New inequalities for cross-intersecting families

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Two families \mathcal{F} and \mathcal{G} are called cross-intersecting if for all $F \in \mathcal{F}$, $G \in \mathcal{G}$ the intersection $F \cap G$ is non-empty. Under some additional conditions we prove best possible bounds on $|\mathcal{F}|+|\mathcal{G}|$. These results were recently applied to obtain a stability result for a classical theorem of Katona [Ka].

1 Introduction

Let $[n]=\{1, \ldots, n\}$ be the standard n-element set. For an integer $k, 0 \leqq$ $k \leqq n,\binom{[n]}{k}$ is the collection of k-subsets of $[n]$. A family $\mathcal{F} \subset\binom{[n]}{k}$ is called t-intersecting if $\left|F \cap F^{\prime}\right| \geqq t$ for all $F, F^{\prime} \in \mathcal{F}$. Also, if $\mathcal{F} \subset\binom{[n]}{k}$ and $\mathcal{G} \subset\binom{[n]}{\ell}$ are two families satisfying $F \cap G \neq \emptyset$ for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$ then they are called cross-intersecting.

The study of possible maximum sizes of t-intersecting families and pairs of cross-intersecting families is one of the central problems of extremal set theory. It goes back to the papers of Erdős-Ko-Rado [EKR], Katona [Ka] and Hilton-Milner [HM].

Since this is a short note we are unable to give an overview of the known results. We restrict ourselves to mentioning some results that are closely related to our results and/or which are used in the proof. First of all let us state our results.

Theorem. Let n, k, t be non-negative integers, $n \geqq k+2 t$. Suppose that $\mathcal{F} \subset\binom{[n]}{k+t}, \mathcal{G} \subset\binom{[n]}{k}$ are cross-intersecting. Then (i) and (ii) hold.
(i) If \mathcal{F} is t-intersecting then

$$
\begin{equation*}
|\mathcal{F}|+|\mathcal{G}| \leqq\binom{ n}{k} \tag{1}
\end{equation*}
$$

(ii) If \mathcal{F} is $(t+1)$-intersecting and non-empty then

$$
\begin{equation*}
|\mathcal{F}|+|\mathcal{G}| \leqq 1+\binom{n}{k}-\binom{n-t-k}{k} \tag{2}
\end{equation*}
$$

2 Tools and proofs

Our main tool is the following classical result.
For a family \mathcal{H} and an integer ℓ let $\Delta_{\ell}(\mathcal{H}) \subset\binom{[n]}{\ell}$ be the ℓ-shadow of \mathcal{H} :

$$
\Delta_{\ell}(\mathcal{H})=\left\{D \in\binom{[n]}{\ell}: \exists H \in \mathcal{H} \text { satisfying } D \subset H\right\} .
$$

Katona Intersecting Shadow Theorem ([Ka]). Suppose that $\mathcal{H} \subset\binom{[n]}{h}$ is r-intersecting. Then

$$
\begin{equation*}
\left|\Delta_{h-r}(\mathcal{H})\right| \geqq|\mathcal{H}| \quad \text { holds } . \tag{3}
\end{equation*}
$$

First let us prove (i). Define $\mathcal{H}=\{[n]-F: F \in \mathcal{F}\} \subset\binom{[n]}{n-k-t}$ and note that $n \geqq 2 k+t$ implies $n-k-t \geqq k$.

For $F, F^{\prime} \in \mathcal{F}$ the t-intersecting property implies $\left|F \cup F^{\prime}\right|=|F|+\left|F^{\prime}\right|-$ $\left|F \cap F^{\prime}\right| \leqq 2(k+t)-t=2 k+t$. Equivalently, $\left|([n]-F) \cap\left([n]-F^{\prime}\right)\right|=$ $n-\left|F \cup F^{\prime}\right| \geqq n-2 k-t$, i.e., \mathcal{H} is $(n-2 k-t)$-intersecting.

Let us apply (3) with $h=n-k-t, r=n-2 k-t$ to obtain

$$
\left|\Delta_{k}(\mathcal{H})\right| \geqq|\mathcal{H}| .
$$

On the other hand $\Delta_{k}(\mathcal{H})$ and \mathcal{G} are disjoint by the cross-intersecting property. Indeed $G \in \mathcal{G} \cap \Delta_{k}(\mathcal{H})$ would mean $G \subset([n]-F)$ for some $F \in \mathcal{F}$, i.e., $G \cap F=\emptyset$.

Since both \mathcal{G} and \mathcal{H} are subsets of $\binom{[n]}{k},|\mathcal{G}|+|\mathcal{H}|=|\mathcal{G}|+|\mathcal{F}| \leqq\binom{ n}{k}$ follows.

To prove (2) is more difficult. Let us recall that a family $\mathcal{F} \subset 2^{[n]}$ is called shifted if for all $1 \leqq i<j \leqq n, F \cap\{i, j\}=\{j\}$ implies for $F \in \mathcal{F}$ that $(F-\{j\}) \cup\{i\}$ is also in \mathcal{F}.

The following statement which is implicitly contained in [EKR] and explicitly used in [Ka] and [HM] is very useful in obtaining inequalities concerning t-intersecting families and pairs of cross-intersecting families.

Lemma. Let $\mathcal{F} \subset\binom{[n]}{\ell}$ and $\mathcal{G} \subset\binom{[n]}{k}$ be cross-intersecting families and let \mathcal{F} be t-intersecting as well. Then there exist shifted families $\widetilde{\mathcal{F}} \subset\binom{[n]}{\ell}, \widetilde{\mathcal{G}} \subset\binom{[n]}{k}$ such that $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ are cross-intersecting, $\widetilde{\mathcal{F}}$ is t-intersecting and $|\widetilde{\mathcal{F}}|=|\mathcal{F}|$, $|\widetilde{\mathcal{G}}|=|\mathcal{G}|$ hold .

In view of the Lemma, upon proving (ii) we may assume that both \mathcal{F} and \mathcal{G} are shifted.

Proof of (ii). We want to apply double induction on n and k. Therefore we first check the validity of (2) in the cases $k=0$ and 1 and also for $n=2 k+t$. If $k=0$ or 1 then $\mathcal{F} \neq \emptyset$ implies by shiftedness $\mathcal{F}=\{\{1,2, \ldots, k+t\}\}$. Since \mathcal{F} and \mathcal{G} are cross-intersecting $\mathcal{G} \cap\binom{[n]-\{1,2, \ldots, k+t\}}{k}=\emptyset$ must hold. Thus

$$
|\mathcal{G}| \leqq\binom{ n}{k}-\binom{n-k-t}{k}, \quad \text { proving }(2)
$$

In the case $n=2 k+t$ the formula on the RHS of (2) reduces simply to $\binom{n}{k}$ and it readily follows from (1). Or also from $\mathcal{G} \cap\{[n]-F: F \in \mathcal{F}\}=\emptyset$, using the cross-intersecting property.

From now on $k \geqq 2, n>2 k+t$. For $\mathcal{H} \subset 2^{[n]}$ define the following two families:

$$
\begin{aligned}
& \mathcal{H}(n)=\{H-\{n\}: n \in H \in \mathcal{H}\}, \\
& \mathcal{H}(\bar{n})=\{H: n \notin H \in \mathcal{H}\} .
\end{aligned}
$$

Note that

$$
|\mathcal{H}|=|\mathcal{H}(n)|+|\mathcal{H}(\bar{n})| \text { holds. }
$$

Claim 1. $\mathcal{F}(n) \subset\binom{[n-1]}{k+t-1}$ is $t+1$-intersecting.
Proof. If $F, F^{\prime} \in \mathcal{F}$ then $\left|F \cap F^{\prime}\right| \geqq t+1$ implies $\left|F \cup F^{\prime}\right|=|F|+\left|F^{\prime}\right|-$ $\left|F \cap F^{\prime}\right| \leqq 2(k+t)-(t+1)=2 k+t-1 \leqq n-2$. Therefore one can find $i \in[n-1]$ with $i \notin F \cup F^{\prime}$. Suppose now $n \in F \cap F^{\prime}$. We need to prove

$$
\begin{equation*}
\left|(F-\{n\}) \cap\left(F^{\prime}-\{n\}\right)\right| \geqq t+1 \tag{4}
\end{equation*}
$$

Since $\left|F \cap F^{\prime}\right| \geqq t+1$, the only way that (4) can fail is

$$
\left|(F-\{n\}) \cap\left(F^{\prime}-\{n\}\right)\right|=t .
$$

Suppose for contradiction that this is the case. By shiftedness

$$
F^{\prime \prime} \stackrel{\text { def }}{=}(F-\{n\}) \cup\{i\} \text { is in } \mathcal{F} .
$$

However,
$F^{\prime \prime} \cap F^{\prime}=F \cap F^{\prime}-\{n\}$, i.e., $\left|F^{\prime \prime} \cap F^{\prime}\right|=t$, a contradiction.
Claim 2. $\mathcal{F}(n)$ and $\mathcal{G}(n)$ are cross-intersecting.
Proof. The proof is similar to Claim 1, therefore we shall be somewhat sketchy. The only way that Claim 2 can be false is if there are $F \in \mathcal{F}$, $G \in \mathcal{G}$ such that $F \cap G=\{n\}$ holds.
$|F|+|G|=2 k+t<n$ implies the existence of $i \in[n-1], i \notin F \cup G$. By shiftedness, $F^{\prime} \stackrel{\text { def }}{=}(F-\{n\}) \cup\{i\}$ is in \mathcal{F}. However, $F^{\prime} \cap G=\emptyset$, a contradiction.

Now we are ready to do the induction step.
Since $\mathcal{F} \neq \emptyset$ is shifted, $\{1,2, \ldots, k+t\} \in \mathcal{F}(\bar{n})$ holds. Let us apply the induction hypothesis to $\mathcal{F}(\bar{n}) \subset \mathcal{F}$ and $\mathcal{G}(\bar{n}) \subset \mathcal{G}$.

We infer

$$
\begin{equation*}
|\mathcal{F}(\bar{n})|+|\mathcal{G}(\bar{n})| \leqq 1+\binom{n-1}{k}+\binom{n-1-k-t}{k} \tag{5}
\end{equation*}
$$

Note that $\{1, \ldots, k+t\} \in \mathcal{F}$ and the cross-intersecting property imply

$$
\begin{equation*}
|\mathcal{G}(n)| \leqq\binom{ n-1}{k-1}-\binom{n-1-k-t}{k-1} \tag{6}
\end{equation*}
$$

If $\mathcal{F}(n)=\emptyset$, then adding (5) and (6) yields (2). Suppose $\mathcal{F}(n) \neq \emptyset$ then by the induction hypothesis we have

$$
\begin{align*}
|\mathcal{F}(n)|+|\mathcal{G}(n)| & \leqq 1+\binom{n-1}{k-1}-\binom{n-1-(k+t-1)}{k-1} \tag{7}\\
& =\binom{n-1}{k-1}-\binom{n-1-k-t}{k-1}+\left(1-\binom{n-1-k-t}{k-2}\right) .
\end{align*}
$$

Since $k \geqq 2$ and $n>2 k+t$ the term in the bracket is non-positive, adding (5) and (7) concludes the proof.

To see that the bound (2) is best possible one takes $\mathcal{F}=\{[k+t]\}$ and $\mathcal{G}=\left\{G \subset\binom{[n]}{k}: G \cap[k+t] \neq \emptyset\right\}$. In the case of (1) equality holds for $\mathcal{F}=\emptyset$ and $\mathcal{G}=\binom{[n]}{k}$ and if $n=2 k+t$ then also for $\mathcal{F}=\binom{[2 k+t]}{k+t}, \mathcal{G}=\emptyset$. One can show that in all other cases the inequalities are strict.

3 Concluding remarks

Let us mention that Hilton and Milner [HM] proved (2) in the case $t=0$, with the much weaker assumption that both \mathcal{F} and \mathcal{G} are non-empty. However, one can easily show that for $t \geqq 1$ it is not sufficient to assume the t-intersecting property instead of \mathcal{F} being $(t+1)$-intersecting.

Let us close this paper by a conjecture. Let k, t, s be positive integers, $k \geqq s+1$. Consider the two families

$$
\mathcal{F}=\binom{[k+t+s]}{k+t}, \quad \mathcal{G}=\left\{G \in\binom{[n]}{k}:|G \cap[k+t+s]| \geqq s+1\right\} .
$$

Note that \mathcal{F} is $(t+1)$-intersecting, \mathcal{F} and \mathcal{G} are cross-intersecting and $|\mathcal{G}|=$ $\binom{n}{k}-\sum_{0 \leq i \leq s}\binom{k+t+s}{i}\binom{n-k-t-s}{k-i}$ hold.
Conjecture. Let k, t, s be positive integers, $k \geqq s+1$. Suppose that $\mathcal{F} \subset$ $\binom{[n]}{k+t}$ is $(t+1)$-intersecting and $\binom{[k+t+s]}{t} \subset \mathcal{F}$. Let $\mathcal{G} \subset\binom{[n]}{k}$ and suppose that \mathcal{F} and \mathcal{G} are cross-intersecting. Then for $n \geqq 2 k+t$,

$$
\begin{equation*}
|\mathcal{F}|+|\mathcal{G}| \leqq\binom{ k+t+s}{k+t}+\binom{n}{k}-\sum_{0 \leqq i \leqq s}\binom{k+t+s}{i}\binom{n-k-t-s}{k-i} \tag{8}
\end{equation*}
$$

holds.
Note that setting $s=0$ we get back (2). We can prove (8) for some small values of k and also for $n>c k^{2}$, however to prove it in the full range appears to be difficult. Let us mention that it is shown in [FT] that in the case $s=t=1$ assuming $|\mathcal{F}| \geqq k+2$ instead of $\binom{[k+2]}{k+1} \subset \mathcal{F}$ is not sufficient to guarantee (8).

References

[EKR] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961), 313-320.
[FT] P. Frankl, N. Tokushige, Some inequalities concerning cross-intersecting families, Combinatorics, Prob. and Computing 7 (1998), 247-260.
[HM] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18 (1967), 369-384.
[Ka] G. O. H. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964), 329-337.

