Proof of the Erdős Matching Conjecture in a New Range

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Let $s>k \geqq 2$ be integers. It is shown that there is a positive real $\varepsilon=\varepsilon(k)$ such that for all integers n satisfying $(s+1) k \leqq n<$ $(s+1)(k+\varepsilon)$ every k-graph on n vertices with no more than s pairwise disjoint edges has at most $\binom{(s+1) k-1}{k}$ edges in total. This proves a part of an old conjecture of Erdős.

1 Introduction

Let $[n]=\{1, \ldots, n\}$ be the standard n-element set. For an integer $k \geqq 2$ a family $\mathcal{F} \subset\binom{[n]}{k}$ is called a k-graph. The matching number, $\nu(\mathcal{F})$ of \mathcal{F} is the maximum number of pairwise disjoint edges in \mathcal{F}. Obviously, $\nu(\mathcal{F}) \leqq n / k$ holds.

Consequently for every k and $s \geqq 1$ the family $\mathcal{A}=\binom{[(s+1) k-1]}{k}$ has matching number equal to s. Note that \mathcal{A} is independent of n for $n \geqq$ $(s+1) k-1$. Define

$$
\begin{equation*}
\mathcal{B}=\mathcal{B}(n, k, s)=\left\{B \in\binom{[n]}{k}: B \cap[s] \neq \emptyset\right\} . \tag{1.1}
\end{equation*}
$$

Fixing k and s we always assume $n \geqq(s+1) k$. From definition (1.1) it should be clear that $\nu(\mathcal{B})=s$ holds.

Erdős Matching Conjecture (Erdős [E]). Let $k, s \geqq 1$ be fixed integers, $\mathcal{F} \subset\binom{[n]}{k}$ a k-graph satisfying $\nu(\mathcal{F}) \leqq s$. Then

$$
\begin{equation*}
|\mathcal{F}| \leqq \max \{|\mathcal{A}|,|\mathcal{B}|\} \quad \text { holds. } \tag{1.2}
\end{equation*}
$$

Let us note that the case $k=1$ is trivial. For $k=2$ Erdős and Gallai [EG] proved (1.2). The case $k=3$ is completely settled now. Łuczak and Mieczkowska [LM] proved (1.2) for s very large and then the present author [F2] for all s.

The case $s=1$ is the classical Erdős-Ko-Rado Theorem [EKR], in that case for $n \geqq 2 k$ the maximum is always attained by the second term, its value is $\binom{n-1}{k-1}$.

Erdős [E] proved (1.2) for $n>n_{0}(k, s)$ for a certain value of $n_{0}(k, s)$. Over the years the bound on $n_{0}(k, s)$ was successively improved by Bollobás, Daykin and Erdős [BDE], Füredi and the present author (unpublished), Huang, Loh and Sudakov [HLS], Frankl, Łuczak and Mieczkowska [FLM]. The current best bound is due to the author [F1] and it shows that (1.2) is true for $n \geqq 2(s+1) k$. However, in all these cases the maximum is given by $|\mathcal{B}|$.

The biggest difference in the behaviour of $|\mathcal{B}|$ and $|\mathcal{A}|$ is that the first one is a strictly increasing function of n while the second one is a constant. That is, (1.2) asserts that in the range where $|\mathcal{A}|>|\mathcal{B}|$, adding an extra vertex does not help, the maximum of $|\mathcal{F}|$ remains unchanged.

Easy computation shows that for $n \geqq\left(k+\frac{1}{2}\right)(s+1)$ already $|\mathcal{B}|$ is greater. Thus in (1.2), $|\mathcal{A}|$ is greater only in an interval of length at most $(s+1) / 2$. The aim of the present paper is to confirm (1.2) for a small but positive proportion of this interval.

Theorem. For every $k \geqq 2$ there is a positive $\varepsilon=\varepsilon(k)$ such that (1.2) holds for $k(s+1) \leqq n \leqq(k+\varepsilon)(s+1)$. Moreover, the only family \mathcal{F} attaining equality is $\binom{Q}{k}$ for some $Q \subset[n],|Q|=(s+1) k-1$.

Let us stress that this is the first result proving (1.2) for a range where $|\mathcal{A}|>|\mathcal{B}|$.

2 Preliminaries

Let $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ denote the set $\left\{a_{1}, \ldots, a_{r}\right\}$ if we know and want to stress that the elements are listed in increasing order: $a_{1}<a_{2}<\ldots<a_{r}$.

Definition 2.1 (Shifting partial order). Let us define the shifting partial order \prec where $\left(a_{1}, \ldots, a_{r}\right) \prec\left(b_{1}, \ldots, b_{r}\right)$ iff $a_{i} \leqq b_{i}$ for all i. A family $\mathcal{F} \subset\binom{[n]}{k}$ is called shifted if whenever $F, G \in\binom{[\overline{n]}}{k}$ with $F \prec G, G \in \mathcal{F}$ then $F \in \mathcal{F}$ holds as well.

It is well known (cf. [F3] for a proof) that in proving the theorem (or (1.2) in general) one can assume that \mathcal{F} is shifted. Throughout the paper we consider s and k fixed and let $\mathcal{F} \subset\binom{[n]}{k}$ be a family of maximal size with respect to $\nu(\mathcal{F})=s$. Moreover, we suppose that \mathcal{F} is shifted. Define $\mathcal{T}=\mathcal{T}(\mathcal{F})$ the trace of \mathcal{F} on $[k(s+1)-1]$ by

$$
\mathcal{T}=\{F \cap[k(s+1)-1]: F \in \mathcal{F}\} .
$$

Of course \mathcal{T} needs not to be k-uniform but $|T| \leqq k$ for all $T \in \mathcal{T}$.
Proposition 2.1 ([F3]).

$$
\begin{equation*}
\nu(\mathcal{T})=s \tag{2.1}
\end{equation*}
$$

Since $|\mathcal{F}|$ is maximal, \mathcal{F} is determined by \mathcal{T} :

$$
\begin{equation*}
\mathcal{F}=\left\{F \in\binom{[n]}{k}: \exists T \in \mathcal{T}, T \subset F\right\} \tag{2.2}
\end{equation*}
$$

Let $\mathcal{T}=\mathcal{T}^{(1)} \cup \ldots \cup \mathcal{T}^{(k)}$ where $\mathcal{T}^{(d)}=\{T \in \mathcal{T}:|T|=d\}$. Set also $t(d)=\left|\mathcal{T}^{(d)}\right|$. For notational convenience we set $\bar{n}=n-(k(s+1)-1)$. In view of (2.2) we have

$$
\begin{equation*}
|\mathcal{F}|=\sum_{1 \leqq d \leqq k} t(d)\binom{\bar{n}}{k-d} . \tag{2.3}
\end{equation*}
$$

Note that in case of \mathcal{A} one has

$$
\mathcal{T}(\mathcal{A})=\mathcal{A}=\binom{[k(s+1)-1]}{k}
$$

that is there are no sets of size less than k in the trace on $[k(s+1)-1]$. Eventually we want to prove that the same is true for our family \mathcal{F}.

Because of the Erdős-Ko-Rado Theorem we can and we will suppose that $s \geqq 2$. Let us mention that for the initial case: $n=k(s+1)$ the validity of (1.2), that is $|\mathcal{F}| \leqq\binom{ k(s+1)-1}{k}$ was proved by Kleitman $[\mathrm{K}]$ and the uniqueness of the optimal families is shown in [F3]. Thus we may assume in the sequel that $n>(s+1) k$. If $\varepsilon=\varepsilon(k)<\frac{1}{k}$, then for $s<k$ one has $\varepsilon(k)(s+1)<1$ and the Theorem is true (the interval $[k(s+1),(k+\varepsilon(k))(s+1)]$ contains no integer except for $k(s+1)$).

As a matter of fact our $\varepsilon(k)$ is going to be much smaller. Therefore we will assume that $s \geqq k$ holds.

Since \mathcal{F} is shifted and $\nu(\mathcal{F})=s$ there is a matching $F_{1}, \ldots, F_{s} \in \mathcal{F}$ such that $F_{j} \subset[k(s+1)-1]$ for $j=1, \ldots, s$. (A matching is a collection of pairwise disjoint sets.) Define $F_{0}=F_{0}\left(F_{1}, \ldots, F_{s}\right)=[k(s+1)-1]-\left(F_{1} \cup \ldots \cup F_{s}\right)$. Then $\left|F_{0}\right|=k(s+1)-1-k s=k-1$ holds.

In view of $\nu(\mathcal{T})=s, F_{0} \notin \mathcal{T}$. Let us recall the definition of the lexicographic order $<$. For two distinct sets $A, B \subset[n]$ one has $A<B$ iff either $A \subset B$ or $\min \{x: x \in A \backslash B\}<\min \{y: y \in B \backslash A\}$. Let us define G_{0} as the smallest $(k-1)$-subset of $[k(s+1)-1]$ in the lexicographic order that is not a member of $\mathcal{T}=\mathcal{T}(\mathcal{F})$. The key point is that, by the maximality of $|\mathcal{F}|, \nu\left(\mathcal{F} \cup\left\{G_{0}\right\}\right) \geqq s+1$ holds. That is, we can find pairwise disjoint sets $F_{1}, \ldots, F_{s} \in \mathcal{F}$ that are disjoint to G_{0} as well.

Now we fix G_{0} for the rest of the proof and consider a matching $G_{1}, \ldots, G_{s} \in$ \mathcal{F} satisfying $G_{i} \cap G_{0}=\emptyset$ and $G_{i} \in\binom{[k(s+1)-1]}{k}$. (Since \mathcal{F} is shifted, to every matching $F_{1}, \ldots, F_{s} \in \mathcal{F}$ satisfying $F_{1} \cap G_{0}=\ldots=F_{s} \cap G_{0}=\emptyset$ we can easily find $G_{i} \prec F_{i}$ such that G_{1}, \ldots, G_{s} is a matching as required above.)

Note that $G_{0} \cup \ldots \cup G_{s}=[k(s+1)-1]$ holds. We fix the matching G_{1}, \ldots, G_{s} as well. To justify the definition of G_{0} let us prove a simple statement that we are going to use in the proof of the Theorem.

Proposition 2.2. (i) If $R \subset[(s+1) k-1]$ satisfies $|R| \leqq k, R \not \subset G_{0}$ and $R<G_{0}$ then $R \in \mathcal{T}(\mathcal{F})$.
(ii) If $\left(b_{1}, \ldots, b_{k}\right) \in \mathcal{F}$ is disjoint to G_{0} then $G_{0} \cup\left\{b_{1}\right\} \in \mathcal{F}$ holds.

Proof. Suppose first $|R| \leqq k-1$. Assume $R \notin \mathcal{T}(\mathcal{F})$. Then the maximality of $|\mathcal{F}|$ implies the existence of a matching $F_{1}, \ldots, F_{s} \in \mathcal{F}$ such that $F_{i} \cap R=\emptyset$ for all i. Using shiftedness we can assume that $F_{i} \subset[(s+1) k-1], 1 \leqq i \leqq s$. Define $\widetilde{R}=[(s+1) k-1]-\left(F_{1} \cup \ldots \cup F_{s}\right)$. Then $R \subset \widetilde{R}$ and $|\widetilde{R}|=k-1$. Since $R<G_{0}$ implies $\widetilde{R}<G_{0}$, we get a contradiction with the choice of G_{0}.

If $|R|=k$ let R_{1} be the $(k-1)$-set that we obtain from R by removing the largest element. Then $R_{1}<G_{0}$ and the above argument imply $R_{1} \in \mathcal{T}(\mathcal{F})$. Now $R \in \mathcal{T}(\mathcal{F})$ follows from $R_{1} \subset R$, concluding the proof of (i).

To prove (ii) we distinguish two cases. Let $g_{k-1}^{(0)}$ be the largest element of $G_{0}=\left(g_{1}^{(0)}, \ldots, g_{k-1}^{(0)}\right)$.

- If $g_{k-1}^{(0)}<b_{1}$ then $g_{1}^{(0)}<\ldots<g_{k-1}^{(0)}<b_{1}<\ldots<b_{k}$ imply $\left(g_{1}^{(0)}, \ldots, g_{k-1}^{(0)}, b_{1}\right) \prec$ $\left(b_{1}, \ldots, b_{k}\right)$ and the statement follows by shiftedness.
- If $b_{1}<g_{k-1}^{(0)}$ then $G^{\prime} \stackrel{\text { def }}{=}\left(g_{1}^{(0)}, \ldots, g_{k-2}^{(0)}, b_{1}\right)<G_{0}$ implies $G^{\prime} \in \mathcal{T}(\mathcal{F})$. Now the statement follows from $G^{\prime} \subset G_{0} \cup\left\{b_{1}\right\}$.

3 The counting formula

The main use of G_{0} and the carefully picked matching is a formula that tells us the size $|\mathcal{F}|$ of \mathcal{F} from local information.

Definition. For a set $T \in \mathcal{T}(\mathcal{F})$ let us define its width, $v(T)$ by

$$
v(T)=\left|\left\{i: 1 \leqq i \leqq s, T \cap G_{i} \neq \emptyset\right\}\right| .
$$

Note that $i=0$ is not permitted in the above definition. Thus $v(T)$ is the number of edges in the matching that have non-empty intersection with T. This implies $v(T) \leqq|T|$ with equality iff $\left|T \cap G_{i}\right|=1$ holds for exactly $|T|$ values of $1 \leqq i \leqq s$. We call such a T a transversal. If further $|T|=k$ then we say that T is a full transversal.

It is very important to notice that $G_{0} \notin \mathcal{T}(\mathcal{F})$ implies that $v(T) \geqq 1$ for every $T \in \mathcal{T}(\mathcal{F})$.

Let $M=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ be a k-subset of $[s]$. To avoid double indices we set $B_{i}=G_{m_{i}}$ and consider the $k^{2}+k-1$-element set

$$
G_{0} \cup B_{1} \cup \ldots \cup B_{k} \stackrel{\text { def }}{=} G(M) .
$$

Our local information is related to $T \in \mathcal{T}(\mathcal{F})$ satisfying $T \subset G(M)$.
For every pair $c, d, 1 \leqq c \leqq d \leqq k$ define

$$
\begin{aligned}
& \mathcal{T}_{M}(c, d)=\{T \in \mathcal{T}(\mathcal{F}): T \subset G(M), v(T)=c,|T|=d\} \quad \text { and } \\
& t_{M}(c, d)=\left|\mathcal{T}_{M}(c, d)\right|
\end{aligned}
$$

Claim 3.1. Every set $T \in \mathcal{T}(\mathcal{F})$ with $v(T)=c,|T|=d$ satisfies $T \in$ $\mathcal{T}_{M}(c, d)$ for $\binom{s-c}{k-c}$ choices of $M \in\binom{[s]}{k}$.
Proof. Set $C=\left\{i, 1 \leqq i \leqq s, T \cap G_{i} \neq \emptyset\right\}$. Then $T \in \mathcal{T}_{M}(c, d)$ iff $C \subset M$.
Lemma 3.1 (Counting Formula).

$$
\begin{equation*}
|\mathcal{F}|=\sum_{M \in\binom{[s]}{k}} \sum_{1 \leqq c<d \leqq k} t_{M}(c, d) \cdot \frac{\binom{\bar{n}}{k-d}}{\binom{s-c}{k-c}} . \tag{3.1}
\end{equation*}
$$

Proof. The above formula is almost evident. In formula (2.3) every $T \in \mathcal{T}(\mathcal{F})$ is added with coefficient $\binom{\bar{n}}{k-d}$ to produce $|\mathcal{F}|$. However, in (3.1) each $T \in \mathcal{T}$ with $v(T)<k$ is counted several times. That multiplicity is exactly $\binom{s-c}{k-c}$ which proves the veracity of (3.1).

Let us define the weight, $w(T)$ for $T \in \mathcal{T}$ by $w(T)=\binom{\bar{n}}{k-d} /\binom{s-c}{k-c}$. Then (3.1) is equivalent to

$$
\begin{equation*}
\sum_{M \in\binom{[s]}{k}}\left(\sum_{T \in \mathcal{T}, T \subset G(M)} w(T)\right)=|\mathcal{F}| \tag{3.2}
\end{equation*}
$$

Let us define the weight, $w(M)$ of a matching $M \in\binom{[s]}{k}$ as the sum in the bracket, that is

$$
w(M)=\sum_{T \in \mathcal{T}, T \subset G(M)} w(T) .
$$

Note that for the family $\mathcal{A}_{k}=\mathcal{A}$, all $\binom{k^{2}+k-1}{k} \quad k$-subsets of $G(M)$ are in \mathcal{T}. (However, no sets of size $k-1$ or less.) Define

$$
w\left(\mathcal{A}_{k}\right)=\sum_{T \in\binom{G(M)}{k}} w(T) .
$$

Then (3.2) implies

$$
w\left(\mathcal{A}_{k}\right)=\left|\mathcal{A}_{k}\right| /\binom{s}{k}=\binom{(s+1) k-1}{k} /\binom{s}{k} .
$$

Our plan is to prove that

$$
\begin{equation*}
w(M) \leqq w\left(\mathcal{A}_{k}\right) \quad \text { holds for all } \quad M \in\binom{[s]}{k} \tag{3.3}
\end{equation*}
$$

In view of (3.2) this will imply $|\mathcal{F}| \leqq\left|\mathcal{A}_{k}\right|$. In order to achieve that, let us compare the weights of $T \in \mathcal{T}_{M}(c, d)$ for some values of c and d. Let us put them into a table for $\bar{n}=\varepsilon s, s>k$.

$c=d=k$	$w(T)=1$
$c=d=k-1$	$w(T)=\varepsilon s /(s-k+1)$
$c=k-1, d=k$	$w(T)=1 /(s-k+1)$
$c<d=k-1$	$w(T) \leqq \varepsilon s /\binom{s-k+2}{2}$
$c=d \leqq k-2$	$w(T) \leqq 2 \varepsilon^{2}$

Table 1

We are going to choose $\varepsilon=\varepsilon(k)=k^{-2 k-1} / 2$. Therefore it is sufficient to consider the case $s \geqq 2 k^{2 k+1}$.

Since the total number of subsets $T \subset G(M)$ with $|T| \leqq k-1$ is

$$
\sum_{0 \leqq d<k}\binom{k^{2}+k-1}{k-1}<k\binom{k^{2}+k-1}{k-1}<k(k+1)^{2(k-1)}<k^{2 k+1}
$$

the total weight of such sets is less than 1 .
On the other hand, every full transversal $T \in \mathcal{T}$, that is a set T with $v(T)=|T|=k$ has weight 1 . This shows that (3.3) holds unless \mathcal{T} contains all full transversals in $G(M)$.

Therefore in the sequel we assume that all $\left|B_{1}\right| \cdot\left|B_{2}\right| \cdot \ldots \cdot\left|B_{k}\right|=k^{k}$ full transversals are in $\mathcal{T}=\mathcal{T}(\mathcal{F})$. Let us use this assumption to prove:

Proposition 3.1. There is no $T \in \mathcal{T}(\mathcal{F})$ satisfying $v(T)=|T|<k$.
Proof. Let $B_{i}=\left(b_{1}^{(i)}, \ldots, b_{k}^{(i)}\right), i=1, \ldots, k$. Suppose for contradiction that $T \in \mathcal{T}(\mathcal{F})$ and $v(T)=|T|<k$. Let us define $V=\left\{i: T \cap B_{i} \neq \emptyset\right\}$. Since $v(T)=|T|,|V|=|T|$ holds, proving that $\left|T \cap B_{i}\right|=1$ for each $i \in V$.

Define $\widetilde{T}=\left\{b_{1}^{(i)}: i \in V\right\}$. Since $b_{1}^{(i)}$ is the smallest element of B_{i} for each $i, \widetilde{T} \prec T$ follows. Thus $\widetilde{T} \in \mathcal{T}$.

Let j be an arbitrary element of $[k] \backslash V$. By Proposition 2.2 (ii) the set $G_{0} \cup\left\{b_{1}^{(j)}\right\}$ is in \mathcal{T} as well. Define the $k-1$ transversal sets T_{2}, \ldots, T_{k} by $T_{\ell}=\left\{b_{\ell}^{(1)}, b_{\ell}^{(2)}, \ldots, b_{\ell}^{(k)}\right\}$.

Now $\widetilde{T}, G_{0} \cup\left\{b_{1}^{(j)}\right\}$ along with T_{2}, \ldots, T_{k} are $k+1$ pairwise disjoint sets. Together with the $s-k$ edges of the fixed matching, $G_{u}: u \notin M$ we found $s+1$ pairwise disjoint edges contradicting $\nu(\mathcal{T})=s$.

4 The last part of the proof

In view of the results of the preceding section we may assume that $\mathcal{T}=\mathcal{T}(\mathcal{F})$ contains all full transversals in $G(M)$ and every $T \in \mathcal{T}$ with $|T|<k$ satisfies $v(T)<|T|$.

Looking at Table 1 we see that these sets T have weight at most $\varepsilon s /\binom{s-k+2}{2}<$ $2 \varepsilon / s$ if $|T|=k-1$ and much smaller weight for $|T|<k-1$.

On the other hand a k-set $P \subset G(M)$ satisfying $v(P)=k-1$ has weight $1 /(s-k+1)>1 / s$. Using $2 \varepsilon<k^{-2 k-1}$, we infer that a single set P
of the above type has more weight than all possible sets $T \subset G(M)$ with $c(T)<|T|<k$.

Since \mathcal{A}_{k} contains all such P, (3.3) holds automatically unless \mathcal{T} contains all such P as well. Therefore from now on we suppose that every $P \in\binom{G(M)}{k}$ with $v(P) \geqq k-1$ is in \mathcal{T}.

If \mathcal{T} contains no set of size less than k then (3.3) follows. Thus we may assume that there is some $T \subset G(M)$ with $|T|<k$ and $T \in \mathcal{T}$.

We need a simple lemma.
Lemma 4.1. Suppose that $T \subset G(M),|T|<k$. Then there exist pairwise disjoint sets $Q_{1}, \ldots, Q_{k} \in\binom{G(M)}{k}$ satisfying $v\left(Q_{i}\right)=k$ and $\left|Q_{i} \cap T\right| \leqq 1$ for $1 \leqq i \leqq k$.

Note that the conditions imply that each Q_{i} is a full transversal and that they partition $B_{1} \cup \ldots \cup B_{k}$.

Proof of the lemma. Let $Q_{1} \dot{\cup} \ldots \dot{\cup} Q_{k}$ be a partition of $B_{1} \cup \ldots \cup B_{k}$ in full transversals such that $\left|\left\{i:\left|Q_{i} \cap T\right| \geqq 2\right\}\right|$ is as small as possible If this number is 0 , we have nothing to prove.

Suppose by symmetry that $\left|Q_{k} \cap T\right|=r \geqq 2$. Note the inequality

$$
\sum_{1 \leqq i \leqq k}\left|Q_{i} \cap T\right| \leqq|T| \leqq k-1
$$

which is a direct consequence of the pairwise disjointness of the Q_{i}. Using $\left|Q_{k} \cap T\right|=r$,

$$
\sum_{1 \leqq i<k}\left|Q_{i} \cap T\right| \leqq k-1-r \quad \text { follows. }
$$

Consequently we can choose $1 \leqq i_{1}<\ldots<i_{r}<k$ such that $Q_{i} \cap T=\emptyset$.
Set $Q_{k} \cap T=\left\{a_{1}, \ldots, a_{r}\right\}$. Renumbering B_{1}, \ldots, B_{k} if necessary, we may suppose that $a_{j} \in B_{j}$ for $1 \leqq j \leqq r$.

Let c_{j} be the unique element in the intersection of the full transversal $Q_{i_{j}}$ with B_{j}.

Define

$$
\begin{aligned}
\widetilde{Q}_{i_{j}} & =\left(Q_{i_{j}} \cup\left\{a_{j}\right\}\right)-\left\{c_{j}\right\}, \quad j=1, \ldots, r, \\
\widetilde{Q}_{k} & =\left(Q_{k} \cup\left\{c_{1}, \ldots, c_{r}\right\}\right)-\left\{a_{1}, \ldots, a_{r}\right\} \quad \text { and } \\
\widetilde{Q}_{i} & =Q_{i} \text { for } \quad i \notin\left\{i_{1}, \ldots, i_{r}, k\right\} .
\end{aligned}
$$

Then the \widetilde{Q}_{i} are full transversals partitioning $B_{1} \cup \ldots \cup B_{k}$ but the number $\left|\left\{i:\left|\widetilde{Q}_{i} \cap T\right| \geqq 2\right\}\right|$ is one smaller. This contradiction concludes the proof.

Now the final contradiction is immediate. Since $\left|G_{0}\right|=k-1 \geqq|T|$, $\left|G_{0} \backslash T\right| \geqq\left|T \backslash G_{0}\right|$ holds. Let $T \backslash G_{0}=\left\{x_{1}, \ldots, x_{p}\right\}$ and let y_{1}, \ldots, y_{p} be p distinct elements of $G_{0} \backslash T$. Renumbering the Q_{i} if necessary we may assume that $x_{i} \in Q_{i}$ for $i=1, \ldots, p$. Then define $Q_{i}^{*}=\left(Q_{i}-\left\{x_{i}\right\}\right) \cup\left\{y_{i}\right\}$, $i=1, \ldots, p$ and note that $v\left(Q_{i}^{*}\right)=k-1$, implying $Q_{i}^{*} \in \mathcal{T}(\mathcal{F})$. Set $Q_{j}^{*}=Q_{j}$ for $p<j \leqq k$. Then T and $Q_{1}^{*}, \ldots, Q_{p}^{*}, Q_{p+1}, \ldots, Q_{k}$ are $k+1$ pairwise disjoint members of \mathcal{T}. Together with the remaining $s-k$ edges G_{ℓ} of the fixed matching $(\ell \in[s]-M)$ we get $s+1$ pairwise disjoint members of $\mathcal{T}=\mathcal{T}(\mathcal{F})$, the final contradiction.

Thus we proved that (3.3) holds for all $M \in\binom{[s]}{k}$ and the inequality is strict unless $\mathcal{T}(\mathcal{F})$ is k-uniform. Therefore $|\mathcal{F}| \leqq\left(\begin{array}{c}k(s+1)-1\end{array}\right)$ follows with equality holding only for $\mathcal{F}=(\underset{k}{[k(s+1)-1]})=\mathcal{A}_{k}$.

Remark. We proved the theorem with $\varepsilon=k^{-2 k-1} / 2$. With some effort we can increase ε to something around k^{-k} but the real challenge is to prove the statement for a positive constant, i.e., an ε independent of k.

References

[BDE] B. Bollobás, D. E. Daykin, and P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. 27 (2) (1976), 25-32.
[E] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest 8 (1965), 93-95.
[EG] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959), 337-356.
[EKR] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (2) (1961), 313-320.
[F1] P. Frankl, Improved bounds for Erdős' matching conjecture, J. Comb. Theory, Ser. A 120 (5) (2013), 1068-1072.
[F2] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, arXiv:1205.6847 (May 30, 2012), 26 pp.
[F3] P. Frankl, The shifting technique in extremal set theory, in: Surveys in combinatorics 1987 (New Cross, 1987). Vol. 123 London Math.

Soc. Lecture Note Ser. Cambridge, Cambridge Univ. Press, 1987, pp. 81-110.
[FLM] P. Frankl, T. Łuczak, and K. Mieczkowska, On matchings in hypergraphs, Electronic J. Combin. 19 (2012), Paper 42, 5 pp.
[HLS] H. Huang, P. Loh, and B. Sudakov, The size of a hypergraph and its matching number, Combinatorics, Probability \& Computing 21 (2012), 442-450.
[K] D. J. Kleitman, Maximal number of subsets of a finite set no k of which are pairwise disjoint, J. Combin. Theory 5 (1968), 157-163.
[LM] T. Łuczak and K. Mieczkowska, On Erdős' extremal problem on matchings in hypergraphs, J. Combin. Theory Ser. A 124 (2014), 178-194.

