Proof of the Erdős Matching Conjecture in a New Range

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Let $s>k\geq 2$ be integers. It is shown that there is a positive real $\varepsilon=\varepsilon(k)$ such that for all integers n satisfying $(s+1)k\leq n<(s+1)(k+\varepsilon)$ every k-graph on n vertices with no more than s pairwise disjoint edges has at most $\binom{(s+1)k-1}{k}$ edges in total. This proves a part of an old conjecture of Erdős.

1 Introduction

Let $[n] = \{1, ..., n\}$ be the standard *n*-element set. For an integer $k \geq 2$ a family $\mathcal{F} \subset \binom{[n]}{k}$ is called a *k*-graph. The matching number, $\nu(\mathcal{F})$ of \mathcal{F} is the maximum number of pairwise disjoint edges in \mathcal{F} . Obviously, $\nu(\mathcal{F}) \leq n/k$ holds.

Consequently for every k and $s \ge 1$ the family $\mathcal{A} = \binom{[(s+1)k-1]}{k}$ has matching number equal to s. Note that \mathcal{A} is independent of n for $n \ge (s+1)k-1$. Define

(1.1)
$$\mathcal{B} = \mathcal{B}(n, k, s) = \left\{ B \in \binom{[n]}{k} : B \cap [s] \neq \emptyset \right\}.$$

Fixing k and s we always assume $n \ge (s+1)k$. From definition (1.1) it should be clear that $\nu(\mathcal{B}) = s$ holds.

Erdős Matching Conjecture (Erdős [E]). Let $k, s \geq 1$ be fixed integers, $\mathcal{F} \subset \binom{[n]}{k}$ a k-graph satisfying $\nu(\mathcal{F}) \leq s$. Then

(1.2)
$$|\mathcal{F}| \leq \max\{|\mathcal{A}|, |\mathcal{B}|\} \quad holds.$$

Let us note that the case k=1 is trivial. For k=2 Erdős and Gallai [EG] proved (1.2). The case k=3 is completely settled now. Łuczak and Mieczkowska [LM] proved (1.2) for s very large and then the present author [F2] for all s.

The case s=1 is the classical Erdős–Ko–Rado Theorem [EKR], in that case for $n \ge 2k$ the maximum is always attained by the second term, its value is $\binom{n-1}{k-1}$.

Erdős [É] proved (1.2) for $n > n_0(k, s)$ for a certain value of $n_0(k, s)$. Over the years the bound on $n_0(k, s)$ was successively improved by Bollobás, Daykin and Erdős [BDE], Füredi and the present author (unpublished), Huang, Loh and Sudakov [HLS], Frankl, Łuczak and Mieczkowska [FLM]. The current best bound is due to the author [F1] and it shows that (1.2) is true for $n \ge 2(s+1)k$. However, in *all* these cases the maximum is given by $|\mathcal{B}|$.

The biggest difference in the behaviour of $|\mathcal{B}|$ and $|\mathcal{A}|$ is that the first one is a strictly increasing function of n while the second one is a constant. That is, (1.2) asserts that in the range where $|\mathcal{A}| > |\mathcal{B}|$, adding an extra vertex does not help, the maximum of $|\mathcal{F}|$ remains unchanged.

Easy computation shows that for $n \ge (k + \frac{1}{2})(s+1)$ already $|\mathcal{B}|$ is greater. Thus in (1.2), $|\mathcal{A}|$ is greater only in an interval of length at most (s+1)/2. The aim of the present paper is to confirm (1.2) for a small but positive proportion of this interval.

Theorem. For every $k \geq 2$ there is a positive $\varepsilon = \varepsilon(k)$ such that (1.2) holds for $k(s+1) \leq n \leq (k+\varepsilon)(s+1)$. Moreover, the only family \mathcal{F} attaining equality is $\binom{Q}{k}$ for some $Q \subset [n]$, |Q| = (s+1)k-1.

Let us stress that this is the first result proving (1.2) for a range where $|\mathcal{A}| > |\mathcal{B}|$.

2 Preliminaries

Let (a_1, a_2, \ldots, a_r) denote the set $\{a_1, \ldots, a_r\}$ if we know and want to stress that the elements are listed in increasing order: $a_1 < a_2 < \ldots < a_r$.

Definition 2.1 (Shifting partial order). Let us define the shifting partial order \prec where $(a_1, \ldots, a_r) \prec (b_1, \ldots, b_r)$ iff $a_i \leq b_i$ for all i. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called *shifted* if whenever $F, G \in \binom{[n]}{k}$ with $F \prec G$, $G \in \mathcal{F}$ then $F \in \mathcal{F}$ holds as well.

It is well known (cf. [F3] for a proof) that in proving the theorem (or (1.2) in general) one can assume that \mathcal{F} is shifted. Throughout the paper we consider s and k fixed and let $\mathcal{F} \subset {[n] \choose k}$ be a family of maximal size with respect to $\nu(\mathcal{F}) = s$. Moreover, we suppose that \mathcal{F} is shifted. Define $\mathcal{T} = \mathcal{T}(\mathcal{F})$ the trace of \mathcal{F} on [k(s+1)-1] by

$$\mathcal{T} = \{ F \cap [k(s+1) - 1] : F \in \mathcal{F} \}.$$

Of course \mathcal{T} needs not to be k-uniform but $|T| \leq k$ for all $T \in \mathcal{T}$.

Proposition 2.1 ([F3]).

$$(2.1) \nu(\mathcal{T}) = s.$$

Since $|\mathcal{F}|$ is maximal, \mathcal{F} is determined by \mathcal{T} :

(2.2)
$$\mathcal{F} = \left\{ F \in {[n] \choose k} : \exists T \in \mathcal{T}, T \subset F \right\}.$$

Let $\mathcal{T} = \mathcal{T}^{(1)} \cup \ldots \cup \mathcal{T}^{(k)}$ where $\mathcal{T}^{(d)} = \{T \in \mathcal{T} : |T| = d\}$. Set also $t(d) = |\mathcal{T}^{(d)}|$. For notational convenience we set $\overline{n} = n - (k(s+1) - 1)$. In view of (2.2) we have

(2.3)
$$|\mathcal{F}| = \sum_{1 \le d \le k} t(d) \binom{\overline{n}}{k-d}.$$

Note that in case of A one has

$$\mathcal{T}(\mathcal{A}) = \mathcal{A} = {[k(s+1)-1] \choose k},$$

that is there are no sets of size less than k in the trace on [k(s+1)-1]. Eventually we want to prove that the same is true for our family \mathcal{F} .

Because of the Erdős–Ko–Rado Theorem we can and we will suppose that $s \ge 2$. Let us mention that for the initial case: n = k(s+1) the validity of (1.2), that is $|\mathcal{F}| \le {k(s+1)-1 \choose k}$ was proved by Kleitman [K] and the uniqueness of the optimal families is shown in [F3]. Thus we may assume in the sequel that n > (s+1)k. If $\varepsilon = \varepsilon(k) < \frac{1}{k}$, then for s < k one has $\varepsilon(k)(s+1) < 1$ and the Theorem is true (the interval $[k(s+1), (k+\varepsilon(k))(s+1)]$ contains no integer except for k(s+1)).

As a matter of fact our $\varepsilon(k)$ is going to be much smaller. Therefore we will assume that $s \geq k$ holds.

Since \mathcal{F} is shifted and $\nu(\mathcal{F}) = s$ there is a matching $F_1, \ldots, F_s \in \mathcal{F}$ such that $F_j \subset [k(s+1)-1]$ for $j=1,\ldots,s$. (A matching is a collection of pairwise disjoint sets.) Define $F_0 = F_0(F_1,\ldots,F_s) = [k(s+1)-1] - (F_1 \cup \ldots \cup F_s)$. Then $|F_0| = k(s+1) - 1 - ks = k-1$ holds.

In view of $\nu(\mathcal{T}) = s$, $F_0 \notin \mathcal{T}$. Let us recall the definition of the lexicographic order <. For two distinct sets $A, B \subset [n]$ one has A < B iff either $A \subset B$ or $\min\{x : x \in A \setminus B\} < \min\{y : y \in B \setminus A\}$. Let us define G_0 as the smallest (k-1)-subset of [k(s+1)-1] in the lexicographic order that is not a member of $\mathcal{T} = \mathcal{T}(\mathcal{F})$. The key point is that, by the maximality of $|\mathcal{F}|$, $\nu(\mathcal{F} \cup \{G_0\}) \geq s+1$ holds. That is, we can find pairwise disjoint sets $F_1, \ldots, F_s \in \mathcal{F}$ that are disjoint to G_0 as well.

Now we fix G_0 for the rest of the proof and consider a matching $G_1, ..., G_s \in \mathcal{F}$ satisfying $G_i \cap G_0 = \emptyset$ and $G_i \in \binom{[k(s+1)-1]}{k}$. (Since \mathcal{F} is shifted, to every matching $F_1, ..., F_s \in \mathcal{F}$ satisfying $F_1 \cap G_0 = ... = F_s \cap G_0 = \emptyset$ we can easily find $G_i \prec F_i$ such that $G_1, ..., G_s$ is a matching as required above.)

Note that $G_0 \cup \ldots \cup G_s = [k(s+1)-1]$ holds. We fix the matching G_1, \ldots, G_s as well. To justify the definition of G_0 let us prove a simple statement that we are going to use in the proof of the Theorem.

Proposition 2.2. (i) If $R \subset [(s+1)k-1]$ satisfies $|R| \leq k$, $R \not\subset G_0$ and $R \triangleleft G_0$ then $R \in \mathcal{T}(\mathcal{F})$.

(ii) If $(b_1, \ldots, b_k) \in \mathcal{F}$ is disjoint to G_0 then $G_0 \cup \{b_1\} \in \mathcal{F}$ holds.

Proof. Suppose first $|R| \leq k-1$. Assume $R \notin \mathcal{T}(\mathcal{F})$. Then the maximality of $|\mathcal{F}|$ implies the existence of a matching $F_1, \ldots, F_s \in \mathcal{F}$ such that $F_i \cap R = \emptyset$ for all i. Using shiftedness we can assume that $F_i \subset [(s+1)k-1], 1 \leq i \leq s$. Define $\widetilde{R} = [(s+1)k-1] - (F_1 \cup \ldots \cup F_s)$. Then $R \subset \widetilde{R}$ and $|\widetilde{R}| = k-1$. Since $R \leq G_0$ implies $\widetilde{R} \leq G_0$, we get a contradiction with the choice of G_0 .

If |R| = k let R_1 be the (k-1)-set that we obtain from R by removing the largest element. Then $R_1 < G_0$ and the above argument imply $R_1 \in \mathcal{T}(\mathcal{F})$. Now $R \in \mathcal{T}(\mathcal{F})$ follows from $R_1 \subset R$, concluding the proof of (i).

To prove (ii) we distinguish two cases. Let $g_{k-1}^{(0)}$ be the largest element of $G_0 = (g_1^{(0)}, \ldots, g_{k-1}^{(0)})$.

• If $g_{k-1}^{(0)} < b_1$ then $g_1^{(0)} < ... < g_{k-1}^{(0)} < b_1 < ... < b_k$ imply $\left(g_1^{(0)}, ..., g_{k-1}^{(0)}, b_1\right) \prec (b_1, ..., b_k)$ and the statement follows by shiftedness.

• If $b_1 < g_{k-1}^{(0)}$ then $G' \stackrel{\text{def}}{=} (g_1^{(0)}, \dots, g_{k-2}^{(0)}, b_1) < G_0$ implies $G' \in \mathcal{T}(\mathcal{F})$. Now the statement follows from $G' \subset G_0 \cup \{b_1\}$.

3 The counting formula

The main use of G_0 and the carefully picked matching is a formula that tells us the size $|\mathcal{F}|$ of \mathcal{F} from *local* information.

Definition. For a set $T \in \mathcal{T}(\mathcal{F})$ let us define its width, v(T) by

$$v(T) = |\{i : 1 \le i \le s, T \cap G_i \ne \emptyset\}|.$$

Note that i=0 is not permitted in the above definition. Thus v(T) is the number of edges in the matching that have non-empty intersection with T. This implies $v(T) \leq |T|$ with equality iff $|T \cap G_i| = 1$ holds for exactly |T| values of $1 \leq i \leq s$. We call such a T a transversal. If further |T| = k then we say that T is a full transversal.

It is very important to notice that $G_0 \notin \mathcal{T}(\mathcal{F})$ implies that $v(T) \geq 1$ for every $T \in \mathcal{T}(\mathcal{F})$.

Let $M = (m_1, m_2, \dots, m_k)$ be a k-subset of [s]. To avoid double indices we set $B_i = G_{m_i}$ and consider the $k^2 + k - 1$ -element set

$$G_0 \cup B_1 \cup \ldots \cup B_k \stackrel{\text{def}}{=} G(M).$$

Our local information is related to $T \in \mathcal{T}(\mathcal{F})$ satisfying $T \subset G(M)$. For every pair $c, d, 1 \leq c \leq d \leq k$ define

$$\mathcal{T}_M(c,d) = \{T \in \mathcal{T}(\mathcal{F}) : T \subset G(M), v(T) = c, |T| = d\}$$
 and $t_M(c,d) = |\mathcal{T}_M(c,d)|.$

Claim 3.1. Every set $T \in \mathcal{T}(\mathcal{F})$ with v(T) = c, |T| = d satisfies $T \in \mathcal{T}_M(c,d)$ for $\binom{s-c}{k-c}$ choices of $M \in \binom{[s]}{k}$.

Proof. Set $C = \{i, 1 \leq i \leq s, T \cap G_i \neq \emptyset\}$. Then $T \in \mathcal{T}_M(c, d)$ iff $C \subset M$. \square

Lemma 3.1 (Counting Formula).

(3.1)
$$|\mathcal{F}| = \sum_{M \in \binom{[s]}{k}} \sum_{1 \le c < d \le k} t_M(c, d) \cdot \frac{\binom{\overline{n}}{k-d}}{\binom{s-c}{k-c}}.$$

Proof. The above formula is almost evident. In formula (2.3) every $T \in \mathcal{T}(\mathcal{F})$ is added with coefficient $\binom{\overline{n}}{k-d}$ to produce $|\mathcal{F}|$. However, in (3.1) each $T \in \mathcal{T}$ with v(T) < k is counted several times. That multiplicity is exactly $\binom{s-c}{k-c}$ which proves the veracity of (3.1).

Let us define the weight, w(T) for $T \in \mathcal{T}$ by $w(T) = {n \choose k-d} / {s-c \choose k-c}$. Then (3.1) is equivalent to

(3.2)
$$\sum_{M \in \binom{[s]}{k}} \left(\sum_{T \in \mathcal{T}, T \subset G(M)} w(T) \right) = |\mathcal{F}|.$$

Let us define the weight, w(M) of a matching $M \in \binom{[s]}{k}$ as the sum in the bracket, that is

$$w(M) = \sum_{T \in \mathcal{T}, T \subset G(M)} w(T).$$

Note that for the family $\mathcal{A}_k = \mathcal{A}$, all $\binom{k^2+k-1}{k}$ k-subsets of G(M) are in \mathcal{T} . (However, no sets of size k-1 or less.) Define

$$w(\mathcal{A}_k) = \sum_{T \in \binom{G(M)}{k}} w(T).$$

Then (3.2) implies

$$w(\mathcal{A}_k) = |\mathcal{A}_k| / {s \choose k} = {(s+1)k-1 \choose k} / {s \choose k}.$$

Our plan is to prove that

(3.3)
$$w(M) \leq w(\mathcal{A}_k)$$
 holds for all $M \in {[s] \choose k}$.

In view of (3.2) this will imply $|\mathcal{F}| \leq |\mathcal{A}_k|$. In order to achieve that, let us compare the weights of $T \in \mathcal{T}_M(c,d)$ for some values of c and d. Let us put them into a table for $\overline{n} = \varepsilon s$, s > k.

c = d = k	w(T) = 1
c = d = k - 1	$w(T) = \varepsilon s / (s - k + 1)$
$c = k - 1, \ d = k$	w(T) = 1/(s - k + 1)
c < d = k - 1	$w(T) \le \varepsilon s / \binom{s-k+2}{2}$
$c = d \le k - 2$	$w(T) \le 2\varepsilon^2$

Table 1

We are going to choose $\varepsilon = \varepsilon(k) = k^{-2k-1}/2$. Therefore it is sufficient to consider the case $s \ge 2k^{2k+1}$.

Since the total number of subsets $T \subset G(M)$ with $|T| \leq k - 1$ is

$$\sum_{0 \le d < k} {k^2 + k - 1 \choose k - 1} < k {k^2 + k - 1 \choose k - 1} < k(k+1)^{2(k-1)} < k^{2k+1},$$

the total weight of such sets is less than 1.

On the other hand, every full transversal $T \in \mathcal{T}$, that is a set T with v(T) = |T| = k has weight 1. This shows that (3.3) holds unless \mathcal{T} contains all full transversals in G(M).

Therefore in the sequel we assume that all $|B_1| \cdot |B_2| \cdot \ldots \cdot |B_k| = k^k$ full transversals are in $\mathcal{T} = \mathcal{T}(\mathcal{F})$. Let us use this assumption to prove:

Proposition 3.1. There is no $T \in \mathcal{T}(\mathcal{F})$ satisfying v(T) = |T| < k.

Proof. Let $B_i = (b_1^{(i)}, \ldots, b_k^{(i)})$, $i = 1, \ldots, k$. Suppose for contradiction that $T \in \mathcal{T}(\mathcal{F})$ and v(T) = |T| < k. Let us define $V = \{i : T \cap B_i \neq \emptyset\}$. Since v(T) = |T|, |V| = |T| holds, proving that $|T \cap B_i| = 1$ for each $i \in V$.

Define $\widetilde{T} = \{b_1^{(i)} : i \in V\}$. Since $b_1^{(i)}$ is the smallest element of B_i for each $i, \widetilde{T} \prec T$ follows. Thus $\widetilde{T} \in \mathcal{T}$.

Let j be an arbitrary element of $[k] \setminus V$. By Proposition 2.2 (ii) the set $G_0 \cup \{b_1^{(j)}\}$ is in \mathcal{T} as well. Define the k-1 transversal sets T_2, \ldots, T_k by $T_\ell = \{b_\ell^{(1)}, b_\ell^{(2)}, \ldots, b_\ell^{(k)}\}$.

Now \widetilde{T} , $G_0 \cup \{b_1^{(j)}\}$ along with T_2, \ldots, T_k are k+1 pairwise disjoint sets. Together with the s-k edges of the fixed matching, $G_u : u \notin M$ we found s+1 pairwise disjoint edges contradicting $\nu(\mathcal{T}) = s$.

4 The last part of the proof

In view of the results of the preceding section we may assume that $\mathcal{T} = \mathcal{T}(\mathcal{F})$ contains all full transversals in G(M) and every $T \in \mathcal{T}$ with |T| < k satisfies v(T) < |T|.

Looking at Table 1 we see that these sets T have weight at most $\varepsilon s / {s-k+2 \choose 2} < 2\varepsilon/s$ if |T| = k-1 and much smaller weight for |T| < k-1.

On the other hand a k-set $P \subset G(M)$ satisfying v(P) = k - 1 has weight 1/(s - k + 1) > 1/s. Using $2\varepsilon < k^{-2k-1}$, we infer that a single set P

of the above type has more weight than all possible sets $T \subset G(M)$ with c(T) < |T| < k.

Since \mathcal{A}_k contains all such P, (3.3) holds automatically unless \mathcal{T} contains all such P as well. Therefore from now on we suppose that every $P \in \binom{G(M)}{k}$ with $v(P) \geq k-1$ is in \mathcal{T} .

If \mathcal{T} contains no set of size less than k then (3.3) follows. Thus we may assume that there is some $T \subset G(M)$ with |T| < k and $T \in \mathcal{T}$.

We need a simple lemma.

Lemma 4.1. Suppose that $T \subset G(M)$, |T| < k. Then there exist pairwise disjoint sets $Q_1, \ldots, Q_k \in \binom{G(M)}{k}$ satisfying $v(Q_i) = k$ and $|Q_i \cap T| \leq 1$ for $1 \leq i \leq k$.

Note that the conditions imply that each Q_i is a full transversal and that they partition $B_1 \cup \ldots \cup B_k$.

Proof of the lemma. Let $Q_1 \dot{\cup} \dots \dot{\cup} Q_k$ be a partition of $B_1 \cup \dots \cup B_k$ in full transversals such that $|\{i : |Q_i \cap T| \geq 2\}|$ is as small as possible If this number is 0, we have nothing to prove.

Suppose by symmetry that $|Q_k \cap T| = r \ge 2$. Note the inequality

$$\sum_{1 \le i \le k} |Q_i \cap T| \le |T| \le k - 1$$

which is a direct consequence of the pairwise disjointness of the Q_i . Using $|Q_k \cap T| = r$,

$$\sum_{1 \le i < k} |Q_i \cap T| \le k - 1 - r \quad \text{follows.}$$

Consequently we can choose $1 \leq i_1 < \ldots < i_r < k$ such that $Q_i \cap T = \emptyset$.

Set $Q_k \cap T = \{a_1, \ldots, a_r\}$. Renumbering B_1, \ldots, B_k if necessary, we may suppose that $a_j \in B_j$ for $1 \leq j \leq r$.

Let c_j be the unique element in the intersection of the full transversal Q_{i_j} with B_j .

Define

$$\widetilde{Q}_{i_j} = (Q_{i_j} \cup \{a_j\}) - \{c_j\}, \quad j = 1, \dots, r,$$

$$\widetilde{Q}_k = (Q_k \cup \{c_1, \dots, c_r\}) - \{a_1, \dots, a_r\} \quad \text{and}$$

$$\widetilde{Q}_i = Q_i \quad \text{for} \quad i \notin \{i_1, \dots, i_r, k\}.$$

Then the \widetilde{Q}_i are full transversals partitioning $B_1 \cup \ldots \cup B_k$ but the number $|\{i: |\widetilde{Q}_i \cap T| \geq 2\}|$ is one smaller. This contradiction concludes the proof. \square

Now the final contradiction is immediate. Since $|G_0| = k - 1 \ge |T|$, $|G_0 \setminus T| \ge |T \setminus G_0|$ holds. Let $T \setminus G_0 = \{x_1, \ldots, x_p\}$ and let y_1, \ldots, y_p be p distinct elements of $G_0 \setminus T$. Renumbering the Q_i if necessary we may assume that $x_i \in Q_i$ for $i = 1, \ldots, p$. Then define $Q_i^* = (Q_i - \{x_i\}) \cup \{y_i\}$, $i = 1, \ldots, p$ and note that $v(Q_i^*) = k - 1$, implying $Q_i^* \in \mathcal{T}(\mathcal{F})$. Set $Q_j^* = Q_j$ for $p < j \le k$. Then T and $Q_1^*, \ldots, Q_p^*, Q_{p+1}, \ldots, Q_k$ are k + 1 pairwise disjoint members of \mathcal{T} . Together with the remaining s - k edges G_ℓ of the fixed matching $(\ell \in [s] - M)$ we get s + 1 pairwise disjoint members of $\mathcal{T} = \mathcal{T}(\mathcal{F})$, the final contradiction.

Thus we proved that (3.3) holds for all $M \in {[s] \choose k}$ and the inequality is strict unless $\mathcal{T}(\mathcal{F})$ is k-uniform. Therefore $|\mathcal{F}| \leq {k(s+1)-1 \choose k}$ follows with equality holding only for $\mathcal{F} = {[k(s+1)-1] \choose k} = \mathcal{A}_k$.

Remark. We proved the theorem with $\varepsilon = k^{-2k-1}/2$. With some effort we can increase ε to something around k^{-k} but the real challenge is to prove the statement for a positive constant, i.e., an ε independent of k.

References

- [BDE] B. Bollobás, D. E. Daykin, and P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. 27 (2) (1976), 25–32.
- [E] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest 8 (1965), 93–95.
- [EG] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, *Acta Math. Acad. Sci. Hungar* **10** (1959), 337–356.
- [EKR] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (2) (1961), 313–320.
- [F1] P. Frankl, Improved bounds for Erdős' matching conjecture, J. Comb. Theory, Ser. A 120 (5) (2013), 1068–1072.
- [F2] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, arXiv:1205.6847 (May 30, 2012), 26 pp.
- [F3] P. Frankl, The shifting technique in extremal set theory, in: *Surveys in combinatorics* 1987 (New Cross, 1987). Vol. **123** London Math.

- Soc. Lecture Note Ser. Cambridge, Cambridge Univ. Press, 1987, pp. 81–110.
- [FLM] P. Frankl, T. Łuczak, and K. Mieczkowska, On matchings in hypergraphs, *Electronic J. Combin.* **19** (2012), Paper 42, 5 pp.
- [HLS] H. Huang, P. Loh, and B. Sudakov, The size of a hypergraph and its matching number, *Combinatorics*, *Probability & Computing* **21** (2012), 442–450.
- [K] D. J. Kleitman, Maximal number of subsets of a finite set no k of which are pairwise disjoint, J. Combin. Theory 5 (1968), 157–163.
- [LM] T. Łuczak and K. Mieczkowska, On Erdős' extremal problem on matchings in hypergraphs, J. Combin. Theory Ser. A 124 (2014), 178–194.