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Abstract

Let s > k = 2 be integers. It is shown that there is a positive
real € = (k) such that for all integers n satisfying (s + 1)k < n <
(s+1)(k+¢) every k-graph on n vertices with no more than s pairwise
disjoint edges has at most (($+112k _1) edges in total. This proves a part

of an old conjecture of Erdés.

1 Introduction

Let [n] = {1,...,n} be the standard n-element set. For an integer k = 2 a
family F C ([Z]) is called a k-graph. The matching number, v(F) of F is the
mazimum number of pairwise disjoint edges in F. Obviously, v(F) < n/k
holds.

Consequently for every k£ and s = 1 the family A = ([(Sﬂgk*l]) has

matching number equal to s. Note that A is independent of n for n =
(s +1)k — 1. Define

(1.1) B=B(nk,s)= {B € ([Z]) BN [s] £ (7)} .

Fixing k£ and s we always assume n = (s + 1)k. From definition (1.1) it
should be clear that v(B) = s holds.

Erdés Matching Conjecture (Erdds [E]). Let k,s = 1 be fized integers,
F C ([Z]) a k-graph satisfying v(F) < s. Then

(1.2) | 7| < max {| 4],

B|}  holds.



Let us note that the case k = 1 is trivial. For k£ = 2 Erdos and Gallai
[EG] proved (1.2). The case k = 3 is completely settled now. Luczak and
Mieczkowska [LM] proved (1.2) for s very large and then the present author
[F2] for all s.

The case s = 1 is the classical Erdés—Ko—Rado Theorem [EKR], in that
case for n 2 2k the maximum is always attained by the second term, its
value is (Zj)

Erdés [E] proved (1.2) for n > ng(k,s) for a certain value of ng(k,s).
Over the years the bound on ng(k, s) was successively improved by Bollobés,
Daykin and Erdds [BDE]|, Fiiredi and the present author (unpublished),
Huang, Loh and Sudakov [HLS], Frankl, Luczak and Mieczkowska [FLM].
The current best bound is due to the author [F1] and it shows that (1.2) is
true for n = 2(s + 1)k. However, in all these cases the maximum is given by
|B|.

The biggest difference in the behaviour of |B| and |.A] is that the first one
is a strictly increasing function of n while the second one is a constant. That
is, (1.2) asserts that in the range where |A| > |B|, adding an extra vertex
does not help, the maximum of |F| remains unchanged.

Easy computation shows that for n 2 (k + §) (s+1) already |B| is greater.
Thus in (1.2), |A| is greater only in an interval of length at most (s + 1)/2.
The aim of the present paper is to confirm (1.2) for a small but positive
proportion of this interval.

Theorem. For every k = 2 there is a positive € = (k) such that (1.2) holds
for k(s+1) < n < (k+¢)(s+1). Moreover, the only family F attaining
equality is (%) for some Q C [n], |Q] = (s+ 1)k — 1.

Let us stress that this is the first result proving (1.2) for a range where

Al > 1B].

2 Preliminaries

Let (ay,as,...,a,) denote the set {ay,...,a,} if we know and want to stress
that the elements are listed in increasing order: a1 < as < ... < a,.

Definition 2.1 (Shifting partial order). Let us define the shifting partial

order < where (ai,...,a,) < (b1,...,b.) iff a; < b; for all ¢. A family
F C ([Z}) is called shifted if whenever F,G € ([Z]) with F' < G, G € F

then F' € F holds as well.



It is well known (cf. [F3] for a proof) that in proving the theorem (or
(1.2) in general) one can assume that F is shifted. Throughout the paper
we consider s and k fixed and let F C ([Z}) be a family of maximal size
with respect to v(F) = s. Moreover, we suppose that F is shifted. Define
T = T(F) the trace of F on [k(s+ 1) — 1] by

T={Fnlk(s+1)—1]: F € F}.
Of course 7 needs not to be k-uniform but |T| < k for all T € T.

Proposition 2.1 ([F3]).
(2.1) v(T) =s.

Since |F| is maximal, F is determined by 7

(2.2) f:{Fe(“?):ﬂTeT,TcF}.

Let T = TOU...UT® where T® = {T € T : |T| = d}. Set also
t(d) = |T@|. For notational convenience we set m = n — (k(s 4+ 1) — 1). In
view of (2.2) we have

(2.3) =Y ) (kjd).

1<d<k

Note that in case of A one has

74 - a- (o)

that is there are no sets of size less than k in the trace on [k(s + 1) — 1].
Eventually we want to prove that the same is true for our family F.

Because of the Erdés-Ko-Rado Theorem we can and we will suppose that
s 2 2. Let us mention that for the initial case: n = k(s + 1) the validity of
(1.2), that is |F| = (k(s+k1)_1) was proved by Kleitman [K] and the uniqueness
of the optimal families is shown in [F3]. Thus we may assume in the sequel
that n > (s + 1)k. If ¢ = £(k) < ¢, then for s < k one has e(k)(s +1) < 1
and the Theorem is true (the interval [k(s + 1), (k + £(k))(s + 1)] contains
no integer except for k(s + 1)).



As a matter of fact our £(k) is going to be much smaller. Therefore we
will assume that s = & holds.

Since F is shifted and v(F) = s there is a matching F1,..., Fy € F such
that F; C [k(s+1)—1]forj =1,...,s. (A matching is a collection of pairwise
disjoint sets.) Define Fy = Fo(Fy, ..., F) =[k(s+ 1) —1] — (FLU...UF}).
Then |Fy| = k(s+1) — 1 — ks =k — 1 holds.

In view of v(T) = s, Fy ¢ T. Let us recall the definition of the lexico-
graphic order <. For two distinct sets A, B C [n] one has A< B iff either
AC Bormin{zr : 2z € A\ B} <min{y : y € B\ A}. Let us define G, as
the smallest (k — 1)-subset of [k(s + 1) — 1] in the lexicographic order that
is not a member of 7 = T (F). The key point is that, by the maximality of
| F, 1/(]-" U {Go}) 2 s+ 1 holds. That is, we can find pairwise disjoint sets
Fy, ..., F, € F that are disjoint to Go as well.

Now we fix G for the rest of the proof and consider a matching Gy, ..., G, €
F satisfying G; NGy = () and G; € ([k(s+k1)_1]). (Since F is shifted, to every
matching Fy,...,F, € F satisfying F; NGy = ... = F,N Gy = () we can
easily find G; < F; such that Gy,. .., G, is a matching as required above.)

Note that Gy U ... U Gs = [k(s + 1) — 1] holds. We fix the matching
Gy,...,Gs as well. To justify the definition of Gy let us prove a simple
statement that we are going to use in the proof of the Theorem.

Proposition 2.2. (i) If R C [(s+ 1)k — 1] satisfies |R| £ k, R ¢ Go and
R<Gy then R € T(F).

(i) If (b, ...,bx) € F is disjoint to Gy then Gy U {b1} € F holds.

Proof. Suppose first |R| < k — 1. Assume R ¢ T (F). Then the maximality
of | F| implies the existence of a matching Fi, ..., Fy € F such that F;NR = ()
for all i. Using shiftedness we can assume that F; C [(s+1)k—1],1 < ¢ < s.
Define R = [(s+ 1)k —1] — (FLU...UF,). Then R C R and |R| = k — 1.
Since R<(G implies §<G0, we get a contradiction with the choice of Gj.
If |R| = k let Ry be the (k—1)-set that we obtain from R by removing the

largest element. Then R; <G\ and the above argument imply R; € T (F).

Now R € T (F) follows from R; C R, concluding the proof of (i).

To prove (ii) we distinguish two cases. Let g,gi)l be the largest element of

Gy = (gg)), . 791207)1)-
(0)

) Ifg,iojl < by then g§0) < ... < g2y <b < ... <bgimply (gg)), ...,g,iojl,bl) <
(by,...,br) and the statement follows by shiftedness.

4



o If by < g, )1 then G’ & ( 0),...,g/,C 2,b1)<G0 implies G’ € T(F). Now
the statement follows from G' C Gy U {b;}. O

3 The counting formula

The main use of GGy and the carefully picked matching is a formula that tells
us the size |F| of F from local information.

Definition. For a set T' € T(F) let us define its width, v(T") by
T)y=[{i:1<i<s, TNG; #0}

Note that i = 0 is not permitted in the above definition. Thus v(7T’) is the
number of edges in the matching that have non-empty intersection with 7.
This implies v(T") < |T'| with equality iff |7"N G;| = 1 holds for exactly |T|
values of 1 <4 < s. We call such a T" a transversal. If further |T'| = k then
we say that T is a full transversal.

It is very important to notice that Gy ¢ T (F) implies that v(7") = 1 for
every T € T(F).

Let M = (my,ma,...,my) be a k-subset of [s]. To avoid double indices
we set B; = G, and consider the k* + k — 1-element set

GoUB,U...UB, ¥ G(M).

Our local information is related to T' € T (F) satisfying 7' C G(M).
For every pair ¢,d, 1 < ¢ £ d < k define

Tu(e,d)={T € T(F): T CGM),v(T)=c,|T|=d} and
ta(e,d) = |Tu(e, d)|.

Claim 3.1. Every set T € T(F) with v(T) = ¢, |T| = d satisfies T €
Tu(c,d) for (;=) choices of M € ([S])

Proof. Set C ={i,1 <i< s, TNG; #0}. ThenT € Ty (c,d)iff C C M. O
Lemma 3.1 (Counting Formula).

(3.1) Fl= > Y tuled)- Eng

e (ly)) 15e<dzk




Proof. The above formula is almost evident. In formula (2.3) every T' € T (F)
is added with coefficient (,”,) to produce |F|. However, in (3.1) each T € T

with v(T) < k is counted several times. That multiplicity is exactly (;~¢)
which proves the veracity of (3.1). O

Let us define the weight, w(T) for T € T by w(T) = (,fd)/(z:‘é) Then

(3.1) is equivalent to

(32) S( X wm)-iA

Me(l)) T TCG(M)

Let us define the weight, w(M) of a matching M € ([Z]) as the sum in the
bracket, that is

wM)= > w(T).

TeT, TCG(M)

Note that for the family A; = A, all (k2+kk_1) k-subsets of G(M) are in T.
(However, no sets of size k — 1 or less.) Define

w(Ag) = Z w(T).
re(900)

Then (3.2) implies

I |Ak\/<z) _ ((s+1}2k— 1)/(2)

Our plan is to prove that

(3.3) w(M) € w(A,) holds for all M € ([Z]).

In view of (3.2) this will imply |F| < |Ax|. In order to achieve that, let us
compare the weights of T € Tys(c, d) for some values of ¢ and d. Let us put
them into a table for m = es, s > k.

c=d=k w(T) =1
c=d=k-1 w(T)=¢es/(s—k+1)
c=k—-1 d=k w(T)=1/(s—k+1)
c<d=k-1 w(T) §5s/(87§+2)
c=d< k-2 w(T) < 2¢*

Table 1



We are going to choose ¢ = (k) = k=2~! /2. Therefore it is sufficient to
consider the case s > 2kF+1.
Since the total number of subsets 7' C G(M) with |T| < k — 1 is

4 k—1 K24 k—1
z:( ;;1 ><k( ;_1 )<kw+1ﬂkﬂ<k%“,

0<d<k

the total weight of such sets is less than 1.

On the other hand, every full transversal T € T, that is a set T with
v(T) = |T| = k has weight 1. This shows that (3.3) holds unless 7 contains
all full transversals in G(M).

Therefore in the sequel we assume that all |By|-|Bs| - ... |By| = k* full
transversals are in 7 = T (F). Let us use this assumption to prove:

Proposition 3.1. There is no T' € T(F) satisfying v(T) = |T| < k.

Proof. Let B; = (bgi), e ,b,(f)), 1 =1,..., k. Suppose for contradiction that
T € T(F) and v(T) = |T| < k. Let us define V.= {i : T N B; # 0}. Since
v(T) = |T|, |V| = |T| holds, proving that |T'N B;| =1 for each i € V.

Define T = {b\” : i € V'}. Since b{" is the smallest element of B; for each
i, T < T follows. Thus T € T.

Let j be an arbitrary element of [k] \ V. By Proposition 2.2 (ii) the set
Gy U {bgj)} is in T as well. Define the k — 1 transversal sets 15, ..., T} by
T, = {67, 67,... bFY.

Now T, Go U {bgj)} along with T, ..., Ty are k + 1 pairwise disjoint sets.
Together with the s — k edges of the fixed matching, G, : u ¢ M we found
s+ 1 pairwise disjoint edges contradicting v(7) = s. O

4 The last part of the proof

In view of the results of the preceding section we may assume that 7 = T (F)
contains all full transversals in G(M) and every T' € T with |T'| < k satisfies
o(T) < |T).

Looking at Table 1 we see that these sets 1" have weight at most s / (

2¢/s if |T| = k — 1 and much smaller weight for |T'| < k — 1.
On the other hand a k-set P C G(M) satisfying v(P) = k — 1 has weight
1/(s —k+1) > 1/s. Using 2¢ < k7271 we infer that a single set P

s—k+2
2

7

) <



of the above type has more weight than all possible sets 7" C G(M) with
oT) <|T| < k.

Since Ay, contains all such P, (3.3) holds automatically unless 7 contains
all such P as well. Therefore from now on we suppose that every P € (G(,?/[ ))
with v(P) 2 k—1isin T.

If T contains no set of size less than k then (3.3) follows. Thus we may
assume that there is some 7' C G(M) with |T| < k and T € T.

We need a simple lemma.

Lemma 4.1. Suppose that T' C G(M), |T| < k. Then there exist pairwise
disjoint sets Qq,...,Qi € (G(éw)) satisfying v(Q;) =k and |Q; NT| = 1 for
1Si<k.

Note that the conditions imply that each (); is a full transversal and that
they partition By U...U B;.

Proof of the lemma. Let QU...UQy be a partition of B; U ...U By, in full
transversals such that |[{i : |Q; N T| = 2}| is as small as possible If this
number is 0, we have nothing to prove.

Suppose by symmetry that |Q, N T| = = 2. Note the inequality

S QNTIS T[S k-1

1<i<k

which is a direct consequence of the pairwise disjointness of the @);. Using
’Qk N T‘ =T,
Z Q:NT|=k—1—r follows.

1<i<k

Consequently we can choose 1 <4y < ... <1, < k such that Q; NT = 0.
Set QxNT ={ay,...,a,}. Renumbering By, ..., By if necessary, we may
suppose that a; € Bj for 1 < j < r.
Let ¢; be the unique element in the intersection of the full transversal Q;,
with B;.
Define
Qij = (Qz]U{a’]})_{CJ}7 jzl,...,’f‘,
Qr = (QkU {cl,...,cr}) —{ay,...,a,} and

Qi=Q; for i¢{i,..., ik}



Then the QVZ are full transversals partitioning By U ... U By but the number
‘{z S|QNT| 2 2}’ is one smaller. This contradiction concludes the proof. [

Now the final contradiction is immediate. Since |Go| = k —1 = |T],
|Go \T| 2 |T"\ Go| holds. Let T'\ Gy = {z1,...,2,} and let y1,...,y, be
p distinct elements of Gy \ T. Renumbering the @; if necessary we may
assume that x; € @Q; for i = 1,...,p. Then define Q; = (Q; — {x;}) U {w:},
i=1,...,pand note that v(Q;) = k — 1, implying Q; € T(F). Set QF = Q;
for p < j = k. Then T and Q7,...,Q;, Qpy1,...,Qk are k + 1 pairwise
disjoint members of 7. Together with the remaining s — k edges G, of the
fixed matching (¢ € [s] — M) we get s + 1 pairwise disjoint members of
T = T(F), the final contradiction.

Thus we proved that (3.3) holds for all M € ([Z]) and the inequality is
strict unless T (F) is k-uniform. Therefore |F| < (k(SJ“kl)*l) follows with

equality holding only for F = (FeTD=1) = 4. 00

Remark. We proved the theorem with e = k72=! /2. With some effort we
can increase € to something around k" but the real challenge is to prove the
statement for a positive constant, i.e., an ¢ independent of k.

References

[BDE] B. Bollobés, D. E. Daykin, and P. Erdés, Sets of independent edges
of a hypergraph, Quart. J. Math. Ozford Ser. 27 (2) (1976), 25-32.

[E] P. Erdés, A problem on independent r-tuples, Ann. Univ. Sci. Bu-
dapest 8 (1965), 93-95.

[EG] P. Erdés and T. Gallai, On maximal paths and circuits of graphs,
Acta Math. Acad. Sci. Hungar 10 (1959), 337-356.

[EKR] P. Erdés, C. Ko, and R. Rado, Intersection theorems for systems of
finite sets, Quart. J. Math. Ozxford Ser. 12 (2) (1961), 313-320.

[F1] P. Frankl, Improved bounds for Erdds’ matching conjecture, J.
Comb. Theory, Ser. A 120 (5) (2013), 1068-1072.

[F2] P. Frankl, On the maximum number of edges in a hypergraph with
given matching number, arXiv:1205.6847 (May 30, 2012), 26 pp.

[F3] P. Frankl, The shifting technique in extremal set theory, in: Surveys
in combinatorics 1987 (New Cross, 1987). Vol. 123 London Math.



[FLM]

[HLS]

[LM]

Soc. Lecture Note Ser. Cambridge, Cambridge Univ. Press, 1987, pp.
81-110.

P. Frankl, T. Luczak, and K. Mieczkowska, On matchings in hyper-
graphs, Electronic J. Combin. 19 (2012), Paper 42, 5 pp.

H. Huang, P. Loh, and B. Sudakov, The size of a hypergraph and
its matching number, Combinatorics, Probability ¢ Computing 21
(2012), 442-450.

D. J. Kleitman, Maximal number of subsets of a finite set no k of
which are pairwise disjoint, J. Combin. Theory 5 (1968), 157-163.

T. Luczak and K. Mieczkowska, On Erdos’ extremal problem on
matchings in hypergraphs, J. Combin. Theory Ser. A 124 (2014),
178-194.

10



