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Abstract

Let s > k = 2 be integers. It is shown that there is a positive
real ε = ε(k) such that for all integers n satisfying (s + 1)k 5 n <
(s+1)(k+ε) every k-graph on n vertices with no more than s pairwise

disjoint edges has at most
((s+1)k−1

k

)
edges in total. This proves a part

of an old conjecture of Erdős.

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set. For an integer k = 2 a
family F ⊂

(
[n]
k

)
is called a k-graph. The matching number, ν(F) of F is the

maximum number of pairwise disjoint edges in F . Obviously, ν(F) 5 n/k
holds.

Consequently for every k and s = 1 the family A =
(
[(s+1)k−1]

k

)
has

matching number equal to s. Note that A is independent of n for n =
(s+ 1)k − 1. Define

(1.1) B = B(n, k, s) =

{
B ∈

(
[n]

k

)
: B ∩ [s] 6= ∅

}
.

Fixing k and s we always assume n = (s + 1)k. From definition (1.1) it
should be clear that ν(B) = s holds.

Erdős Matching Conjecture (Erdős [E]). Let k, s = 1 be fixed integers,
F ⊂

(
[n]
k

)
a k-graph satisfying ν(F) 5 s. Then

(1.2) |F| 5 max
{∣∣A∣∣, ∣∣B∣∣} holds.
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Let us note that the case k = 1 is trivial. For k = 2 Erdős and Gallai
[EG] proved (1.2). The case k = 3 is completely settled now.  Luczak and
Mieczkowska [LM] proved (1.2) for s very large and then the present author
[F2] for all s.

The case s = 1 is the classical Erdős–Ko–Rado Theorem [EKR], in that
case for n = 2k the maximum is always attained by the second term, its
value is

(
n−1
k−1

)
.

Erdős [E] proved (1.2) for n > n0(k, s) for a certain value of n0(k, s).
Over the years the bound on n0(k, s) was successively improved by Bollobás,
Daykin and Erdős [BDE], Füredi and the present author (unpublished),
Huang, Loh and Sudakov [HLS], Frankl,  Luczak and Mieczkowska [FLM].
The current best bound is due to the author [F1] and it shows that (1.2) is
true for n = 2(s+ 1)k. However, in all these cases the maximum is given by
|B|.

The biggest difference in the behaviour of |B| and |A| is that the first one
is a strictly increasing function of n while the second one is a constant. That
is, (1.2) asserts that in the range where |A| > |B|, adding an extra vertex
does not help, the maximum of |F| remains unchanged.

Easy computation shows that for n =
(
k + 1

2

)
(s+1) already |B| is greater.

Thus in (1.2), |A| is greater only in an interval of length at most (s + 1)/2.
The aim of the present paper is to confirm (1.2) for a small but positive
proportion of this interval.

Theorem. For every k = 2 there is a positive ε = ε(k) such that (1.2) holds
for k(s + 1) 5 n 5 (k + ε)(s + 1). Moreover, the only family F attaining
equality is

(
Q
k

)
for some Q ⊂ [n], |Q| = (s+ 1)k − 1.

Let us stress that this is the first result proving (1.2) for a range where
|A| > |B|.

2 Preliminaries

Let (a1, a2, . . . , ar) denote the set {a1, . . . , ar} if we know and want to stress
that the elements are listed in increasing order: a1 < a2 < . . . < ar.

Definition 2.1 (Shifting partial order). Let us define the shifting partial
order ≺ where (a1, . . . , ar) ≺ (b1, . . . , br) iff ai 5 bi for all i. A family
F ⊂

(
[n]
k

)
is called shifted if whenever F,G ∈

(
[n]
k

)
with F ≺ G, G ∈ F

then F ∈ F holds as well.
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It is well known (cf. [F3] for a proof) that in proving the theorem (or
(1.2) in general) one can assume that F is shifted. Throughout the paper
we consider s and k fixed and let F ⊂

(
[n]
k

)
be a family of maximal size

with respect to ν(F) = s. Moreover, we suppose that F is shifted. Define
T = T (F) the trace of F on [k(s+ 1)− 1] by

T =
{
F ∩ [k(s+ 1)− 1] : F ∈ F

}
.

Of course T needs not to be k-uniform but |T | 5 k for all T ∈ T .

Proposition 2.1 ([F3]).

(2.1) ν(T ) = s.

Since |F| is maximal, F is determined by T :

(2.2) F =

{
F ∈

(
[n]

k

)
: ∃T ∈ T , T ⊂ F

}
.

Let T = T (1) ∪ . . . ∪ T (k) where T (d) =
{
T ∈ T : |T | = d

}
. Set also

t(d) = |T (d)|. For notational convenience we set n = n − (k(s + 1) − 1). In
view of (2.2) we have

(2.3) |F| =
∑

15d5k

t(d)

(
n

k − d

)
.

Note that in case of A one has

T
(
A
)

= A =

(
[k(s+ 1)− 1]

k

)
,

that is there are no sets of size less than k in the trace on [k(s + 1) − 1].
Eventually we want to prove that the same is true for our family F .

Because of the Erdős–Ko–Rado Theorem we can and we will suppose that
s = 2. Let us mention that for the initial case: n = k(s + 1) the validity of
(1.2), that is |F| 5

(
k(s+1)−1

k

)
was proved by Kleitman [K] and the uniqueness

of the optimal families is shown in [F3]. Thus we may assume in the sequel
that n > (s + 1)k. If ε = ε(k) < 1

k
, then for s < k one has ε(k)(s + 1) < 1

and the Theorem is true (the interval
[
k(s + 1), (k + ε(k))(s + 1)

]
contains

no integer except for k(s+ 1)).
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As a matter of fact our ε(k) is going to be much smaller. Therefore we
will assume that s = k holds.

Since F is shifted and ν(F) = s there is a matching F1, . . . , Fs ∈ F such
that Fj ⊂ [k(s+1)−1] for j = 1, . . . , s. (A matching is a collection of pairwise
disjoint sets.) Define F0 = F0(F1, . . . , Fs) = [k(s + 1)− 1]− (F1 ∪ . . . ∪ Fs).
Then |F0| = k(s+ 1)− 1− ks = k − 1 holds.

In view of ν(T ) = s, F0 /∈ T . Let us recall the definition of the lexico-
graphic order <. For two distinct sets A,B ⊂ [n] one has A<B iff either
A ⊂ B or min{x : x ∈ A \ B} < min{y : y ∈ B \ A}. Let us define G0 as
the smallest (k − 1)-subset of [k(s + 1) − 1] in the lexicographic order that
is not a member of T = T (F). The key point is that, by the maximality of
|F|, ν

(
F ∪ {G0}

)
= s + 1 holds. That is, we can find pairwise disjoint sets

F1, . . . , Fs ∈ F that are disjoint to G0 as well.
Now we fixG0 for the rest of the proof and consider a matchingG1, ..., Gs ∈

F satisfying Gi ∩G0 = ∅ and Gi ∈
(
[k(s+1)−1]

k

)
. (Since F is shifted, to every

matching F1, . . . , Fs ∈ F satisfying F1 ∩ G0 = . . . = Fs ∩ G0 = ∅ we can
easily find Gi ≺ Fi such that G1, . . . , Gs is a matching as required above.)

Note that G0 ∪ . . . ∪ Gs = [k(s + 1) − 1] holds. We fix the matching
G1, . . . , Gs as well. To justify the definition of G0 let us prove a simple
statement that we are going to use in the proof of the Theorem.

Proposition 2.2. (i) If R ⊂ [(s+ 1)k − 1] satisfies |R| 5 k, R 6⊂ G0 and
R<G0 then R ∈ T (F).

(ii) If (b1, . . . , bk) ∈ F is disjoint to G0 then G0 ∪ {b1} ∈ F holds.

Proof. Suppose first |R| 5 k − 1. Assume R /∈ T (F). Then the maximality
of |F| implies the existence of a matching F1, . . . , Fs ∈ F such that Fi∩R = ∅
for all i. Using shiftedness we can assume that Fi ⊂ [(s+ 1)k− 1], 1 5 i 5 s.

Define R̃ = [(s + 1)k − 1] − (F1 ∪ . . . ∪ Fs). Then R ⊂ R̃ and |R̃| = k − 1.

Since R<G0 implies R̃<G0, we get a contradiction with the choice of G0.
If |R| = k let R1 be the (k−1)-set that we obtain from R by removing the

largest element. Then R1<G0 and the above argument imply R1 ∈ T (F).
Now R ∈ T (F) follows from R1 ⊂ R, concluding the proof of (i).

To prove (ii) we distinguish two cases. Let g
(0)
k−1 be the largest element of

G0 =
(
g
(0)
1 , . . . , g

(0)
k−1
)
.

• If g
(0)
k−1 < b1 then g

(0)
1 < ... < g

(0)
k−1 < b1 < ... < bk imply

(
g
(0)
1 , ..., g

(0)
k−1, b1

)
≺

(b1, . . . , bk) and the statement follows by shiftedness.
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• If b1 < g
(0)
k−1 then G′

def
=
(
g
(0)
1 , . . . , g

(0)
k−2, b1

)
<G0 implies G′ ∈ T (F). Now

the statement follows from G′ ⊂ G0 ∪ {b1}.

3 The counting formula

The main use of G0 and the carefully picked matching is a formula that tells
us the size |F| of F from local information.

Definition. For a set T ∈ T (F) let us define its width, v(T ) by

v(T ) =
∣∣{i : 1 5 i 5 s, T ∩Gi 6= ∅

}∣∣.
Note that i = 0 is not permitted in the above definition. Thus v(T ) is the

number of edges in the matching that have non-empty intersection with T .
This implies v(T ) 5 |T | with equality iff |T ∩ Gi| = 1 holds for exactly |T |
values of 1 5 i 5 s. We call such a T a transversal. If further |T | = k then
we say that T is a full transversal.

It is very important to notice that G0 /∈ T (F) implies that v(T ) = 1 for
every T ∈ T (F).

Let M = (m1,m2, . . . ,mk) be a k-subset of [s]. To avoid double indices
we set Bi = Gmi

and consider the k2 + k − 1-element set

G0 ∪B1 ∪ . . . ∪Bk
def
= G(M).

Our local information is related to T ∈ T (F) satisfying T ⊂ G(M).
For every pair c, d, 1 5 c 5 d 5 k define

TM(c, d) =
{
T ∈ T (F) : T ⊂ G(M), v(T ) = c, |T | = d

}
and

tM(c, d) = |TM(c, d)|.

Claim 3.1. Every set T ∈ T (F) with v(T ) = c, |T | = d satisfies T ∈
TM(c, d) for

(
s−c
k−c

)
choices of M ∈

(
[s]
k

)
.

Proof. Set C = {i, 1 5 i 5 s, T∩Gi 6= ∅}. Then T ∈ TM(c, d) iff C ⊂M .

Lemma 3.1 (Counting Formula).

(3.1) |F| =
∑

M∈([s]
k )

∑
15c<d5k

tM(c, d) ·
(

n
k−d

)(
s−c
k−c

) .
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Proof. The above formula is almost evident. In formula (2.3) every T ∈ T (F)
is added with coefficient

(
n

k−d

)
to produce |F|. However, in (3.1) each T ∈ T

with v(T ) < k is counted several times. That multiplicity is exactly
(
s−c
k−c

)
which proves the veracity of (3.1).

Let us define the weight, w(T ) for T ∈ T by w(T ) =
(

n
k−d

)/(
s−c
k−c

)
. Then

(3.1) is equivalent to

(3.2)
∑

M∈([s]
k )

( ∑
T∈T ,T⊂G(M)

w(T )

)
= |F|.

Let us define the weight, w(M) of a matching M ∈
(
[s]
k

)
as the sum in the

bracket, that is

w(M) =
∑

T∈T ,T⊂G(M)

w(T ).

Note that for the family Ak = A, all
(
k2+k−1

k

)
k-subsets of G(M) are in T .

(However, no sets of size k − 1 or less.) Define

w(Ak) =
∑

T∈(G(M)
k )

w(T ).

Then (3.2) implies

w(Ak) = |Ak|
/(s

k

)
=

(
(s+ 1)k − 1

k

)/(s
k

)
.

Our plan is to prove that

(3.3) w(M) 5 w(Ak) holds for all M ∈
(

[s]

k

)
.

In view of (3.2) this will imply |F| 5 |Ak|. In order to achieve that, let us
compare the weights of T ∈ TM(c, d) for some values of c and d. Let us put
them into a table for n = εs, s > k.

c = d = k w(T ) = 1

c = d = k − 1 w(T ) = εs
/

(s− k + 1)

c = k − 1, d = k w(T ) = 1
/

(s− k + 1)

c < d = k − 1 w(T ) 5 εs
/(

s−k+2
2

)
c = d 5 k − 2 w(T ) 5 2ε2

Table 1
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We are going to choose ε = ε(k) = k−2k−1
/

2. Therefore it is sufficient to
consider the case s = 2k2k+1.

Since the total number of subsets T ⊂ G(M) with |T | 5 k − 1 is∑
05d<k

(
k2 + k − 1

k − 1

)
< k

(
k2 + k − 1

k − 1

)
< k(k + 1)2(k−1) < k2k+1,

the total weight of such sets is less than 1.
On the other hand, every full transversal T ∈ T , that is a set T with

v(T ) = |T | = k has weight 1. This shows that (3.3) holds unless T contains
all full transversals in G(M).

Therefore in the sequel we assume that all |B1| · |B2| · . . . · |Bk| = kk full
transversals are in T = T (F). Let us use this assumption to prove:

Proposition 3.1. There is no T ∈ T (F) satisfying v(T ) = |T | < k.

Proof. Let Bi =
(
b
(i)
1 , . . . , b

(i)
k

)
, i = 1, . . . , k. Suppose for contradiction that

T ∈ T (F) and v(T ) = |T | < k. Let us define V = {i : T ∩ Bi 6= ∅}. Since
v(T ) = |T |, |V | = |T | holds, proving that |T ∩Bi| = 1 for each i ∈ V .

Define T̃ = {b(i)1 : i ∈ V }. Since b
(i)
1 is the smallest element of Bi for each

i, T̃ ≺ T follows. Thus T̃ ∈ T .
Let j be an arbitrary element of [k] \ V . By Proposition 2.2 (ii) the set

G0 ∪ {b(j)1 } is in T as well. Define the k − 1 transversal sets T2, . . . , Tk by

T` =
{
b
(1)
` , b

(2)
` , . . . , b

(k)
`

}
.

Now T̃ , G0 ∪ {b(j)1 } along with T2, . . . , Tk are k + 1 pairwise disjoint sets.
Together with the s − k edges of the fixed matching, Gu : u /∈ M we found
s+ 1 pairwise disjoint edges contradicting ν(T ) = s.

4 The last part of the proof

In view of the results of the preceding section we may assume that T = T (F)
contains all full transversals in G(M) and every T ∈ T with |T | < k satisfies
v(T ) < |T |.

Looking at Table 1 we see that these sets T have weight at most εs
/(

s−k+2
2

)
<

2ε/s if |T | = k − 1 and much smaller weight for |T | < k − 1.
On the other hand a k-set P ⊂ G(M) satisfying v(P ) = k− 1 has weight

1/(s − k + 1) > 1/s. Using 2ε < k−2k−1, we infer that a single set P
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of the above type has more weight than all possible sets T ⊂ G(M) with
c(T ) < |T | < k.

Since Ak contains all such P , (3.3) holds automatically unless T contains
all such P as well. Therefore from now on we suppose that every P ∈

(
G(M)

k

)
with v(P ) = k − 1 is in T .

If T contains no set of size less than k then (3.3) follows. Thus we may
assume that there is some T ⊂ G(M) with |T | < k and T ∈ T .

We need a simple lemma.

Lemma 4.1. Suppose that T ⊂ G(M), |T | < k. Then there exist pairwise
disjoint sets Q1, . . . , Qk ∈

(
G(M)

k

)
satisfying v(Qi) = k and |Qi ∩ T | 5 1 for

1 5 i 5 k.

Note that the conditions imply that each Qi is a full transversal and that
they partition B1 ∪ . . . ∪Bk.

Proof of the lemma. Let Q1∪̇ . . . ∪̇Qk be a partition of B1 ∪ . . . ∪ Bk in full
transversals such that

∣∣{i : |Qi ∩ T | = 2}
∣∣ is as small as possible If this

number is 0, we have nothing to prove.
Suppose by symmetry that |Qk ∩ T | = r = 2. Note the inequality∑

15i5k

|Qi ∩ T | 5 |T | 5 k − 1

which is a direct consequence of the pairwise disjointness of the Qi. Using
|Qk ∩ T | = r, ∑

15i<k

|Qi ∩ T | 5 k − 1− r follows.

Consequently we can choose 1 5 i1 < . . . < ir < k such that Qi ∩ T = ∅.
Set Qk ∩ T = {a1, . . . , ar}. Renumbering B1, . . . , Bk if necessary, we may

suppose that aj ∈ Bj for 1 5 j 5 r.
Let cj be the unique element in the intersection of the full transversal Qij

with Bj.
Define

Q̃ij =
(
Qij ∪ {aj}

)
− {cj}, j = 1, . . . , r,

Q̃k =
(
Qk ∪ {c1, . . . , cr}

)
− {a1, . . . , ar} and

Q̃i = Qi for i /∈ {i1, . . . , ir, k}.
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Then the Q̃i are full transversals partitioning B1 ∪ . . . ∪ Bk but the number∣∣{i : |Q̃i∩T | = 2}
∣∣ is one smaller. This contradiction concludes the proof.

Now the final contradiction is immediate. Since |G0| = k − 1 = |T |,
|G0 \ T | = |T \ G0| holds. Let T \ G0 = {x1, . . . , xp} and let y1, . . . , yp be
p distinct elements of G0 \ T . Renumbering the Qi if necessary we may
assume that xi ∈ Qi for i = 1, . . . , p. Then define Q∗i = (Qi − {xi}) ∪ {yi},
i = 1, . . . , p and note that v(Q∗i ) = k− 1, implying Q∗i ∈ T (F). Set Q∗j = Qj

for p < j 5 k. Then T and Q∗1, . . . , Q
∗
p, Qp+1, . . . , Qk are k + 1 pairwise

disjoint members of T . Together with the remaining s − k edges G` of the
fixed matching (` ∈ [s] − M) we get s + 1 pairwise disjoint members of
T = T (F), the final contradiction.

Thus we proved that (3.3) holds for all M ∈
(
[s]
k

)
and the inequality is

strict unless T (F) is k-uniform. Therefore |F| 5
(
k(s+1)−1

k

)
follows with

equality holding only for F =
(
[k(s+1)−1]

k

)
= Ak. � �

Remark. We proved the theorem with ε = k−2k−1
/

2. With some effort we
can increase ε to something around k−k but the real challenge is to prove the
statement for a positive constant, i.e., an ε independent of k.
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