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MTA Rényi Institute, Budapest

peter.frankl@gmail.com

Abstract

The aim of the present paper is to prove that the maximum number
of edges in a 3-uniform hypergraph on n vertices and matching number
s is

max
{(3s+ 2

3

)
,

(
n

3

)
−
(
n− s

3

)}
for all n, s, n ≥ 3s+ 2.

1 Introduction

Let [n] = {1, 2, . . . , n} be a finite set and F ⊂
(
[n]
k

)
a k-uniform hyper-

graph. The matching number ν(F) is the maximum number of pairwise
disjoint edges in F . One of the classical problems in extremal set theory
is to determine the maximum number of edges in a k-uniform hypergraph
with matching number 1. This was solved by Erdős, Ko and Rado [4], who
proved that for n ≥ 2k this maximum is

(
n−1
k−1

)
. There are two natural ways

to generalize this problem for k-uniform hypergraphs. One is to consider the
the maximum number of edges for matching number 2, 3, etc. This is the
problem that we shall solve in this paper for k = 3. The other one is to make
the restriction “matching number is one” stronger by requiring that any two
edges intersect in at least t elements (t is a fixed integer, k > t > 1). Such a
family is called t-intersecting. Let us consider the following construction.

F(n, k, t, i) = {F ⊂ [n] | |F | = k, |F ∩ [t+ 2i]| ≥ t+ i}.
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In 1976 the author [7] made the following conjecture. For all n, k and t, such
that n > 2k − t, and for every k-uniform t-intersecting hypergraph F on n
vertices one has

|F| ≤ max
i
|F(n, k, t, i)|.

In 1987 Füredi and the author [6] showed that for every i, in the range, that
|F(n, k, t, i)| is the maximal term the conjecture is true for all but a FINITE
number of values of t. However, it was not until ten years later that Ahlswede
and Khachatrian [1] succeeded in proving the conjecture completely.

Fixing the matching number, say s, there are two very natural construc-
tions for k-graphs with that matching number:

Ak =

(
[ks+ k − 1]

k

)
, and

A1(n) =

{
F ∈

(
[n]

k

)
: F ∩ [s] 6= ∅

}
.

In 1965 Paul Erdős made the following.

Conjecture 1.1 (Matching Conjecture) ([5]). If F ⊂
(
[n]
k

)
satisfies ν(F)

= s then
|F| ≤ max{|A1(n)|, |Ak|}.

In the same paper Erdős proved the conjecture for n > n1(k, s). Let us
mention that the conjecture is trivial for k = 1, and it was proved for graphs
(k = 2) by Erdős and Gallai [3].

There were several improvements on the bound n1(k, s). Bollobás, Daykin
and Erdős [2] proved n1(k, s) ≤ 2k3s and recently Huang, Loh and Sudakov
[13] improved it to n1(k, s) ≤ 3k2s. The current record is due to the present
author [11], it is n1(k, s) 5 (2s+ 1)k − s.

The aim of the present paper is to prove

Theorem 1.1. The conjecture is true for k = 3.

We should mention that our proof relies partly on ideas from Frankl–
Rödl–Ruciński [10], who proved n1(3, s) ≤ 4(s + 1) and the recent result of
 Luczak and Mieczkowska [15] who proved the conjecture for k = 3, s > s0.

Let us mention that the best general bound, true for all k, s and n ≥
k(s+ 1) is due to the author (cf. [8] or [9]) and it says

|F| ≤ s

(
n− 1

k − 1

)
. (1.1)
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Note that for n = k(s + 1), (1.1) reduces to |F| ≤ |Ak|. This special
case, the first non-trivial instance of the conjecture, was proved implicitly
by Kleitman [14]. The case s = 1 of (1.1) is the classical Erdős–Ko–Rado
Theorem [4].

2 Notation, tools

For a family H ⊂ 2[n] and an element i ∈ [n] we define H(i) and H(̄i) by

H(i) =
{
H − {i} : i ∈ H ∈ H

}
,

H(̄i) =
{
H ∈ H : i /∈ H

}
.

For a subset H = {h1, . . . , hq} we denote it also by (h1, . . . , hq) whenever
we know for certain that h1 < h2 < · · · < hq.

For subsets H = (h1, . . . , hq), G = (g1, . . . , gq) we define the partial order,
� by

H � G iff hi ≤ gi for 1 ≤ i ≤ q.

Definition 2.1. The family F ⊂
(
[n]
k

)
is called stable if G� F ∈ F implies

G ∈ F .

In Frankl [8] (cf. also [9]) it was proved that it is sufficient to prove the
Matching conjecture for stable families. Therefore throughout the paper we
assume that F is stable and use stability without restraint.

An easy consequence of stability is the following. Let F ⊂
(
[n]
k

)
, ν(F) = s

and define F0 =
{
F ∩ [ks+ k − 1] : F ∈ F

}
. Note that F0 is not k-uniform

in general.

Proposition 2.1. ν(F0) = s.

Proof. Suppose for contradiction that G1, . . . , Gs+1 ∈ F0 are pairwise disjoint
and F1, . . . , Fs+1 ∈ F are such that Fi ∩ [ks + k − 1] = Gi, 1 ≤ i ≤ s + 1.
Suppose further that F1, . . . , Fs+1 are chosen subject to the above condition
to minimize ∑

1≤i<j≤s+1

|Fi ∩ Fj| (2.1)

Since ν(F) < s + 1, the above minimum is positive. We establish the con-
tradiction by showing that one can diminish it.
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Choose some x ∈ Fi∩Fj. Since Gi∩Gj = ∅, x ≥ k(s+ 1). Consequently,
|G1|+· · ·+|Gs+1| ≤ k(s+1)−2 < ks+k−1. Thus we can choose y ∈ [ks+k−1]
with y /∈ G` for 1 ≤ ` ≤ s + 1. Now replace Fi by F ′i = (Fi − {x}) ∪ {y}.
Then F ′i � Fi, implying F ′i ∈ F .

The intersections Fj∩[ks+k−1], j = 1, . . . , s+1, j 6= i and F ′i∩[ks+k−1]
are still disjoint but the value of (2.1) is smaller.

From now on we shall assume that F ⊂
(
[n]
k

)
satisfies ν(F) = s and it

is maximal, i.e., it cannot be extended without increasing ν(F). Then the
following formula is evident from Proposition 2.1.

|F| =
∑
H∈F0

(
n− ks− k + 1

k − |H|

)
. (2.2)

Formula (2.2) shows that for a fixed k and s, determining max |F| is a
finite problem, i.e., it is sufficient to compare all families F0 ⊂ 2[ks+k−1] with
max
H∈F0

|H| ≤ k and ν(F0) = s.

However, this finiteness is only theoretical. There are too many families
to check. Let us consider the following families, first defined in the author’s
Ph.D. dissertation in 1976.

A`(n) =

{
F ∈

(
[n]

k

)
:
∣∣F ∩ [`s+ `− 1]

∣∣ ≥ `

}
.

Then ν(A`(n)) = s holds for n ≥ ks.
Unless the next proposition holds, we get a counterexample to Conjec-

ture 1.1.

Proposition 2.2. For all 1 ≤ ` ≤ k,

|A`(n)| ≤ max{|A1(n)|, |Ak|}. (2.3)

In the present paper we only need the validity of Proposition 2.2 for the
case k = 3. In that case it is not hard to check it by direct calculation.

3 Preliminaries

For a family F ⊂
(
[n]
k

)
, ν(F) = s, n ≥ ks+ k− 1 we want to define a specific

partition

F0 ∪ F1 ∪ · · · ∪ Fs = [ks+ k − 1] where F1, . . . , Fs ∈ F . (3.1)
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Since ν(F) = s, we can choose F1, . . . , Fs ∈ F with F1∪· · ·∪Fs = [ks]. Then
F0 = [ks+ 1, ks+ k− 1]. However, we fix F0 to be the lexicographically first
(k − 1)-element subset of [ks + k − 1] for which a partition of type (3.1) is
possible. Note that F0 /∈ F0. Once F0 = {d1, d2, . . . , dk−1} is fixed we choose

Fi =
(
a1(i), . . . , ak(i)

)
such that

∑
1≤i≤s

a1(i) is minimal. Once this minimum

value is attained we minimize
∑
1≤i≤s

a2(i) and so on. Note that we tacitly

assume a1(i) < a2(i) < · · · < ak(i) for all 1 5 i 5 s.

Proposition 3.1. For every 1 ≤ ` < k and every (e1, . . . , e`) which precedes
(d1, . . . , d`) lexicographically, (e1, . . . , e`) ∈ F0 holds.

Proof. Since F is maximal, the contrary would mean that there exist pairwise
disjoint sets F1, . . . , Fs ∈ F which are disjoint to (e1, . . . , e`) as well. However,
then (e1, . . . , e`) can be extended to a (k − 1)-element set D, which is still
disjoint to F1, . . . , Fs and precedes F0 lexicographically, a contradiction.

The following statement is rather simple to prove, but it is extremely
useful.

Claim 3.1. Let h, 1 ≤ h < k be the smallest number, `, such that a`(i) < d`
holds, and let h = k if no such ` exists. Then

D
def
= (d1, . . . , dh−1, ah(i), dh, . . . , dk−1) ∈ F

holds.

Proof. If h < k then (d1, . . . , dh−1, a
(i)
h ) ∈ F0 from Proposition 3.1. Thus all

k-sets containing it are in F .
If h = k then D � Fi implies the claim.

The next claim can be easily verified using the definitions.

Claim 3.2. For F = A`(n),

F0 = (1, . . . , `− 1, `s+ `, `s+ `+ 1, . . . , `s+ k − 1).

Let R = (r1, . . . , rp) ⊂ [s] be a p-tuple (we assume k ≥ p here). Define
the set X(R) by X(R) = F0∪Fr1 ∪ · · ·∪Frp . Note that |X(R)| = kp+k−1.
Define the restriction H(R) = {H ∈ F0 : H ⊂ X(R)}.
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Definition 3.1. The width v(H) of H ∈ H(R) is defined by

v(H) =
∣∣{i : H ∩ Fri 6= ∅}

∣∣.
Note that F0 /∈ F0 implies v(H) > 0. Next we define the weight of H.

Definition 3.2. The weight w(H) of H ∈ H(R) is defined by

w(H) =

(
n−ks−k+1

k−|H|

)(
s−v(H)
k−v(H)

) .

The weight w(R) of a k-tuple R = (r1, . . . , rk) ⊂ [s] is defined by

w(R) =
∑

H∈H(R)

w(H) (3.2)

These definitions are justified by:

Lemma 3.1 (Counting Lemma). For s ≥ k,

|F| =
∑

R∈([s]
k )

∑
H∈H(R)

w(H)

Proof. In view of (2.2) it is sufficient to note that each H ∈ F0 is contained
in H(R) for exactly

(
s−v(H)
k−v(H)

)
k-tuples R.

It is easy to check that for F = A`(n)⋃
1≤i≤s

(a1(i), a2(i), . . . , a`(i)) = [`, `s+ `− 1]

holds. Consequently, the value of (3.2) is independent of the particular choice
of R ⊂ [s]. Let f(`) denote this common value.

Conjecture 3.1. If F ⊂
(
[n]
k

)
, ν(F) = s, ν(F(1̄)) = s, s ≥ k, then∑

H∈H(R)

w(H) ≤ max
1≤`≤k

f(`) (3.3)

holds.
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One can show that Conjecture 3.1 would imply Erdős’ Conjecture 1.1 for
s ≥ k. We prove Theorem 1.1 by establishing Conjecture 3.1 for k = 3, and
certain values of n.

The paper is organized as follows. In Section 4 we prove some easy
results, and consider H(R) with |R| = 1. Section 5 provides the foundation
for induction. In Section 6 we consider H(R) with |R| = 2, k = 3. In
Section 7 we prove some general results.

In the later sections we concentrate on the case k = 3. In Section 8
we show that Conjecture 1.1 holds for s = 2. In Sections 9, 10 and 11 we
establish the validity of (3.3) in the necessary range settling Conjecture 1.1
for s ≥ 4. Section 12 handles the last remaining case, s = 3.

4 Some easy facts

The property of H(R) that we use most is

Fact 4.1. ν(H(R)) = |R|.

Proof. For R = (r1, . . . , rp) the family H(R) contains Fr1 , . . . , Frp showing
|ν(H(R))| ≥ |R|. On the other hand, for 1 ≤ i ≤ s, i /∈ R the edges Fi ∈ F
are pairwise disjoint and disjoint to the vertex set of H(R) as well showing
ν(H(R)) + s− |R| ≤ ν(F) = s, proving ν(H(R)) ≤ |R|.

Let now k = 3 and R = {i}, Fi = (ai, bi, ci).

Fact 4.2. If d1 = 1 then (ai, ci) /∈ F0, (bi, ci) /∈ F0. Moreover, if (ai, bi) ∈ F0

then (1, ci) /∈ F0.

Proof. Since (1, bi) � (ai, ci), (ai, ci) ∈ F0 would imply (1, bi) ∈ F0. This
would contradict ν(H({i})) = 1. Now (ai, ci) � (bi, ci) implies (bi, ci) /∈ F0.
The last statement is a direct consequence of ν(H({i})) = 1.

Fact 4.3. If (d1, xi) ∈ F0 then (Fi − {xi}) ∪ {d2} is not in F0.

The following easy fact will prove extremely useful in the sequel.

Fact 4.4. For every 1 ≤ i ≤ s,

{1, d2, bi} ∈ H({i}).
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Proof. We apply Claim 3.1. If bi < d2, then h = 2, and (1, bi, d2) ∈ H({i}) is
a direct consequence of Claim 3.1. If d2 < bi then Claim 3.1 yields (1, d2, ci) ∈
H({i}). The statement follows from (1, d2, bi)� (1, d2, ci).

Fact 4.5. For any two edges Fu, Fv of the special matching a1(u) < ak(v)
holds.

Proof. The contrary means

a1(v) < a2(v) < · · · < ak(v) < a1(u) < · · · < ak(u).

By stability, (a1(v), . . . , ak−1(v), a1(u)) and (ak(v), a2(u), . . . , ak(u)) are in
F . Using these two sets instead of Fu, Fv in the special matching decreases
a1(1) + · · ·+ as(1), a contradiction.

In later sections we are going to compare the total weight∑
H∈H(R)

w(H)

for R ∈
(
[s]
3

)
with the corresponding weights for A3 and A2(n), (possibly

adding a constant).
Suppose d1 = 1 and set d = d2. For A3, the corresponding hypergraph

H(3)({i}) is the complete 3-graph
(
Fi∪(1,d)

3

)
. For A2(n) one has

H(2)({i}) =

(
(1, ai, bi)

2

)
∪
{
H ∈

(
Fi ∪ (1, d)

3

)
:
∣∣H ∩ (1, ai, bi)

∣∣ ≥ 2

}
,

it consists of 3 sets of size 2 and 7 of size 3. We are always fixing A3 or A2(n)
as our reference, and consider an edge in H(R) that is not in the reference
hypergraph a loss, and an edge in the reference hypergraph that is not in
H(R) a gain. Adding with weights the losses and subtracting the weighted
sum of gains is called the balance.

In the case k = 3, we define G = {G ∈ F0 : |G| = 2}.
Convention 4.1. For G ∈ G with width 1, i.e., G ∈ H({i}) for some i,
we always consider G together with its complement (1, d) ∪ Fi − G. Since
ν({i}) = 1, not both can be in H({i}).

Corollary 4.1. The balance (real loss) coming from an extra G ∈ H(i),
|G| = 2 is never more than

n− 3s− 2(
s−1
2

) − 1(
s−1
2

) =
n− 3s− 3(

s−1
2

) .
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5 Why induction would work

For n ≥ ks + k − 1 let m(n, k, s) denote the maximum possible size of |F|
over all F ⊂

(
[n]
k

)
with ν(F) = s.

Note the obvious inequality ν(F1 ∪F2) ≤ ν(F1) + ν(F2). Let us use it to
prove:

Fact 5.1. m(n, k, s) ≥ m(n− 1, k, s− 1) +

(
n− 1

k − 1

)
.

Proof. Let F1 ⊂
(
[2,n]
k

)
satisfy ν(F1) = s − 1 and |F1| = m(n − 1, k, s − 1).

Define F2 =
{
F ∈

(
[n]
k

)
: 1 ∈ F

}
. Now |F1 ∪F2| = m(n− 1, k, s− 1) +

(
n−1
k−1

)
and ν(F1 ∪ F2) ≤ s− 1 + 1 = s.

Fact 5.1 would provide us with a counterexample to Conjecture 1.1,
should the following be false. Fortunately, it is true.

Proposition 5.1.

max

{(
ks+ k − 1

k

)
,

(
n

k

)
−
(
n− s

k

)}
≥ max

{(
ks− 1

k

)
,

(
n− 1

k

)
−
(
n− s

k

)}
+

(
n− 1

k − 1

)
.

(5.1)

Proof. If the maximum on the RHS is given by
(
n−1
k

)
−
(
n−s
k

)
then (5.1)

follows from(
n− 1

k

)
+

(
n− 1

k − 1

)
−
(
n− s
k

)
=

(
n

k

)
−
(
n− s
k

)
.

Assume
(
n−1
k

)
−
(
n−s
k

)
<
(
ks−1
k

)
. Equivalently,(

n− 2

k − 1

)
+

(
n− 3

k − 1

)
+ · · ·+

(
n− s
k − 1

)
< (s− 1)

(
ks− 1

k − 1

)
.

This implies n− s < ks− 1. Using that both are integers, n 5 (k + 1)s− 2
follows.

If s 5 k + 1 then (k + 1)s− 2 5 k(s+ 1)− 1 and(
ks− 1

k

)
+

(
n− 1

k − 1

)
5

(
ks− 1

k

)
+

(
k(s+ 1)− 2

k − 1

)
<

(
k(s+ 1)− 1

k

)
follow. If s = k + 2 then one needs a different argument.
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Using the monotonicity of
(
n−1
k−1

)
it is sufficient to prove:(

ks− 1

k

)
+

(
(k + 1)s− 3

k − 1

)
5

(
ks+ k − 1

k

)
or equivalently,(

(k + 1)s− 3

k − 1

)
5

(
ks− 1

k − 1

)
+

(
ks

k − 1

)
+ · · ·+

(
ks+ k − 2

k − 1

)
.

There are (s−1) terms on the RHS and even for the smallest,
(
ks−1
k−1

)
we have(

ks

s− 1

)/(
(k + 1)s− 3

k − 1

)
=

∏
05i5k−2

ks− i
(k + 1)s− i− 3

>

(
k

k + 1

)k−1

>
1

e
.

Since s = k + 2 = 4, the desired inequality is proved.

Corollary 5.1. If for a given k, F is a minimal counterexample to Conjec-
ture 1.1, then ν(F(1̄)) = s must hold.

Proof. Suppose ν(F(1̄)) = s − 1. By minimality, F(1̄) = {F ∈ F : 1 /∈ F}
is not a counterexample to Conjecture 1.1. Also, for F2 = {F ∈ F : 1 ∈ F},
|F2| ≤

(
n−1
k−1

)
is evident. By Proposition 5.1, F is not a counterexample.

We have showed now that in an inductive proof of Conjecture 1.1, one
can always assume that ν(F(1̄)) = s. Reformulating and elaborating:

Fact 5.2.

(i) |F | ≥ 2 for all F ∈ F0

(ii) For F0 = (d1, . . . , dk−1), d1 = 1 holds.

Proof. Should (i) fail then by stability {1} ∈ F0. Since ν(F(1̄)) = s, we
can find H1, . . . , Hs ∈ F(1̄), that are pairwise disjoint. Now the s + 1 sets
{1}, Hi ∩ [ks + k − 1], i = 1, . . . , s form a matching of size s + 1 in F0,
contradicting Proposition 2.1.

Proposition 5.2. Suppose that Conjecture 1.1 holds for (n−1, k−1, s) and
(n− 1, k, s). Moreover, for (n− 1, k, s) the maximum is given by A1(n− 1).
Then Conjecture 1.1 holds for (n, k, s) and the maximum is given by A1(n).

10



Proof. Consider the two families F(n) and F(n̄). By Proposition 2.1,
ν(F(n)) ≤ s holds. For F(n̄), ν(F(n̄)) ≤ ν(F) ≤ s is evident. By the
hypothesis |F(n̄)| ≤

(
n−1
k

)
−
(
n−s−1

k

)
.

On the other hand, we showed above that for n ≥ ks, |A1(n−1, k−1)| >(
(k−1)(s+1)−1

k

)
, thus |F(n)| ≤

(
n−1
k−1

)
−
(
n−s−1
k−1

)
.

Now |F| = |F(n)|+ |F(n̄)| yields |F| ≤
(
n
k

)
−
(
n−s
k

)
.

Definition 5.1. For k and s fixed let n1(s, k) be the minimum integer n,
such that |Ak| ≤ |A1(n)| holds. Then n1(s, k) is called the pivotal number
for k and s.

Above we showed n1(s, k) < (k + 1)s.

Proposition 5.3. n1(s, k) ≤
(
k +

1

2

)
s+ k

Proof. First note that setting m =
⌊(
k+ 1

2

)
s+k

⌋
we have m ≥

(
k+ 1

2

)
s+k− 1

2
.

We have to show, (
m

k

)
−
(
m− s
k

)
≥
(
k(s+ 1)− 1

k

)
.

The right hand side is s
(
k(s+1)−1

k−1

)
. The left hand side can be estimated using

the convexity of
(

x
k−1

)
by Jensen’s inequality.(

m

k

)
−
(
m− s
k

)
=

s∑
i=1

(
m− i
k − 1

)
> s

(
m− s

2
− 1

2

k − 1

)
.

Since
(
k + 1

2

)
s+ k − 1

2
− s

2
− 1

2
= k(s+ 1)− 1, the statement follows.

Noting that A3 =
(
[ks+k−1]

k

)
does not depend on n, we see that proving

m(n, k, s) ≤
(
ks+k−1

s

)
for n = n1(s, k) implies the same for all n < n1(s, k) as

well. Since m(n, 2, s) =
(
n
2

)
−
(
n−s
2

)
is an old theorem of Erdős and Gallai [3]

for n ≥ 3s, we infer

Fact 5.3. In order to prove Conjecture 1.1 for k = 3, it is sufficient to show
it for n = n1(s, 3) and n = n1(s, 3)− 1.
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6 The structure of H(i, j)
In this section we let k = 3 and R = (i, j). Let

H` =
{
H ∈ H(i, j) : |H| = 2, v(H) = `

}
, ` = 1, 2.

In the previous section we proved 1 ∈ F0. To simplify notation we set d = d2,
i.e., F0 = (1, d).

Proposition 6.1. If |H2| ≥ 3 then one of the following holds.

(i) H2 =
{

(ai, aj), (ai, bj), {bi, aj}, {bi, bj}
}

,

(ii) H2 =
{

(ai, aj), (ai, bj), {bi, aj}
}

,

(iii) H2 =
{

(ai, aj), (ai, bj), (ai, cj)
}

.

Proof. First of all (ai, ci)� (aj, ci) and Fact 4.2 imply (aj, ci) /∈ F0.
If (ai, cj) /∈ F0, then stability implies that (i) or (ii) hold.
If (ai, cj) ∈ F0 then (ai, bj), (ai, aj) ∈ F0 follow by stability. We claim that

{bi, aj} /∈ F0. Indeed, otherwise using (1, bj)� (ai, cj) we find three pairwise
disjoint sets {bi, aj}, (1, bj), (ai, cj) ∈ H(i, j), contradicting ν(H(i, j)) = 2.
By stability, (iii) holds.

Fact 6.1. In cases (i) and (ii) neither {1, ci, cj} nor (1, ci), nor (1, cj) is in
F0. Also neither {ai, d, cj} nor {aj, d, ci} is in F0.

Proof. Since (ai, bj) and {bi, aj} are in H(i, j), {1, ci, cj} /∈ F0, (1, ci) /∈ H1

and (1, cj) /∈ H1 are direct consequences of ν(H(i, j)) = 2. (ai, d, cj), (aj, d, ci)
/∈ F0 follow similarly, using (1, bj) ∈ H1 and (1, bi) ∈ H1.

Corollary 6.1. In cases (i) and (ii) the five sets of width 2, {xi, d, cj} : xi ∈
Fi, {aj, d, ci}, {bj, d, ci} are all missing from H(i, j).

Proof. Evident by stability.

Corollary 6.2. In case (iii) the six sets {xi, yj, d} of width 2, xi = bi or ci,
yj ∈ Fj are missing from H(i, j).

Proof. By stability it is sufficient to prove {bi, aj, d} /∈ H(i, j). This follows
from (1, bj) ∈ H1 and (ai, cj) ∈ H2 using ν(H(i, j)) = 2.

Remark 6.1. There were 9 candidates both for G ∈ H2 and also for sets of
width 2 containing d in H(i, j). We proved that not even half are actually in
H(i, j). This will be of great help in proving Conjecture 1.1.
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7 Some important special cases

We consider H(R) for R = (i1, i2, . . . , ik). To simplify notation we set Fi
`

=(
a1(`), . . . , ak(`)

)
, ` = 1, . . . , k. F0 = (1, d2, . . . , dk−1).

Let us define the partition T1 ∪ · · · ∪ Tk of Fi1 ∪ · · · ∪ Fik by Tq ={
aq(1), . . . , aq(k)

}
.

Definition 7.1. A set D is called a partial diagonal if D ⊂ Fi1 ∪ · · · ∪ Fik ,

v(D) = |D| and
∣∣D ∩ Tq∣∣ ≤ 1 for all 1 ≤ q ≤ k. If further |D| = k, then it

is called a diagonal.

Definition 7.2. If a set T , |T | = k satisfies
∣∣T ∩ Fi

`

∣∣ = 1 for all 1 ≤ ` ≤ k,
(or equivalently, v(T ) = k) then T is called a transversal.

Fact 7.1. There are kk transversals, k! diagonals and for every diagonal D
there are k! transversals T satisfying D � T .

Corollary 7.1. If there is a diagonal which is not in H(R) then there are at
least k! transversals that are not in H(R) either.

Definition 7.3. The k-tuple R is called normal if 1 ≤ q < q′ ≤ k and a ∈ Tq,
a′ ∈ Tq′ imply a < a′.

The notion of normality means that in Fi1∪· · ·∪Fik , the smallest elements
are in T1, the next smallest in T2 and so on. It is a rather strong property,
which cannot be enforced in general. However, in some cases yes.

Proposition 7.1. If all k! diagonals are in H(R), then R is normal.

Proof. Suppose for contradiction that for some 1 ≤ q < q′ ≤ k, a ∈ Tq,
a′ ∈ Tq′ , a > a′ holds.

Since q 6= q′, there exists a diagonal D1 with (a′, a) ⊂ D1. Take (k −
1) more diagonals D2, . . . , Dk such that D1, D2, . . . , Dk form a partition of
Fi1 ∪ · · · ∪ Fik . Replace Fi1 , . . . , Fik by D1, D2, . . . , Dk. Should the elements
of Di be listed in the order as in Fi

`
, that is, the hth element is in Th, then∑

1≤p≤k

ah(p) would be unchanged. However, they are reordered in increasing

order. The assumption a > a′ implies that some are really changed. It is

easy to see that the smallest h for which there is a change in
∑

1≤p≤h

ah(p), it

is decreasing. That contradicts the minimal choice of F1, . . . , Fs.
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Definition 7.4. The k-tuple R is called fat if there exist pairwise disjoint
k-sets H1, . . . , Hk−1 ∈ H(R) such that H1 ∪ · · · ∪Hk−1 = T2 ∪ · · · ∪ Tk.

This is also a very strong property.

Proposition 7.2. If H(R) is not fat then there are at least (k − 1)k−1

transversals T with T /∈ H(R).

Proof. There are (k− 1)k transversals in T2 ∪ · · · ∪ Tk. It is easy to partition
them into (k−1)k−1 groups so that each group consists of k−1 transversals,
forming a partition of T2 ∪ · · · ∪ Tk. Since H(R) is not fat, at least one
transversal is missing from H(R) for each group.

The following lemma shows the strength of the above properties.

Lemma 7.1. If R is both fat and normal then |H| = k holds for every
H ∈ H(R) with H ⊂ Fi1 ∪ · · · ∪ Fik .

Proof. Suppose that H contradicts the conclusion. Let |H| = h < k. Nor-
mality implies (a1(1), . . . , a1(h)) � H. By stability, (a1(1), . . . , a1(h)) ∈
H(R).

From stability and Claim 3.1 we infer {a1(k), d1, d2, . . . , dk−1} ∈ H(R).
Together with the k − 1 pairwise disjoint sets H1, . . . , Hk−1 we obtain a
contradiction with ν(H(R)) = k.

Remark 7.1. Using d1 = 1, F0 ∪ {a2(k)} ∈ F follows from Claim 3.1.
Therefore one can slightly relax the condition of fatness in the lemma and
require only that

(
T2 ∪ · · · ∪ Tk − {a2(k)}

)
∪ {a1(k)} can be obtained as the

union of (k − 1) members of H(R).

Definition 7.5. We say that R is slightly fat if there are k − 1 transversals
H1, . . . , Hk−1 ∈ H(R) whose union is T1 ∪ T3 ∪ T4 ∪ · · · ∪ Tk.

One can prove in the above way

Fact 7.2. If R is slightly fat, H ∈ H(R) then H is not a proper subset of
T2.

Let us consider now H(R) with plenty of H ∈ H(R) with |H| = k − 1.

Definition 7.6. We say that R is robust if there exist k pairwise disjoint
sets H1, . . . , Hk ∈ H(R), each of size k − 1.

14



Claim 7.1. If H ∈ H(R) then
∣∣H ∩ ({1} ∪H1 ∪ · · · ∪Hk)

∣∣ ≥ 2 holds.

Proof. Suppose the contrary. Then we can find H0 with H0 ∈ H(R),
∣∣H0 ∩(

{1}∪H1∪ · · · ∪Hk

)∣∣ = 1. If 1 ∈ H0, then H0, H1, . . . , Hk are k+ 1 pairwise
disjoint sets, contradicting ν(H(R)) = k. However, if the intersection is some
x ∈ H1 ∪ · · · ∪Hk, then by stability (H0 \ {x}) ∪ {1} is also in H(R). Again
we get k + 1 pairwise disjoint sets.

Let now R be robust and k = 3. Set X = Fi1 ∪ Fi2 ∪ Fi3 ∪ {1, d} and
Y = H1 ∪H2 ∪H3 ∪ {1}. Define B(X, Y ) =

{
F ∈

(
X
3

)
: |F ∩ Y | ≥ 2

}
∪
(
Y
2

)
.

Claim 7.1 implies that H(R) ⊆ B(X, Y ).
Since B(X, Y ) corresponds to

{
F ∩ [3s+2] : F ∈ A2(n)

}
, as we will show,∑

H∈H(R)

w(H) ≤ f(2) holds almost automatically for H(R) if R is robust.

Claim 7.2. For k = 3, if R is robust then H1 ∪ · · · ∪Hk = T1 ∪ T2 holds.

Proof. In the contrary case we can choose an `, 1 ≤ ` ≤ k and an element
a ∈ (a1(`), a2(`)) such that a /∈ H1 ∪H2 ∪ · · · ∪Hk.

Using Claim 3.1 and d1 = 1, we infer {1, a, d2, . . . , dk−1} ∈ F . Together
with H1, . . . , Hk these sets contradict ν(H(R)) = k.

Proposition 7.3. For k = 3, if R is robust then∑
H∈H(R)

w(H) ≤ f(2)

holds.

Proof. If for A2(n) and all R ∈
(
[s]
k

)
one defines HA2(n)(R) analogously then

one has HA2(n)(R) =
{
H : |H ∩ (T1 ∪ T2 ∪ {1})| ≥ 2

}
, Claims 7.1 and 7.2

imply H(R) ⊆ HA2(n)(R) and the statement follows.

Now let us prove a statement restricting the number of 2-sets in H(R) for
the case that R is not robust. Let g2 denote the number of 2-element sets of
width 2 in H(R). For {u, v} let g(u, v) denote the number of 2-element sets
of width 2 in H({u, v}). For R = {u, v, z},

g2 = g(u, v) + g(u, z) + g(v, z) (7.1)

is obvious. For notational convenience we assume g(u, v) ≥ g(u, z) ≥ g(v, z).
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Proposition 7.4. If R = {u, v, z} and R is not robust then g2 ≤ 9 holds.

Proof. For contradiction we assume g2 ≥ 10. Using (7.1) and Proposition 6.1
we distinguish two cases.

(a) g(u, v) = g(u, z) = 4, g(v, z) ≥ 2.

In view of Proposition 6.1, all four sets {au, bv}, {av, bu}, {au, bz}, {az, bu}
are in H(R). Also, g(v, z) ≥ 2 implies that either {av, bz} or {az, bv} is
inH(R). By symmetry assume {av, bz} ∈ H(R). Together with {az, bu}
and {au, bv} these 3 sets show that R is robust, a contradiction.

(b) g(u, v) = 4, g(u, z) = g(v, z) = 3.

If both {au, bz} and {az, bu} are in H(R), the preceding proof works.
Consequently, we may assume that for {u, z} one has case (iii) in
Proposition 6.1. That is, either (au, cz) or (az, cu) is in H(R). If
(au, cz) ∈ H(R), take {bu, bv} and {av, az} to show that R is robust.

If (az, cu) ∈ H(R) then take {au, av} and {bu, bv} to get the same
contradiction.

8 The case s = 2

Let us use the results from Section 6 to show that the Matching Conjecture
is true for s = 2.

Since in this case A3 =
(
[8]
3

)
has 56 elements and A1(10) =

{
F ∈

(
[10]
3

)
:

F ∩ [2] 6= ∅
}

has 64 elements, all we have to show is:

|F| ≤ 64 for n = 10, F ⊂
(

[n]

3

)
, ν(F) = 2.

(Recall that for n = 9 and more generally n = 3(s + 1), the bound
(
n−1
3

)
is

true for all s ≥ 2.)
As we showed before, ν(F(1̄)) = 2 can be assumed WLOG. Now R =

(1, 2). Let us write H(1, 2) instead of (H((1, 2)). Define Gi = {H ∈ H(1, 2) :
|H| = 2, v(H) = i} for i = 1, 2, G = G1 ∪ G2. Let us recall (2.2) and prove

Proposition 8.1. If F ⊂
(
[10]
3

)
satisfies ν(F) = 2, ν(F(1̄)) = 2, then

|F| =
∣∣∣∣F ∩ ([8]

3

)∣∣∣∣+ 2
∣∣G∣∣ ≤ 63 (8.1)

holds.
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Proof. Set gi =
∣∣Gi∣∣ for i = 1, 2. Suppose for contradiction that |F| ≥ 64.

From (8.1) we infer g1 + g2 ≥ 4. In particular, (1, a1) ∈ G.

Now ν(F) = ν(H(1, 2)) = 2 implies that P def
= {H ∈ H(R) : H ⊂

([8] − (1, a1))} is an intersecting family. In particular, at least 10 of the 20
subsets of size 3 in

(
[8]−(1,a1)

3

)
are missing from F ∩

(
[8]
3

)
. Consequently, the

first term on the RHS of (8.1) is at most 46, proving g1 + g2 ≥ 9.
Since not both (1, xi) and Fi−{xi} are in G, for i = 1, 2, and xi ∈ Fi (cf.

Facts 4.2, 4.3), g1 ≤ 6. Consequently, g2 ≥ 3 follows.
Now we can apply Proposition 6.1 and distinguish the following two cases

(a) (a1, b2) and {b1, a2} are both in H(1, 2).

Claim 8.1.

|F ∩ {1, a1, a2, b1, b2}| ≥ 2 for all F ∈ F . (8.2)

Indeed, if
∣∣F ∩{1, a1, a2, b1, b2}∣∣ ≤ 1 then by stability there exists some

F ′ ∈ F with F ′ ∩ {a1, a2, b1, b2} = ∅. Using (a1, b2) and {b1, a2} one
concludes ν(H(1, 2)) ≥ 3, a contradiction.

The family F of all F ∈
(
[10]
3

)
satisfying (8.2) is exactly A2(10) and it

has size (
5

3

)
+ 5

(
5

2

)
= 60 < 63

(b) G2 ∩H(1, 2) =
{

(a1, a2), (a1, b2), (a1, c2)
}

.

Now g1 + g2 ≥ 9 and g2 = 3 imply g1 ≥ 6. In particular (1, b1) ∈ G1
and one of (1, c1), (a1, b1) is in G1 too.

However, using Facts 4.1 and 4.3, (1, c1) ∈ G1 implies {a1, b1, d} /∈ F
and (a1, b1) ∈ G1 implies {1, c1, d} /∈ F . In both cases we found a
missing set from

(
[8]
3

)
that is not contained in [8] − (1, a1). Thus we

proved
∣∣F ∩ ([8]

3

)∣∣ ≤ (8
3

)
−10−1 = 45. Now (8.1) and g1 +g2 = 9 imply

|F| ≤ 45 + 2 · 9 = 63

as desired.
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9 Fat and sufficiently fat triples

Let us suppose that R is a fat triple. With notation A = (ai, aj, ak), B =
{bi, bj, bk}, C = {ci, cj, ck} this means that there are F, F ′ ∈ H(R) with
F ∪ F ′ = B ∪ C.

Recall the definition of G1 and G2. We use freely the results from Sections
3, 4 and 5.

Proposition 9.1. If R is fat then (3.3) holds.

Proof. We claim that G2 ∩ H(R) = ∅. Indeed, the contrary and stability
would imply (ai, aj) ∈ G2. Since {1, ak, d} ∈ F , together with F and F ′ we
have 4 pairwise disjoint sets, a contradiction

Comparing with A3 we see that our maximum surplus is nine sets in G1.
However, the existence of a set (1, au) in H(R), together with F, F ′ imply
that {av, az, d} /∈ H(R). By stability, the 9 sets {xv, xz, d}, xv ∈ Fv, xz ∈ Fz

are all missing. Thus for a loss of a maximum of 3 sets ((1, au), (1, bu) and
one of (1, cu), (au, bu)) we have a gain of 9 sets of width 2. Comparing weights
(using Convention 4.1),

3(n− 3s− 3)(
s−1
2

) <
9

s− 2
is equivalent to

2(n− 3s− 3) < 3s− 3, using n− 3s− 3 ≤ s

2
.

s < 3s− 3, true for s ≥ 3.

Fact 9.1. If R is not fat then in H(R)

(i) at least 4 sets of width 3 are missing from
(
B∪C
3

)
.

(ii) at least 6 sets of width 2 are missing from
(
B∪C
3

)
.

Proof. Let us look at the 10 unordered partitions of B ∪C into 2 sets of size
3. (10 = 1

2

(
6
3

)
). Since R is not fat, at least one set from each pair is missing

from H(R). Now 4 partitions use sets of width 3, 6 use sets of width 2.

We are going to compare H(R) with A3, that is, the complete 3-graph on
the same 11 vertices. Fact 9.1 provides us with a gain of 4 + 6

s−2 .

Proposition 9.2. If (1, ak) /∈ H(R) then (3.3) holds.
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Proof. First note that (1, ak) /∈ H(R) implies
∣∣G1 ∩ H(R)

∣∣ ≤ 6 and G2 ∩
H(u, k) = ∅ for u ∈ (i, j). Consequently, G2 ∩ H(R) ⊂ H(i, j). Set g2 =∣∣G2 ∩H(R)

∣∣.
Let us first prove (3.3) for the case g2 ≤ 2. Let n = n1(s, 3). Since by

Proposition 5.3 n1(s, 3) ≤ 3.5s+ 3, we have n− 3s− 2 ≤ s
2

+ 1 = s−2
2

+ 2.
Consequently our losses are at most

2
s−2
2

+ 2

s− 2
+ 6

s−1
2

+ 1
2(

s−1
2

) = 1 +
10

s− 2
+

6

(s− 1)(s− 2)
.

Let us compare it with our gains, 4 + 6
s−2 .

1 +
10

s− 2
+

6

(s− 1)(s− 2)
≤ 4 +

6

s− 2
, equivalently,

4

s− 2
+

6

(s− 1)(s− 2)
≤ 3. (9.1)

For s = 4 both sides are equal. Since the LHS is a decreasing function of
s, (9.1) holds for s ≥ 4. For s = 3 we use n1(s, 3) = 13, n1(s, 3)− 3s− 2 = 2
and check directly

2 · 2

1
+ 6 · 1

1
≤ 4 +

6

1
.

Now let g2 ≥ 3. Using Corollaries 6.1 and 6.2, we get an extra gain of 5
s−2 .

Moreover, if g2 = 4, then {1, ci, cj} /∈ F (because (ai, aj), {bi, bj} ∈ H(R)).
Consequently, {au, ci, cj} /∈ F for u ∈ R. These 4 sets provide us with an
extra gain of 1 + 3

s−2 .
Thus the inequalities to check in the two cases are:

3

2
+

12

s− 2
+

6

(s− 1)(s− 2)
≤ 4 +

11

s− 2
(g2 = 3)

2 +
14

s− 2
+

6

(s− 1)(s− 2)
≤ 5 +

14

s− 2
(g2 = 4)

Rearranging gives

1

s− 2
+

6

(s− 1)(s− 2)
≤ 5

2
6

(s− 1)(s− 2)
≤ 3.
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The first holds for s ≥ 4, the second for s ≥ 3. If g2 = 3 and s = 3 then
using n− 3s− 2 = 2 one checks directly

3 · 2

1
+ 6 · 1

1
< 4 +

11

1
.

From now on R is not fat and (1, au) ∈ H(R) for all u ∈ R.
For a non-fat triple R some slightly weaker properties might hold.

Definition 9.1. We measure the fatness of R by the set Q ⊆ (i, j, k) by
defining Q = Q(R) through: u ∈ Q if and only if there exist pairwise dis-
joint F, F ′ ∈ F with F ∪ F ′ = {au, bv, bz, cu, cv, cz}. If Q 6= ∅, R is called
sufficiently fat.

Proposition 9.3. If u ∈ Q then {av, az} /∈ H(R).

Proof. It follows from ν(H(R)) = 3 since the 4 sets F, F ′, {1, bu, d} and
{av, az} are pairwise disjoint. (The fact that {1, bu, d} ∈ F follows by
Claim 3.1.)

Corollary 9.1.

(i) If |Q| = 3 then (ai, aj) /∈ H(R).

(ii) If |Q| = 2 then (ai, ak) /∈ H(R).

(iii) If |Q| = 1 then (aj, ak) /∈ H(R) hold.

Proof. Immediate from Proposition 9.3 and (ai, aj)� (ai, ak)� (aj, ak).

Define F` = {F ∈ F0 :
∣∣F ∣∣ = 3, v(F ) = `}, ` = 2, 3. Define further

T = F3 ∩ H(R). Let us show that, for not sufficiently fat triples, T is
relatively small.

Proposition 9.4. Suppose that R = (i, j, k) is not sufficiently fat. Then

(i) |T | ≤ 20, and

(ii) there are at least 12 edges missing from F2 ∩H(R).
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Proof. (i) There are 8 transversals in U
def
= B∪C. If {bi, bj, bk} is missing then

by stability all are missing. The next smallest in the shifting partial order
are {bu, bv, cz}, z ∈ (i, j, k) : (u, v) = (i, j, k) − {z}. Supposing indirectly
|T | ≥ 21, we may assume that, for one fixed z, {bu, bv, cz} ∈ T holds.

Since (i, j, k) is not sufficiently fat, {cu, cv, az} /∈ T . Consider two more
similar 3-sets: {cu, av, cz} and {au, cv, cz}. If both are missing from T , then
by stability we obtain 7 missing sets and |T | ≤ 27 − 7 = 20. Thus one or
both are in T . We distinguish two cases accordingly.

(a) {cu, av, cz}, {au, cv, cz} ∈ F
Since (i, j, k) is not sufficiently fat, neither {bu, cv, bz} nor {cu, bv, bz}
are in F . By stability, out of the 8 transversals of U , only {bu, bv, bz}
and {bu, bv, cz} are in F . Together with {cu, cv, az}, we have 7 missing
sets proving

∣∣F3 ∩H(R)
∣∣ ≤ 20.

(b) {cu, av, cz} /∈ F , {au, cv, cz} ∈ F .

Now {au, cv, cz} ∈ F implies {cu, bv, bz} /∈ F . Thus by stability,
{cu, xv, xz} /∈ F for xv ∈ (bv, cv), xz ∈ (bz, cz). Together with {cu, cv, az}
and {cu, av, az} these are already 6 missing sets. If no more are missing,
{bu, cv, cz} and {cu, bv, az} would be in F . However that would show
that (i, j, k) is sufficiently fat, a contradiction.

(ii) Consider the following 12 disjoint pairs.

{bu, cu, cv}, {bv, az, cz} and

{bu, cu, bv}, {cv, az, cz}, u, v, z is a permutation of (i, j, k)

Since (i, j, k) is not sufficiently fat, at least one set of each pair is missing.
These are distinct sets of width 2, concluding the proof.

Even if R is sufficiently fat, but |Q| = 1, we can prove bounds slightly
worse than (i) and (ii).

Proposition 9.5. If |Q| = 1 then (i), (ii) hold.

(i) |T | ≤ 21.

(ii) There are at least 10 missing edges from F2 ∩H(R).
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Proof. Let Q = {z}. Let us define the two six element sets P (x) = (B ∪
C − {bx}) ∪ {ax}, x = u, v. By the definition of Q = Q(R), there are no
F, F ′ ∈ F with F ∪ F ′ = P (x). Therefore – just as in the proof of Fact 9.1
– if F ∪ F ′ = P (x) is a partition of P (x), then at least one of F, F ′ is not in
H(R).

Let us list the 4 partitions of P (u) into sets of width 3:

{au, bv, bz}, {cu, cv, cz}
{au, bv, cz}, {cu, cv, bz}
{au, cv, bz}, {cu, bv, cz}
{au, cv, cz}, {cu, bv, bz}

Let us list further 2 of the partitions of P (v) into 2 sets of width 3:

{cu, av, bz}, {bu, cv, cz}
{cu, av, cz}, {bu, cv, bz}

These are altogether 6 partitions using 12 distinct sets, proving (i).
To prove (ii), we make the corresponding list of 10 partitions into sets of

width 2.

{au, cu, bv}, {cv, bz, cz}
{au, cu, cv}, {bv, bz, cz}
{au, cu, bz}, {bv, cv, cz}
{au, cu, cz}, {bv, cv, bz}
{au, bv, cv}, {cu, bz, cz}
{au, bz, cz}, {cu, bv, cv}

{bu, cu, cv}, {av, bz, cz}
{bu, cu, bz}, {av, cv, cz}
{bu, cu, cz}, {av, cv, bz}
{bu, bz, cz}, {cu, av, cv}

Remark 9.1. The proof might look like trial and error, but it is not. There
is the underlying idea that P (u)−P (v) = {au, bv}. Thus if F ∪F ′ = P (u) is
a partition with au ∈ F , bv ∈ F ′ then neither F , nor F ′ is a subset of P (v).
This also implies that in case of equality in (i) or (ii) for those partitions
where F contains both au and bv, F ∈ H(R), F ′ /∈ H(R) must hold.
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10 Sufficiently fat is sufficient

Let us prove (3.3) with A3 as a reference for triples R that are sufficiently
fat. We distinguish cases according to |Q|.

Recall the notation g` = |G` ∩ H(R)|, ` = 1, 2. Our maximal losses can
be estimated from above as

g2b s+2
2
c

s− 2
+
g1b s2c(
s−1
2

) (10.1)

As to our gains, since R is not fat, using Fact 9.1 and Proposition 9.5, we
have at least

4 +
6

s− 2
(|Q| ≥ 2), and (10.2)

6 +
10

s− 2
(|Q| = 1). (10.3)

These are the “basic” gains. That is, we can use Corollaries 6.1 and 6.2 for
some additional gains in case that |G2 ∩H(u, v)| ≥ 3.

Proposition 10.1. If |Q| = 3 then (3.3) holds.

Proof. In view of Proposition 9.3, g2 = 0. Thus we have to prove

9b s
2
c(

s−1
2

) ≤ 4 +
6

s− 2
. (10.4)

For s = 3, it is true. Let s ≥ 4 and use b s
2
c ≤ s−1

2
+ 1

2
. Then (10.4) reduces

to
3

s− 2
+

9

(s− 1)(s− 2)
≤ 4.

For s = 4, we have 3 < 4, and the LHS is a decreasing function of s.

Proposition 10.2. If |Q| = 2, then (3.3) holds unless s = 3, n = 13.

Proof. Stability and Proposition 9.3 imply (ai, ak), (aj, ak) /∈ G. Thus g2 =
|G2 ∩H(i, j)|. We distinguish 2 cases: g2 ≤ 2 and g2 = 3 or 4.

(a) g2 ≤ 2
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First let s ≥ 6. Use s+2
2

= s−2
2

+ 2 to get the upper bound for (10.1):

2
s−2
2

+ 2

s− 2
+

9

s− 2
+

9

(s− 1)(s− 2)
= 1 +

13

s− 2
+

9

(s− 1)(s− 2)

Thus it is sufficient to have

7

s− 2
+

9

(s− 1)(s− 2)
≤ 3.

For s = 6, 7
4

+ 9
20
< 3, and the LHS is monotone decreasing with s.

For s = 5, b s+2
2
c = 3, b s

2
c = 2 and

2 · 3
3

+
9 · 2

6
= 5 < 4 +

6

3
holds.

For the cases s = 3 or 4, let first n = n1(s, 3) − 1. Then n − 3s − 2
is 1 for s = 3 and 2 for s = 4. It can be checked that (10.1) is less
than (10.2) in both cases.

For s = 4, n = n0(4, 3) = 17 one has |A1(17)| −
(
14
3

)
= 30. Thus

it is sufficient to prove (using f(1) = f(3) + 30

(4
3)

) that (10.1) is less

than (10.2) plus 7.5, which holds largely. However, for s = 3, n = 13
one has

2 · 3 + 9 = 15 > 4 + 6.

We shall take care of the s = 3, n = 13 case separately in Section 12.

(b) g2 ≥ 3.

From Proposition 6.1 it follows that g2 = 3 or 4. From Corollaries 6.1
and 6.2 we can replace (10.2) by 4 + 11

s−2 . Moreover, in the case g2 = 4,
{1, ci, cj} /∈ F and stability provide us with 4 previously not excluded
missing sets {1, ci, cj}, {ai, ci, cj}, {aj, ci, cj} and {ak, ci, cj}. Among
them 3 are of width 2 and 1 is of width 3, providing for an extra
gain of 1 + 3

s−2 .

Consequently, the inequalities needed for g2 = 3, 4 are the following.

3 · s+2
2

s− 2
+

9 · s
2(

s−1
2

) ≤ 4 +
11

s− 2
, and (10.5)

4 · s+2
2

s− 2
+

9 · s
2(

s−1
2

) ≤ 5 +
14

s− 2
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The second one holds with equality for s = 4. The first one holds
strictly for s = 5. Collecting the terms with 1

s−2 on the LHS and
using monotonicity, both inequalities follow unless s = 4 in the first
one. However, even in this case the LHS is only 1 larger than the RHS.
Consequently, (3.3) holds easily with f(3) replaced by f(1) = f(3)+7.5.
In the case s = 4, n = n0(4, 3)− 1 = 16, instead of (10.5) we need (cf.
Corollary 4.1)

3 · 4
2

2
+

9 · 2
2

3
= 3 + 3 < 4 +

11

2

which is true by large.

Proposition 10.3. (3.3) holds for |Q| = 1 and s = 4.

Proof. In view of Corollary 9.1, (aj, ak) /∈ G. Thus

g2 = |G2 ∩H(i, j)|+ |G2 ∩H(i, k)|. (10.6)

Using Proposition 9.5 provides us with a gain of 6 + 10
s−2 .

Claim 10.1. For s ≥ 5 one has

5 ·
b s+2

2
c

s− 2
+

9 · b s
2
c(

s−1
2

) ≤ 6 +
10

s− 2
(10.7)

Proof. (10.7) is easily checked to hold for both s = 5 and 6. For s > 6
monotonicity considerations yield (10.7).

For s = 4 the LHS of (10.7) is 15
2

+ 6 = 13.5, the RHS is 11. Since the
difference is less than 7.5, we are alright.

In the case s = 4, n = 16 one can replace s+2
2

by s
2
, s

2
by s−2

2
and the

corresponding version of (10.7) holds in the stronger form

8 · 2

2
+

9

3
≤ 6 +

10

2
,

that is for g2 = 8. Consequently, in view of Proposition 6.1 in the sequel we
do not need to consider the case s = 4, n = 16.

In view of Claim 10.1, we can assume g2 ≥ 6. Let us use (10.6). For
g2 = 8, |G2 ∩ H(i, j)| = |G2 ∩ H(i, k)| = 4. For g2 = 7, one of them is 4, the
other is 3. For g2 = 6, 6 = 4 + 2, or 6 = 3 + 3 hold.
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Let us first check the case g2 = 6. Now Corollaries 6.1, 6.2 provide us
with an extra gain of 5

s−2 . Thus we need

6 · b s+2
2
c

s− 2
+

9 · b s
2
c(

s−1
2

) ≤ 6 +
15

s− 2

This inequality is true for both s = 5 and 6. By monotonicity it holds for all
s ≥ 5. For s = 4 the two sides are 15 and 13.5 showing that the extra 7.5 is
more than sufficient.

In the cases of g2 = 7, 8 we can use the extra gains from Corollar-
ies 6.1, 6.2. These amount to 10

s−2 , for missing sets containing d. For the
extra gains from Fact 6.1, that is the 4 sets {1, ci, cx}, {ai, ci, cx}, {ax, ci, cx}
and {ay, ci, cx}, where x = j or k and {y} = {j, k}−{x}, we have to be more
careful to avoid counting the same missing set twice. The problem is coming
from the fact that we are already using Proposition 9.5. The sets containing
1 are safe as there is no such set in Proposition 9.5.

Let us sort it out a little. Note that from Proposition 9.3 we infer Q = {i}.
That is, the u, v in Proposition 9.5 are j and k. Consequently, the sets
containing ai do not occur there either. Thus along with {1, ci, cj}, {1, ci, ck},
the two sets {ai, ci, ck} and {ai, ci, cj} provide us with extra gains of 4

s−2 .
However the same cannot be said about the other sets. For our purpose it is
enough already. We have now gains of

6 +
10

s− 2
+

2 · 5
s− 2

+
4

s− 2
= 6 +

24

s− 2
.

Claim 10.2. For s ≥ 4

8 · b s+2
2
c

s− 2
+

9 · b s
2
c(

s−1
2

) ≤ 6 +
24

s− 2
.

Proof. For s = 5 we have

8 · 3
3

+
9 · 2

6
= 11 < 6 +

24

3
= 14.

For s = 4 we have
8 · 3

2
+

9 · 2
3

= 18 = 6 +
24

2
.

The rest follows from monotonicity.

This concludes the proof of Proposition 10.3.
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11 Not sufficiently fat is sufficient

In view of Section 10, we may suppose that R is not sufficiently fat. By
Proposition 9.4 we have an initial gain of

7 +
12

s− 2
. (11.1)

For each (u, v) ⊂ R satisfying |G2 ∩ H(u, v)| ≥ 3 we have an additional
gain of 5

s−2 . Moreover, if |G2 ∩H(u, v)| = 4, then we can add to this 1
s−2 for

the missing set {1, ci, cj}.
Let us compare our maximal loss with (11.1)

g2b s+2
2
c

s− 2
+

9 · b s
2
c(

s−1
2

) ≤ 7 +
12

s− 2
. (11.2)

For s = 5 we have
g2 + 3 ≤ 7 + 4

which is true even for g2 = 8. For g2 = 9, that is, increasing g2 by 1, increases
the LHS by 1. However, adding 5

s−2 to the RHS, it increases by 5
3
, which is

more than 1, proving (3.3) for s = 5.
For s ≥ 6 we use s+2

2
= s−2

2
+ 2, s

2
= s−1

2
+ 1

2
to rewrite the LHS of (11.2)

as
g2
2

+
2g2
s− 2

+
9

s− 2
+

9

(s− 1)(s− 2)

and use it to rewrite (11.2) as

2g2 − 3

s− 2
+

9

(s− 1)(s− 2)
≤ 7− g2

2
. (11.3)

In this form, for g2 fixed, the RHS is constant and the LHS is a decreasing
function of s. If it holds for s = 6, it holds for all s ≥ 6. For g2 = 6, the
inequality (11.3) reduces to

9

4
+

9

20
≤ 4,

which is true.
For g2 ≥ 7, at least one G2 ∩ H(u, v) has to contain at least 3 elements.

Thus our gains increase by 5
s−2 leading to the adjusted version of (11.3):

2g2 − 8

s− 2
+

9

(s− 1)(s− 2)
≤ 7− g2

2
.
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For g2 = 8, plugging in s = 6 gives

2 +
9

20
≤ 3

which is true, and the case s ≥ 6 follows by monotonicity.
For g2 = 9, 9 > 4 + 2 + 2 implies that we can add 2 · 5

s−2 to increase our
gains. Consequently, the inequality that we have to prove reduces to

2g2 − 13

s− 2
+

9

(s− 1)(s− 2)
≤ 7− g2

2
.

Plugging in g2 = 9, s = 6 gives

5

4
+

9

20
≤ 5

2

which is true. Thus we have proved the next proposition except for s = 4.

Proposition 11.1. If R is not sufficiently fat and g2 ≤ 9 then (3.3) holds
for s ≥ 4.

Proof. We only have to deal with the case of s = 4. There are 2 sub-cases:
n = 16 and n = 17. In the first case our losses can be written as

g2 +
9

6
≤ 10.5 < 7 +

12

2
= 13.

For the case n = 17, n− 3s− 2 = s+2
2

. We can bound our losses as:

3g2
2

+ 6 (11.4)

Since our gains are 7 + 12
s−2 = 13, we need only that (11.4) is less than 20.5.

Fortunately, even for g2 = 9 one has

3g2
2

+ 6 =
27

2
+ 6 = 19.5

concluding the proof.

By Propositions 7.3, 7.4 and 11.1 our proof is complete except for s = 3,
n = n1(3, 3) = 13. We are going to handle this case directly in Section 12.
One might think that our whole proof, which in its initial parts used double
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induction, might collapse without this case. It is not the case. Applying
induction for some particular s, we always have n ≥ n1(s, 3) − 1 ≥ n1(s −
1, 3) + 2. Therefore, to support the induction, it is sufficient to prove that
the maximum size of a 3-graph on n = n1(s − 1, 3) + 2 vertices is at most
|A1(n)|. In particular, in our “missing” case, n = 16, s − 1 = 3, using(
s−1−v(H)
k−v(H)

)
=
(
3−v(H)
3−v(H)

)
= 1 we need to give a bound of the form

∑
H∈H(R)

w(H) ≤ |A1(15)| =
(

15

3

)
−
(

12

3

)
= 235 = |A3|+ 70.

That is, we do not have to struggle to get f(3) or f(3)+1 as an upper bound,
f(3)+70 is sufficient. That is too easy, the bounds we have proven so far are
much stronger. Anyway, this discussion is only philosophical. We are going
to handle the quite tedious case n = 13, s = 3 below.

12 The last case

Let n = 13, s = 3, F ⊆
(
[13]
3

)
, ν(F) = 3. Since for s = 3, s− 2 = 1 =

(
s−1
2

)
,

computation is easier. With previous notation let 2 ≤ d ≤ 11 and let

F1 ∪ F2 ∪ F3 = [11]− (1, d), where Fi = (ai, bi, ci).

Set Gi =
{
G ∈

(
[11]
2

)
: v(G) = i, ∃F ∈ F : F ∩ [11] = G

}
, and gi = |Gi|

for i = 1, 2. Set further G = G1 ∪ G2 and F1 = {F ∈ F : F ⊂ [11]}. Now the
formula for |F| is simple

|F| = |F1|+ 2|G| = |F1|+ 2(g1 + g2). (12.1)

Proposition 12.1. |F| ≤ |A3| =
(

11

3

)
= 165.

Arguing indirectly we assume |F| ≥ 166 = |A1(13)|. We are going to
prove Proposition 12.1 as an end result of a series of claims.

Claim 12.1. (1, 2) ∈ G.

Proof. Otherwise |G| = 0 by stability and (12.1) implies |F| ≤ 165.
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Claim 12.2.

|F1| ≤
(

11

3

)
−
(

8

2

)
= 137. (12.2)

Proof. Consider F̃ def
= {F ∈ F1 : F ⊂ [3, 11]}. Now ν(F̃) ≤ 2 follows from

(1, 2) ∈ G. Since
∣∣[3, 11]

∣∣ = 9, from the s = 2 case we infer |F̃ | ≤
(
8
3

)
=(

9
3

)
−
(
8
2

)
. That is, we showed that at least

(
8
2

)
sets are missing already from(

[3,11]
3

)
. It can not be less on

(
[11]
3

)
, proving (12.2).

Corollary 12.1. g1 + g2 ≥ 15.

Proof. If g1 + g2 ≤ 14 then combining it with (12.2) and using (12.1) gives

|F| ≤ 137 + 2 · 14 = 165.

In Section 7 we proved Conjecture 1.1 for robust triples. Since we are
arguing indirectly, WLOG [3] is not robust. Thus Proposition 7.4 gives
g2 ≤ 9. We showed also (the much easier inequality) g1 ≤ 9. Along the
lines of Proposition 7.4 let us prove:

Claim 12.3.
g1 + g2 ≤ 17 (12.3)

Proof. Arguing indirectly we assume g1 = g2 = 9. For (u, v) ⊂ [3] let
G(u, v) denote the family of those G ∈ G2 that satisfy G ⊂ Fu ∪ Fv. In
Proposition 6.1 we characterized G(u, v) for |G(u, v)| ≥ 3. Let us show that
possibilities (i) and (iii) cannot occur simultaneously. Indeed if |G(u, v)| = 4
for some {u, v} ⊂ [3], and either (au, cz) or (az, cu) is in G, then we can take
(au, cz), {bu, bv} and {av, az} or the 3 sets (az, cu), {au, av}, {bu, bv} to show
that [3] is robust, a contradiction.

Should no (au, cz) be in G, then there are only 3 · 4 = 12 possibilities for
G ∈ G2. These 12 sets can be partitioned into 4 groups of 3 sets each, where
each group gives a partition of A∪B. Since [3] is not a robust triple, at most
2 sets from each group are in G2. Thus |G2| ≤ 4 · 2 = 8 < 9.

Until now we showed that there is at least one (u, v) with (au, cv) ∈ G and
there is no (u, v) with |G(u, v)| = 4. Hence by g2 = 9 and Proposition 6.1
|G(u, v)| = 3 for each (u, v) ⊂ [3].

Let us show that possibility (ii) cannot hold for two choices of (u, v) ⊂ [3].
Indeed, if it held for, say, {u, z} and {v, z} and (au, cv) ∈ G, then we could
use (au, cv), {bu, az} and {bz, av} to show that [3] is robust.

Note that if (a2, c3) ∈ G then by stability (a1, c3) ∈ G holds as well.
Consequently, we are left with only two possibilities.
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(a) (a1, c2) ∈ G, (a1, c3) ∈ G, G(2, 3) is of type (ii).

(b) (a1, c2), (a1, c3), (a2, c3) ∈ G.

Let us consider these separately.

(a) (a1, c2), (a2, b3), {a3, b2} show that [3] is robust.

(b) In this case we are going to prove |F| ≤ 165.

First let us show that F1 ∩
(
F3∪{b2,c2}

3

)
= {F3}. Let H ⊂ (F3 ∪ {b2, c2})

and H 6= F3 satisfy H ∈ F1. By stability, we may assume that either
H = {b2, c2, a3}, or H = {b2, a3, b3}.

In the first case look at the 4 sets {b2, c2, a3}, (a1, c3), (a2, b3) and (1, b1)
to obtain the contradiction ν(H([3])) ≥ 4.

In the second case look at the 4 sets {b2, a3, b3}, (a1, c2), (a2, c3) and (1, b1)
to get the same contradiction. (Let us remark that (1, b1) ∈ G follows from
g1 = 9.)

Basically the same argument shows that none of the remaining subsets of
F3 ∪ {b2, c2} ∪ {b1, c1, d} are in F1. This provides us with

(
8
3

)
− 1 = 55 sets

missing from F1. Using (12.1) gives

|F| ≤ (165− 55) + 18 · 2 = 146 < 165.

What we showed is that either g2 ≤ 8 or (1, b1) /∈ G1 holds.
Plugging g1 + g2 ≤ 17 back into (12.1) and using the indirect assumption

|F| ≥ 166 gives
|F1| ≥ 166− 2 · 17 = 132 (12.4)

Claim 12.4. (4, 5) /∈ G.

Proof. Suppose for contradiction that (4, 5) ∈ G. Let us define H =
{
H ∈(

[11]
3

)
:
∣∣H ∩ [3]

∣∣ = 1,
∣∣H ∩ [6, 11]

∣∣ = 2
}

. Note that |H| = 3×
(
6
2

)
= 45. Note

also that H ∩ F1 contains no three pairwise disjoint sets. That is, for every
choice of U, V,W ∈

(
[6,11]
2

)
, U, V,W forming a partition of [6, 11], at least one

of the sets {1} ∪ U , {2} ∪ V and {3} ∪W is missing from F1.
It is both well-known and easily proved that the 15 edges of the complete

graph on the vertex set [6, 11] can be partitioned into 5 perfect matchings:
(Ui, Vi,Wi), 1 5 i 5 5. For each i we consider three triples of 3-sets:(

Ui ∪ {1}, Vi ∪ {2},Wi ∪ {3}
)
,
(
Ui ∪ {2}, Vi ∪ {3},Wi ∪ {1}

)
,(

Ui ∪ {3}, Vi ∪ {1},Wi ∪ {2}
)
.
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These are altogether 15 disjoint triples, each giving rise to at least one 3-set
in H \ F1. By averaging we may choose j, 1 5 j 5 3 such that at least
five sets of the form (j, u, v) are in H \ F1. By stability, neither (4, u, v) nor
(5, u, v) are in F1.

Thus we found ten 3-sets containing 4 or 5 and missing from F1.

On the other hand by ν
(
F1 ∩

(
[3]∪[6,11]

3

))
5 2, at least 1

3

(
9
3

)
= 28 sets are

missing here too. Consequently |F1| 5
(
11
3

)
− (28 + 10) = 127, contradicting

(12.4).

Note that Claim 12.4 shows that G∩ [3] 6= ∅ for all G ∈ G. This brings F
pretty close to A1(13). Next we show that, except for (3, 4) and (3, 5), there
are no sets starting with 3.

Claim 12.5. (3, 6) /∈ G.

Proof. Assume (3, 6) ∈ G. Consider now the family P of missing 3-sets in(
[11]−(3,6)

3

)
. Just as in Claim 12.2, |P| ≥ 28 holds. Since (1, 5) � (2, 5) �

(3, 6), both (1, 5) and (2, 5) are in G. Thus there is no P ∈ P with |P ∩
((1, 2)∪ (4, 5))| ≥ 2, except possibly if P ∩ ((1, 2)∪ (4, 5)) = (4, 5). There can

be at most
∣∣[7, 11]

∣∣ = 5 sets of the latter type. There can be
∣∣∣([7,11]3

)∣∣∣ = 10

sets in P that do not intersect (1, 2) ∪ (4, 5). For the remaining at least
28− 15 = 13 sets P ∈ P one has

∣∣P ∩ ((1, 2) ∪ (4, 5))
∣∣ = 1.

For a set of the form (i, p, q) ∈ P with i ∈ (1, 2), (p, q) ⊂ [7, 11], note
that (3, p, q) /∈ F1 holds by stability. Similarly if i ∈ (4, 5) then (6, p, q) /∈ F1

follows. This way we associate the same missing new set with at most 2 sets in
P . Thus we obtain at least d13

2
e = 7 extra missing sets. This brings the total

to at least 28 + 7 = 35, i.e., |F1| ≤ 165− 35 = 130, contradicting (12.4).

Inequality (12.4) shows that at most 165−132 = 33 sets are missing from(
[11]
3

)
. On the other hand, in Claim 12.2 we showed that at least 28 sets are

missing from
(
[3,11]
3

)
. This implies

Claim 12.6. There are at most five 3-element sets containing 1 or 2 that
are missing from F1.

Corollary 12.2. (2, 8, 9) ∈ F1 and (2, 8, 10) ∈ F1 unless all 3-sets containing
1 are in F1.

Proof. There are
(
4
2

)
= 6 sets of the form (2, a, b) : (a, b) ⊂ (8, 9, 10, 11).

Using stability the statement follows.
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Claim 12.7. (5, 6, 7), (5, 6, 8) ∈ F1.

Proof. Since
∣∣∣([5,11]3

)∣∣∣ = 35, at least 2 of these sets have to be in F1. The

statement follows by stability.

Claim 12.8. (3, 4) ∈ G.

Proof. Suppose the contrary. Since F0 = (1, d) /∈ F , we have 2 = a1. We
infer that all edges in G contain either 1 or a1. In particular, G(2, 3) = ∅.
For G2(1, 2) and G2(1, 3) also, there can be a maximum of 3 edges, namely
the ones containing a1. Thus g2 ≤ 6. Using Corollary 12.1, g2 = 6, g1 = 9
follow. In particular, (a1, c2) and (a1, c3) are in G. Consequently, (a1, x) /∈ G
might be possible only for x = b1, c1 and d.

Moreover, using g1 = 9 and Fact 4.1 (with R = (1)), either (a1, b1) or
(1, c1) is in G. Now the 15 edges in G can be listed:

{(1, x) : 2 ≤ x ≤ 9} ∪ {(2, y) : 3 ≤ y ≤ 8}

along with either (1, 10) or (2, 9). Plugging g1+g2 = 15 once again into (12.1)
gives:

|F1| ≥ 166− 2 · 15 = 136 =

(
11

3

)
− 29.

That is, except for the, at least 28, elements of
(
[3,11]
3

)
there is at most 1

missing 3-set from F1. By stability, only (2, 10, 11) could be missing. Thus
(1, 10, 11) and (2, 9, 11) are in F1. By stability, {1, c1, d} ∈ F and {2, b1, d} ∈
F follow.

Now we can get easily 4 pairwise disjoint sets:

F2, F3, {1, c1, d}, (a1, b1) or

F2, F3, (a1, b1, d), (1, c1), a contradiction.

Claim 12.9. (1, 7) ∈ G.

Proof. Otherwise G ⊂
(
[6]
2

)
. Using (4, 5) /∈ G, |G| ≤ 14 follows, a contradic-

tion.

Claim 12.10. (2, x, y) /∈ F for (x, y) ⊂ (9, 10, 11).

Proof. (1, 7), (3, 4), (5, 6, 8) and (2, x, y) are 4 pairwise disjoint sets.
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Corollary 12.3. (1, 9, 10) ∈ F1.

Proof. Otherwise, by stability, all 3 sets (1, x, y) are missing from F1, (x, y) ⊂
(9, 10, 11). Together we find six, that is more than five, missing 3-sets con-
taining 1 or 2, a contradiction

Corollary 12.4. (2, 7) /∈ G.

Proof. The 4 sets (1, 9, 10), (2, 7), (3, 4) and (5, 6, 8) are pairwise disjoint.

Claim 12.11. G =
{

(3, x) : x = 4, 5
}
∪
{

(2, y) : 3 ≤ y ≤ 6} ∪ {(1, z) : 2 ≤
z ≤ 10

}
.

Proof. The above G has 15 elements. Now the statement follows from |G| ≥
15 and (4, 5) /∈ G, (3, 6) /∈ G, (2, 7) /∈ G, (1, d) /∈ G.

Claim 12.12. (5, 7, 8) /∈ F1.

Proof. The 4 sets (1, 9), (2, 6), (3, 4) and (5, 7, 8) are pairwise disjoint.

Corollary 12.5. The following 30 sets are missing from F1:(
[7, 11]

3

)
, {(i, x, y) : i = 5, 6; (x, y) ⊂ [7, 11]}.

Proof. By (5, 7, 8) /∈ F1 and stability.

Finally, we can get the contradiction. Corollary 12.5 and Claim 12.10
provide us with 33 missing sets. Now (12.1) and |G| = 15 imply

|F| ≤ (165− 33) + 2 · 15 = 162 < 166

13 Uniqueness and beyond

We did not explicitly state it, but the case of stable families, the proof yields
that |F| = max

{∣∣A3

∣∣, ∣∣A1(n)
∣∣} is only possible if F = A3 or F = A1(n)

holds. Then it is not hard to show that even without assuming stability, the
families of maximal size are unique up to isomorphism. For stable families
our proof yields much more.
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Theorem 13.1. Let F ⊂
(
[n]
3

)
be a stable family with ν(F) = ν(F(1̄)) =

s, s ≥ 5. Then

|F| ≤ max
{∣∣F3

∣∣, ∣∣F2(n)
∣∣} (13.1)

holds and in case of equality F = F3 or F = F2(n).

For the cases s = 2, 3 and 4 the same result holds, but one has to do an
even more detailed case analysis (or find a different proof).

In this paper we prove some results for general k but did not even come
close to giving a full proof of the Matching Conjecture. Let us announce two
results which will appear in a forthcoming paper.

Theorem 13.2. For k = 4 and s > s0 the Matching Conjecture is true.

For the second we need a definition.
Let (x0, x1, . . . , xs−1) ⊂ [n] and let F1, . . . , Fs be pairwise disjoint sets,

xi ∈ Fi, 1 ≤ i < s but x0 /∈ F1 ∪ · · · ∪ Fs ⊂ [n]. Define a graph G with edge
set consisting of all {xi, yi} satisfying yi ∈ Fi+1 ∪ · · ·Fs, 0 ≤ i < s. Finally
define the k-graph F(G) by

F(G) =

{
F ∈

(
[n]

k

)
: E ⊂ F holds for some edge E ∈ G

}
∪{F1, F2, . . . , Fs}.

Theorem 13.3 ([12]). Let k ≥ 4, n ≥ n1(k, s) and let F ⊂
(
[n]
k

)
be a stable

family with ν(F) = ν(F(1̄)) = s. Then
∣∣F∣∣ ≤ ∣∣F(G)

∣∣ and in case of equality
F is isomorphic to F(G).
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