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by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Two families F and G are called cross-intersecting if for all F ∈ F ,
G ∈ G the intersection F ∩ G is non-empty. Under some additional
conditions we prove best possible bounds on |F| + |G|. These results
were recently applied to obtain a stability result for a classical theorem
of Katona [Ka].

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set. For an integer k, 0 5
k 5 n,

(
[n]
k

)
is the collection of k-subsets of [n]. A family F ⊂

(
[n]
k

)
is called

t-intersecting if |F ∩F ′| = t for all F, F ′ ∈ F . Also, if F ⊂
(
[n]
k

)
and G ⊂

(
[n]
`

)
are two families satisfying F ∩G 6= ∅ for all F ∈ F and G ∈ G then they are
called cross-intersecting.

The study of possible maximum sizes of t-intersecting families and pairs
of cross-intersecting families is one of the central problems of extremal set
theory. It goes back to the papers of Erdős–Ko–Rado [EKR], Katona [Ka]
and Hilton–Milner [HM].

Since this is a short note we are unable to give an overview of the known
results. We restrict ourselves to mentioning some results that are closely
related to our results and/or which are used in the proof. First of all let us
state our results.

Theorem. Let n, k, t be non-negative integers, n = k + 2t. Suppose that
F ⊂

(
[n]
k+t

)
, G ⊂

(
[n]
k

)
are cross-intersecting. Then (i) and (ii) hold.

(i) If F is t-intersecting then

(1) |F|+ |G| 5
(
n

k

)
.
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(ii) If F is (t + 1)-intersecting and non-empty then

(2) |F|+ |G| 5 1 +

(
n

k

)
−
(
n− t− k

k

)
.

2 Tools and proofs

Our main tool is the following classical result.
For a family H and an integer ` let ∆`(H) ⊂

(
[n]
`

)
be the `-shadow of H:

∆`(H) =

{
D ∈

(
[n]

`

)
: ∃H ∈ H satisfying D ⊂ H

}
.

Katona Intersecting Shadow Theorem ([Ka]). Suppose that H ⊂
(
[n]
h

)
is r-intersecting. Then

(3)
∣∣∆h−r(H)

∣∣ = |H| holds.

First let us prove (i). Define H = {[n]− F : F ∈ F} ⊂
(

[n]
n−k−t

)
and note

that n = 2k + t implies n− k − t = k.
For F, F ′ ∈ F the t-intersecting property implies |F ∪ F ′| = |F |+ |F ′| −

|F ∩ F ′| 5 2(k + t) − t = 2k + t. Equivalently,
∣∣([n] − F ) ∩ ([n] − F ′)

∣∣ =
n− |F ∪ F ′| = n− 2k − t, i.e., H is (n− 2k − t)-intersecting.

Let us apply (3) with h = n− k − t, r = n− 2k − t to obtain∣∣∆k(H)
∣∣ = |H|.

On the other hand ∆k(H) and G are disjoint by the cross-intersecting
property. Indeed G ∈ G∩∆k(H) would mean G ⊂ ([n]−F ) for some F ∈ F ,
i.e., G ∩ F = ∅.

Since both G and H are subsets of
(
[n]
k

)
, |G| + |H| = |G| + |F| 5

(
n
k

)
follows. �

To prove (2) is more difficult. Let us recall that a family F ⊂ 2[n] is called
shifted if for all 1 5 i < j 5 n, F ∩ {i, j} = {j} implies for F ∈ F that
(F − {j}) ∪ {i} is also in F .

The following statement which is implicitly contained in [EKR] and ex-
plicitly used in [Ka] and [HM] is very useful in obtaining inequalities con-
cerning t-intersecting families and pairs of cross-intersecting families.
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Lemma. Let F ⊂
(
[n]
`

)
and G ⊂

(
[n]
k

)
be cross-intersecting families and let F

be t-intersecting as well. Then there exist shifted families F̃ ⊂
(
[n]
`

)
, G̃ ⊂

(
[n]
k

)
such that F̃ and G̃ are cross-intersecting, F̃ is t-intersecting and |F̃ | = |F|,
|G̃| = |G| hold.

In view of the Lemma, upon proving (ii) we may assume that both F and
G are shifted.

Proof of (ii). We want to apply double induction on n and k. Therefore we
first check the validity of (2) in the cases k = 0 and 1 and also for n = 2k+ t.
If k = 0 or 1 then F 6= ∅ implies by shiftedness F =

{
{1, 2, . . . , k + t}

}
.

Since F and G are cross-intersecting G ∩
(
[n]−{1,2,...,k+t}

k

)
= ∅ must hold. Thus

|G| 5
(
n

k

)
−
(
n− k − t

k

)
, proving (2).

In the case n = 2k + t the formula on the RHS of (2) reduces simply to
(
n
k

)
and it readily follows from (1). Or also from G ∩

{
[n] − F : F ∈ F

}
= ∅,

using the cross-intersecting property.
From now on k = 2, n > 2k + t. For H ⊂ 2[n] define the following two

families:

H(n) =
{
H − {n} : n ∈ H ∈ H

}
,

H(n) = {H : n /∈ H ∈ H}.

Note that
|H| = |H(n)|+ |H(n)| holds.

Claim 1. F(n) ⊂
(
[n−1]
k+t−1

)
is t + 1-intersecting.

Proof. If F, F ′ ∈ F then |F ∩ F ′| = t + 1 implies |F ∪ F ′| = |F | + |F ′| −
|F ∩ F ′| 5 2(k + t) − (t + 1) = 2k + t − 1 5 n − 2. Therefore one can find
i ∈ [n− 1] with i /∈ F ∪ F ′. Suppose now n ∈ F ∩ F ′. We need to prove

(4)
∣∣(F − {n}) ∩ (F ′ − {n})

∣∣ = t + 1.

Since |F ∩ F ′| = t + 1, the only way that (4) can fail is∣∣(F − {n}) ∩ (F ′ − {n})
∣∣ = t.

Suppose for contradiction that this is the case. By shiftedness

F ′′
def
= (F − {n}) ∪ {i} is in F .
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However,

F ′′ ∩ F ′ = F ∩ F ′ − {n}, i.e., |F ′′ ∩ F ′| = t, a contradiction.

Claim 2. F(n) and G(n) are cross-intersecting.

Proof. The proof is similar to Claim 1, therefore we shall be somewhat
sketchy. The only way that Claim 2 can be false is if there are F ∈ F ,
G ∈ G such that F ∩G = {n} holds.
|F | + |G| = 2k + t < n implies the existence of i ∈ [n − 1], i /∈ F ∪ G.

By shiftedness, F ′
def
= (F − {n}) ∪ {i} is in F . However, F ′ ∩ G = ∅, a

contradiction.

Now we are ready to do the induction step.
Since F 6= ∅ is shifted, {1, 2, . . . , k + t} ∈ F(n) holds. Let us apply the

induction hypothesis to F(n) ⊂ F and G(n) ⊂ G.
We infer

(5) |F(n)|+ |G(n)| 5 1 +

(
n− 1

k

)
+

(
n− 1− k − t

k

)
.

Note that {1, . . . , k + t} ∈ F and the cross-intersecting property imply

(6) |G(n)| 5
(
n− 1

k − 1

)
−
(
n− 1− k − t

k − 1

)
.

If F(n) = ∅, then adding (5) and (6) yields (2). Suppose F(n) 6= ∅ then by
the induction hypothesis we have

(7)

|F(n)|+ |G(n)| 5 1 +

(
n− 1

k − 1

)
−
(
n− 1− (k + t− 1)

k − 1

)
=

(
n− 1

k − 1

)
−
(
n−1−k−t

k − 1

)
+

(
1−
(
n−1−k−t

k − 2

))
.

Since k = 2 and n > 2k+t the term in the bracket is non-positive, adding
(5) and (7) concludes the proof. �

To see that the bound (2) is best possible one takes F = {[k + t]} and

G =
{
G ⊂

(
[n]
k

)
: G ∩ [k + t] 6= ∅

}
. In the case of (1) equality holds for F = ∅

and G =
(
[n]
k

)
and if n = 2k + t then also for F =

(
[2k+t]
k+t

)
, G = ∅. One can

show that in all other cases the inequalities are strict.
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3 Concluding remarks

Let us mention that Hilton and Milner [HM] proved (2) in the case t = 0, with
the much weaker assumption that both F and G are non-empty. However, one
can easily show that for t = 1 it is not sufficient to assume the t-intersecting
property instead of F being (t + 1)-intersecting.

Let us close this paper by a conjecture. Let k, t, s be positive integers,
k = s + 1. Consider the two families

F =

(
[k + t + s]

k + t

)
, G =

{
G ∈

(
[n]

k

)
:
∣∣G ∩ [k + t + s]

∣∣ = s + 1

}
.

Note that F is (t+ 1)-intersecting, F and G are cross-intersecting and |G| =(
n
k

)
−
∑

05i5s

(
k+t+s

i

)(
n−k−t−s

k−i

)
hold.

Conjecture. Let k, t, s be positive integers, k = s + 1. Suppose that F ⊂(
[n]
k+t

)
is (t+1)-intersecting and

(
[k+t+s]

t

)
⊂ F . Let G ⊂

(
[n]
k

)
and suppose that

F and G are cross-intersecting. Then for n = 2k + t,

(8) |F|+ |G| 5
(
k + t + s

k + t

)
+

(
n

k

)
−
∑
05i5s

(
k + t + s

i

)(
n− k − t− s

k − i

)
holds.

Note that setting s = 0 we get back (2). We can prove (8) for some
small values of k and also for n > ck2, however to prove it in the full range
appears to be difficult. Let us mention that it is shown in [FT] that in the
case s = t = 1 assuming |F| = k + 2 instead of

(
[k+2]
k+1

)
⊂ F is not sufficient

to guarantee (8).
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