New inequalities for cross-intersecting families

by Peter Frankl, Rényi Institute, Budapest, Hungary

Abstract

Two families \mathcal{F} and \mathcal{G} are called cross-intersecting if for all $F \in \mathcal{F}$, $G \in \mathcal{G}$ the intersection $F \cap G$ is non-empty. Under some additional conditions we prove best possible bounds on $|\mathcal{F}| + |\mathcal{G}|$. These results were recently applied to obtain a stability result for a classical theorem of Katona [Ka].

1 Introduction

Let $[n] = \{1, \ldots, n\}$ be the standard *n*-element set. For an integer $k, 0 \leq k \leq n, \binom{[n]}{k}$ is the collection of *k*-subsets of [n]. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called *t*-intersecting if $|F \cap F'| \geq t$ for all $F, F' \in \mathcal{F}$. Also, if $\mathcal{F} \subset \binom{[n]}{k}$ and $\mathcal{G} \subset \binom{[n]}{\ell}$ are two families satisfying $F \cap G \neq \emptyset$ for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$ then they are called *cross-intersecting*.

The study of possible maximum sizes of *t*-intersecting families and pairs of cross-intersecting families is one of the central problems of extremal set theory. It goes back to the papers of Erdős–Ko–Rado [EKR], Katona [Ka] and Hilton–Milner [HM].

Since this is a short note we are unable to give an overview of the known results. We restrict ourselves to mentioning some results that are closely related to our results and/or which are used in the proof. First of all let us state our results.

Theorem. Let n, k, t be non-negative integers, $n \ge k + 2t$. Suppose that $\mathcal{F} \subset {[n] \choose k+t}, \ \mathcal{G} \subset {[n] \choose k}$ are cross-intersecting. Then (i) and (ii) hold. (i) If \mathcal{F} is t-intersecting then

(1)
$$|\mathcal{F}| + |\mathcal{G}| \leq \binom{n}{k}.$$

(ii) If \mathcal{F} is (t+1)-intersecting and non-empty then

(2)
$$|\mathcal{F}| + |\mathcal{G}| \leq 1 + \binom{n}{k} - \binom{n-t-k}{k}.$$

2 Tools and proofs

Our main tool is the following classical result.

For a family \mathcal{H} and an integer ℓ let $\Delta_{\ell}(\mathcal{H}) \subset {[n] \choose \ell}$ be the ℓ -shadow of \mathcal{H} :

$$\Delta_{\ell}(\mathcal{H}) = \left\{ D \in \binom{[n]}{\ell} : \exists H \in \mathcal{H} \text{ satisfying } D \subset H \right\}.$$

Katona Intersecting Shadow Theorem ([Ka]). Suppose that $\mathcal{H} \subset {\binom{[n]}{h}}$ is r-intersecting. Then

(3)
$$\left|\Delta_{h-r}(\mathcal{H})\right| \geq |\mathcal{H}| \quad holds$$

First let us prove (i). Define $\mathcal{H} = \{[n] - F : F \in \mathcal{F}\} \subset {[n] \choose n-k-t}$ and note that $n \geq 2k + t$ implies $n - k - t \geq k$.

For $F, F' \in \mathcal{F}$ the *t*-intersecting property implies $|F \cup F'| = |F| + |F'| - |F \cap F'| \leq 2(k+t) - t = 2k + t$. Equivalently, $|([n] - F) \cap ([n] - F')| = n - |F \cup F'| \geq n - 2k - t$, i.e., \mathcal{H} is (n - 2k - t)-intersecting.

Let us apply (3) with h = n - k - t, r = n - 2k - t to obtain

$$\left|\Delta_k(\mathcal{H})\right| \geq |\mathcal{H}|$$

On the other hand $\Delta_k(\mathcal{H})$ and \mathcal{G} are disjoint by the cross-intersecting property. Indeed $G \in \mathcal{G} \cap \Delta_k(\mathcal{H})$ would mean $G \subset ([n] - F)$ for some $F \in \mathcal{F}$, i.e., $G \cap F = \emptyset$.

Since both \mathcal{G} and \mathcal{H} are subsets of $\binom{[n]}{k}$, $|\mathcal{G}| + |\mathcal{H}| = |\mathcal{G}| + |\mathcal{F}| \leq \binom{n}{k}$ follows.

To prove (2) is more difficult. Let us recall that a family $\mathcal{F} \subset 2^{[n]}$ is called *shifted* if for all $1 \leq i < j \leq n, F \cap \{i, j\} = \{j\}$ implies for $F \in \mathcal{F}$ that $(F - \{j\}) \cup \{i\}$ is also in \mathcal{F} .

The following statement which is implicitly contained in [EKR] and explicitly used in [Ka] and [HM] is very useful in obtaining inequalities concerning *t*-intersecting families and pairs of cross-intersecting families. **Lemma.** Let $\mathcal{F} \subset {\binom{[n]}{\ell}}$ and $\mathcal{G} \subset {\binom{[n]}{k}}$ be cross-intersecting families and let \mathcal{F} be t-intersecting as well. Then there exist shifted families $\widetilde{\mathcal{F}} \subset {\binom{[n]}{\ell}}, \ \widetilde{\mathcal{G}} \subset {\binom{[n]}{k}}$ such that $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ are cross-intersecting, $\widetilde{\mathcal{F}}$ is t-intersecting and $|\widetilde{\mathcal{F}}| = |\mathcal{F}|, |\widetilde{\mathcal{G}}| = |\mathcal{G}|$ hold.

In view of the Lemma, upon proving (ii) we may assume that both \mathcal{F} and \mathcal{G} are shifted.

Proof of (ii). We want to apply double induction on n and k. Therefore we first check the validity of (2) in the cases k = 0 and 1 and also for n = 2k + t. If k = 0 or 1 then $\mathcal{F} \neq \emptyset$ implies by shiftedness $\mathcal{F} = \{\{1, 2, \dots, k+t\}\}$. Since \mathcal{F} and \mathcal{G} are cross-intersecting $\mathcal{G} \cap \binom{[n]-\{1,2,\dots,k+t\}}{k} = \emptyset$ must hold. Thus

$$|\mathcal{G}| \leq \binom{n}{k} - \binom{n-k-t}{k}$$
, proving (2).

In the case n = 2k + t the formula on the RHS of (2) reduces simply to $\binom{n}{k}$ and it readily follows from (1). Or also from $\mathcal{G} \cap \{[n] - F : F \in \mathcal{F}\} = \emptyset$, using the cross-intersecting property.

From now on $k \ge 2$, n > 2k + t. For $\mathcal{H} \subset 2^{[n]}$ define the following two families:

$$\mathcal{H}(n) = \left\{ H - \{n\} : n \in H \in \mathcal{H} \right\},\$$

$$\mathcal{H}(\overline{n}) = \{ H : n \notin H \in \mathcal{H} \}.$$

Note that

 $|\mathcal{H}| = |\mathcal{H}(n)| + |\mathcal{H}(\overline{n})|$ holds. Claim 1. $\mathcal{F}(n) \subset {[n-1] \choose k+t-1}$ is t + 1-intersecting.

Proof. If $F, F' \in \mathcal{F}$ then $|F \cap F'| \ge t+1$ implies $|F \cup F'| = |F| + |F'| - |F \cap F'| \le 2(k+t) - (t+1) = 2k+t-1 \le n-2$. Therefore one can find $i \in [n-1]$ with $i \notin F \cup F'$. Suppose now $n \in F \cap F'$. We need to prove

(4)
$$|(F - \{n\}) \cap (F' - \{n\})| \ge t + 1.$$

Since $|F \cap F'| \ge t + 1$, the only way that (4) can fail is

$$|(F - \{n\}) \cap (F' - \{n\})| = t.$$

Suppose for contradiction that this is the case. By shiftedness

$$F'' \stackrel{\text{def}}{=} (F - \{n\}) \cup \{i\} \text{ is in } \mathcal{F}.$$

However,

$$F'' \cap F' = F \cap F' - \{n\}$$
, i.e., $|F'' \cap F'| = t$, a contradiction. \Box

Claim 2. $\mathcal{F}(n)$ and $\mathcal{G}(n)$ are cross-intersecting.

Proof. The proof is similar to Claim 1, therefore we shall be somewhat sketchy. The only way that Claim 2 can be false is if there are $F \in \mathcal{F}$, $G \in \mathcal{G}$ such that $F \cap G = \{n\}$ holds.

|F| + |G| = 2k + t < n implies the existence of $i \in [n-1]$, $i \notin F \cup G$. By shiftedness, $F' \stackrel{\text{def}}{=} (F - \{n\}) \cup \{i\}$ is in \mathcal{F} . However, $F' \cap G = \emptyset$, a contradiction.

Now we are ready to do the induction step.

Since $\mathcal{F} \neq \emptyset$ is shifted, $\{1, 2, \dots, k+t\} \in \mathcal{F}(\overline{n})$ holds. Let us apply the induction hypothesis to $\mathcal{F}(\overline{n}) \subset \mathcal{F}$ and $\mathcal{G}(\overline{n}) \subset \mathcal{G}$.

We infer

(5)
$$|\mathcal{F}(\overline{n})| + |\mathcal{G}(\overline{n})| \leq 1 + \binom{n-1}{k} + \binom{n-1-k-t}{k}.$$

Note that $\{1, \ldots, k+t\} \in \mathcal{F}$ and the cross-intersecting property imply

(6)
$$|\mathcal{G}(n)| \leq \binom{n-1}{k-1} - \binom{n-1-k-t}{k-1}$$

If $\mathcal{F}(n) = \emptyset$, then adding (5) and (6) yields (2). Suppose $\mathcal{F}(n) \neq \emptyset$ then by the induction hypothesis we have

(7)
$$|\mathcal{F}(n)| + |\mathcal{G}(n)| \leq 1 + \binom{n-1}{k-1} - \binom{n-1-(k+t-1)}{k-1} = \binom{n-1}{k-1} - \binom{n-1-k-t}{k-1} + \left(1 - \binom{n-1-k-t}{k-2}\right).$$

Since $k \ge 2$ and n > 2k+t the term in the bracket is non-positive, adding (5) and (7) concludes the proof.

To see that the bound (2) is best possible one takes $\mathcal{F} = \{[k+t]\}$ and $\mathcal{G} = \left\{ G \subset {[n] \choose k} : G \cap [k+t] \neq \emptyset \right\}$. In the case of (1) equality holds for $\mathcal{F} = \emptyset$ and $\mathcal{G} = {[n] \choose k}$ and if n = 2k + t then also for $\mathcal{F} = {[2k+t] \choose k+t}$, $\mathcal{G} = \emptyset$. One can show that in all other cases the inequalities are strict.

3 Concluding remarks

Let us mention that Hilton and Milner [HM] proved (2) in the case t = 0, with the much weaker assumption that both \mathcal{F} and \mathcal{G} are non-empty. However, one can easily show that for $t \geq 1$ it is not sufficient to assume the *t*-intersecting property instead of \mathcal{F} being (t + 1)-intersecting.

Let us close this paper by a conjecture. Let k, t, s be positive integers, $k \ge s+1$. Consider the two families

$$\mathcal{F} = \binom{[k+t+s]}{k+t}, \quad \mathcal{G} = \left\{ G \in \binom{[n]}{k} : \left| G \cap [k+t+s] \right| \ge s+1 \right\}.$$

Note that \mathcal{F} is (t+1)-intersecting, \mathcal{F} and \mathcal{G} are cross-intersecting and $|\mathcal{G}| = \binom{n}{k} - \sum_{0 \le i \le s} \binom{k+t+s}{i} \binom{n-k-t-s}{k-i}$ hold.

Conjecture. Let k, t, s be positive integers, $k \geq s+1$. Suppose that $\mathcal{F} \subset \binom{[n]}{k+t}$ is (t+1)-intersecting and $\binom{[k+t+s]}{t} \subset \mathcal{F}$. Let $\mathcal{G} \subset \binom{[n]}{k}$ and suppose that \mathcal{F} and \mathcal{G} are cross-intersecting. Then for $n \geq 2k+t$,

(8)
$$|\mathcal{F}| + |\mathcal{G}| \leq \binom{k+t+s}{k+t} + \binom{n}{k} - \sum_{0 \leq i \leq s} \binom{k+t+s}{i} \binom{n-k-t-s}{k-i}$$

holds.

Note that setting s = 0 we get back (2). We can prove (8) for some small values of k and also for $n > ck^2$, however to prove it in the full range appears to be difficult. Let us mention that it is shown in [FT] that in the case s = t = 1 assuming $|\mathcal{F}| \ge k + 2$ instead of $\binom{[k+2]}{k+1} \subset \mathcal{F}$ is not sufficient to guarantee (8).

References

- [EKR] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961), 313–320.
- [FT] P. Frankl, N. Tokushige, Some inequalities concerning cross-intersecting families, Combinatorics, Prob. and Computing 7 (1998), 247–260.
- [HM] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18 (1967), 369–384.
- [Ka] G. O. H. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964), 329–337.