ft+1∪. . .∪Fs, we continue with (xi, z) where z ∈
⋃
i∈T0

Fi.

If even after saturating these vertices some edges of the form (xi, y) remain
in G with y ∈ Y then we turn to our final resource {xi′ : i′ ∈ T1}. Here
we must be careful, because if say (xi, y) ∈ G, (xi′ , y

′) ∈ G are two edges
with y, y′ ∈ Y we should not replace them by a single edge (xi, xi′) thereby
diminishing |G|.

Here we use that i, i′ ∈ T1 at present means that both xi and xi′ were
joined to at least two vertices in Y ∪ {x} in G forcing (zi, zi′) /∈ G. Thus we
can replace (xi, y), (xi′ , y

′) by (xi, xi′) and (zi, zi′). At this point, i.e., if for
some i ∈ T1 all (xi, xi′) are also in G for i 6≡ i′ ∈ T1 then the degree of xi (not
forgetting the edge (xi, zi)) is at least 2|T0| + |T1| + |Ft+1| + . . . + |Fk|, i.e.,
it is equal to |G(x)|. This shows that no more edges join xi to Y . Therefore,
the moment the above process terminates G ⊂

(
Z∪{x}

2

)
holds.

Let us do the final computation. The edges in G fall into three groups.
First, those in {x} ∪ F1 ∪ . . . ∪ Ft. Second, those in Ft+1 ∪ . . . ∪ Fs. Third,
those connecting these two groups. We bound the respective sizes by

(
2t+1
2

)
,(

s−t
2

)
× k and (t+ 1)(s− t)k. For k = 3 we need to show the following

(3.5)

(
2t+ 1

2

)
+ 3

(
s− t

2

)
+ 3(t+ 1)(s− t) 5

(
2s+ 1

2

)
.

Rearranging we get

3(s− t)
2

(s+ t+ 1) 5 (s− t)(2s+ 2t+ 1).

We have equality for s = t. If s > t then dividing by s−t
2

gives 3s+ 3t+ 3 5
4s + 4t + 2. This is a strict inequality unless s = 1, t = 0, in which case
equality holds. Thus (3.5) is proven.
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For k = 4 we need

(3.6)

(
2t+ 1

2

)
+ k

(
s− t

2

)
+ k(t+ 1)(s− t) 5 k

(
s+ 1

2

)
.

Rearranging gives (
2t+ 1

2

)
5 k

(
t+ 1

2

)
.

The RHS is an increasing function of k and already for k = 4 we have(
2t+ 1

2

)
= 2t2 + t 5 2t2 + 2t = 4

(
t+ 1

2

)
with equality only for t = 0.

Thus (3.6) and the theorem are proved.

Remark. Analyzing the case of equality in (3.5) shows that equality holds
either if s = t and G is the complete graph on vertex set {x} ∪ F1 ∪ . . . ∪ Ft

or s = 1, t = 0, i.e., G is a star with three edges (joining x to the vertices
of F1). In case of (3.6) equality implies t = 0 and |F1| = . . . = |Fs| = k.
Moreover, x is joined to all vertices in F1 ∪ . . .∪Fk and B(Fi, Fj) is a star of
k edges for every choice of 1 5 i < j 5 s.

Let us make a tournament on the vertex set [s] by drawing an edge from
i to j if the center of the star B(Fi, Fj) is in Fi.

Claim. This defines a transitive tournament.

Indeed, otherwise we can find i1, i2, i3 ∈ [s] such that the three edges
are i1 → i2 → i3 → i1. Let xij be the center of the star and zij a
different vertex for j = 1, 2, 3. Then using the three independent edges
(xi1 , zi2), (xi2 , zi3), (xi3 , zi1) to replace Fij , j = 1, 2, 3 shows that Z was not
minimal, a contradiction.

In view of the claim after renumbering Fi we can choose xi ∈ Fi, i =
1, . . . , s such that, setting x0 = x the edges in G are

{
(xi, zj) : 0 5 i < j 5

s, zj ∈ Fj

}
. That is, G has exactly the same structure as in B(n, k, s).

For a family F ⊂
(
[n]
k

)
, with ν(F) = s let Fmax be a non-extendable family

of rank k containing F . Let Fi, 2 5 i 5 k be the collection of minimal (for
containment) i-element sets in Fmax. In particular, F2 = G. It is well known
that |Fi| is bounded. E.g., Fi contains no sunflower of size ks + 1 (cf. the
proof of Claim 4.1 below). By a classical result of Erdős and Rado [ER],

|F0| 5 (kis)ii!
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This implies

(3.7) |F| = |G|
(
n− 2

k − 2

)
+
∑
35i5k

i!(kis)i
(
n− i
k − i

)
.

Thus we can deduce:

Theorem 3.2. Suppose that F ⊂
(
[n]
k

)
is resilient with matching number s.

Then
(i) |F| 5

(
2s+1
2

)
n+O(1) for k = 3 and

(ii) |F| 5 k
(
s+1
2

)(
n−2
k−2

)
+O(nk−3) for k = 4.

Moreover, these bounds are best possible.

4 Hilton–Milner-type results

Let us recall that a family F is called intersecting if F ∩F ′ 6= ∅ holds for all
F, F ′ ∈ F . That is, a non-empty family F is intersecting iff ν(F) = 1 holds.
The Erdős Matching Conjecture is known to be true for s = 1. In fact, no
doubt it was this case that served as a motivation for Erdős to consider the
problem for s = 2. Namely, the s = 1 case follows from the Erdős–Ko–Rado
Theorem.

Theorem ([EKR]). Suppose that F ⊂
(
[n]
k

)
, n = 2k and ν(F) = 1. Then

(4.1) |F| 5
(
n− 1

k − 1

)
holds.

Looking at all k-sets through a fixed vertex shows that (4.1) is best pos-
sible. An intersecting family F is called non-trivial if

⋂
F∈F

F = ∅ holds. For

s = 1 non-trivial coincides with our notion of resilience.

Hilton–Milner Theorem ([HM]). Suppose that F ⊂
(
[n]
k

)
, n > 2k and F

is a non-trivial intersecting family. Then

(4.2) |F| 5
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 holds.

Moreover, in case of equality either F = B(n, k, 1) or k = 3 and F =
A2(n, 3, 1) hold.
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For n > n0(s) one can sharpen Theorem 3.2:

Theorem 4.1. Suppose that F ⊂
(
[n]
3

)
is resilient with ν(F) = s. Then for

n = n0(s)

(4.3) |F| 5
∣∣A2(n, 3, s)

∣∣ holds.

Moreover, for s=2 the inequality is strict unless F is isomorphic to A2(n, 3, s).

Proof. Defining Fmax and F2 as before, recall that we proved: |F2| <
(
2s+1
2

)
unless F2 is a complete graph on 2s+ 1 vertices.

Now, if |F2| 5
(
2s+1
2

)
− 1 then define H = {H ∈ F : 6 ∃E ∈ F2, E ⊂ H}.

Claim 4.1. |H| = O(1), i.e., it is bounded independent of n.

Proof. Let us suppose that H contains a sunflower of size 3s + 1, that is
3s+ 1 members H0, . . . , H3s ∈ H such that all pairwise intersections Hi∩Hj

are the same, 0 5 i < j 5 3s. Set A = H1 ∩H2.
We claim that ν(H ∪ {A}) = s. Indeed, if there are F1, . . . , Fs ∈ F

forming together with A a collection of s + 1 pairwise disjoint sets, then
using |F1 ∪ . . . ∪ Fs| = 3s, we can find an i, 0 5 i 5 3s for which (Hi −A) ∩
(F1 ∪ . . . ∪ Fs) = ∅. Thus Hi, F1, . . . , Fs are s + 1 pairwise disjoint sets, a
contradiction.

There are two possibilities for |A|. If |A| = 1, then ν(F ∪ {A}) = s
contradicts the resilience of F . If |A| = 2, then A can be added to F2, i.e., it
contradicts the fact that Fmax, the family used in defining F2 was saturated.

Consequently, H contains no sunflower of size 3s + 1. In view of an old
theorem of Erdős and Rado [ER], this concludes the proof of the claim.

As a matter of fact the bounds from [ER] show |H| 5 6 · (3s)3.

Now using F1 = ∅ (by resilience),

|F| 5
((

2s+ 1

2

)
− 1

)
(n− 2) + 6 · (3s)3 follows.

Noting ∣∣A2(n, 3, s)
∣∣ =

(
2s+ 1

3

)
+

(
2s+ 1

2

)
(n− 2s− 1),

for sufficiently large n we infer that (4.3) holds with strict inequality unless
F2 =

(
R
2

)
for some R ∈

(
[n]

2s+1

)
.
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If H is any set with |H ∩ R| 5 1 then one can find s pairwise disjoint
pairs in

(
R
2

)
which are disjoint to H as well. That is, F2 =

(
R
2

)
and ν(F) = s

imply F ⊂
{
B ∈

(
[n]
3

)
: |B ∩R| = 2

}
, completing the proof of the theorem.

For k = 4 as well one can classify the optimal families.

Theorem 4.2. Let k = 4 and n > n0(k, s). Suppose that F ⊂
(
[n]
k

)
is

resilient with ν(F) = s. Then

(4.4) |F| 5 |B(n, k, s)|

with strict inequality unless F is isomorphic to B(n, k, s).

Proof. We shall rely on the uniqueness part of Theorem 3.1 (ii). Let G be
the collection of two element sets in Fmax and suppose that |G| = k

(
s+1
2

)
holds. Then there exist vertices x0, x1, . . . , xs and pairwise disjoint edges
F1, . . . , Fs ∈ F such that xi ∈ Fi and the edges of G are the pairs (xi, yj) for
0 5 i < j 5 s, yj ∈ Fj. That is, xi is having i + (s − i)k neighbours (the i
coming from the edges (xi′ , xi), i

′ < i).
Since we want to prove an upper bound for |F|, we may assume that F

is saturated. In particular, all F ∈
(
[n]
k

)
satisfying E ⊂ F for some E ∈ G

are in F . However, together with the matching F1, . . . , Fs they form an
isomorphic copy of B(n, k, s).

On the other hand Proposition 1.1 says that B(n, k, s) is saturated. This
proves that F is isomorphic to B(n, k, s).

Finally we have to prove that if |G| < k
(
s+1
2

)
then |F| < |B(n, k, s)|. We

shall do it in a more general way. A member G of Fmax is called minimal if
there is no H ∈ Fmax, H $ G. Let us define

G` =

{
G ∈

(
[n]

`

)
: G ∈ Fmax, G is minimal

}
.

Since every F ∈ Fmax contains at least one minimal element,

(4.5)
∣∣Fmax

∣∣ 5 |G|(n− 2

k − 2

)
+
∑
35`5k

|G`|
(
n− `
k − `

)
holds.

To conclude the proof it is sufficient to show that |G`| is bounded by some
function of k and s.
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Claim 4.2. G` contains no sunflower of size ks+ 1.

Proof. Suppose that for some A, |A| < ` there exist G0, . . . , Gks ∈ G` with
Gi∩Gj = A, 0 5 i < j 5 ks. We claim that ν

(
Fmax∪{A}

)
= s. The contrary

would mean the existence of pairwise disjoint sets Hi ∈ Fmax, 1 5 i 5 s that
are disjoint to A as well.

Since
∣∣H1∪ . . .∪Hs

∣∣ 5 ks, at least one of the ks+ 1 pairwise disjoint sets
Gj−A, 0 5 j 5 sk is disjoint to H1∪ . . .∪Hs. Consequently, Gj, H1, . . . , Hs

are s+ 1 pairwise disjoint sets in Fmax, a contradiction to ν(Fmax) = ν(F) =
s.

Now the above-cited result of Erdős and Rado [ER] implies that G` is
bounded. For example,

|G`| 5 `!(ks)`.

This concludes the proof of (4.5) and also that of the theorem.

Remark. The Hilton–Milner Theorem holds for all n > 2k. However, we
could prove Theorems 4.1 and 4.2 only for substantially larger values of n
with respect to k and s. It would be desirable to prove these results for
n > cks for some absolute constant c.

5 Some related problems

One can define higher resilience too.

Definition. For 1 5 t < k we say that F ⊂
(
[n]
k

)
is t-resilient if ν

(
F(T )

)
=

ν(F) holds for all T ∈
(
[n]
t

)
. Let us define

mt(n, k, s) = max

{
|F| : F ⊂

(
[n]

k

)
, ν(F) = s, F is t-resilient

}
.

Note that for s = 1 the notion of t-resilience is equivalent to saying τ(F) > t,
i.e., there is no t-element set meeting all members of F .

Probably the most investigated question in this direction is estimating
mk−1(n, k, 1). In their seminal paper Erdős and Lovász [EL] proved that

(5.1) mk−1(n, k, 1) 5 kk, independent of n.
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This was the motivation for many of the related research. In [FOT2] a lower

bound slightly better than
(
k
2

)k−1
is proven. However, it is still a large gap

which seems to be difficult to diminish.
m2(n, k, 1) was determined by the author in [F3] for k = 3, n > n0(k).
m3(n, k, 1) was determined in [FOT1] for k = 9, n > n0(k) and by

Furuya–Takatou ([FT1], [FT2]) for 5 5 k 5 8.
Conlon and Rödl [CR] observed that mk−1(n, k, s) 5 (sk)k can be proved

in the same way as (5.1). However, there are no constructions coming any-
where close to it.

For the case k = 2, which we did not mention so far,

m1(n, 2, s) =

(
2s+ 1

2

)
can be easily derived e.g. using the Berge–Tutte formula for the matching
number. It does actually follow from our proof for the case k = 3 as well.

Let us close this paper by the following conjecture.

Conjecture ([FOT2]). There exists a function p(k, t) of k and t, which is a
polynomial of degree at most t− 3 in k such that

(5.2) mt(n, k, 1) =

(
kt−1 −

(
t− 1

2

)
kt−2 + p(k, t) + o(1)

)(
n− t
k − t

)
holds for k > k0(t).
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