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for each fixed t. Further, we prove uniqueness and stability 
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reaching this bound are unique up to isomorphism. We also 
consider a p-weight version of the problem, which comes from 
the product measure on the power set of an n-set.
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1. Introduction

Let [n] = {1, 2, . . . , n} and let 2[n] denote the power set of [n]. A family F ⊂ 2[n]

is called t-intersecting if |F ∩ F ′| ≥ t for all F, F ′ ∈ F . Let 
([n]

k

)
denote the set of 

all k-subsets of [n]. A family in 
([n]

k

)
is called k-uniform. For example,

F0 =
{
F ∈

(
[n]
k

)
: [t] ⊂ F

}

is a k-uniform t-intersecting family of size |F0| =
(
n−t
k−t

)
. Erdős, Ko and Rado [6] proved 

that there exists some n0(k, t) such that if n ≥ n0(k, t) and F ⊂
([n]

k

)
is t-intersecting, 

then |F| ≤
(
n−t
k−t

)
. The smallest possible such n0(k, t) is (t + 1)(k − t + 1). This was 

proved by Frankl [7] for t ≥ 15, and then completed by Wilson [28] for all t. These proofs 
are very different, the former uses combinatorial tools while the later is based on the 
eigenvalue method. If n < (t + 1)(k − t + 1) then 

(
n−t
k−t

)
is no longer the maximum size. 

In fact we can construct a t-intersecting family

F t
i (n, k) :=

{
F ∈

(
[n]
k

)
:
∣∣F ∩ [t + 2i]

∣∣ ≥ t + i

}

for 0 ≤ i ≤ k−t, and it can be shown that |F t
0(n, k)| ≥ |F t

1(n, k)| iff n ≥ (t +1)(k−t +1). 
Frankl conjectured in [7] that if F ⊂

([n]
k

)
is t-intersecting, then

|F| ≤ max
i

∣∣F t
i (n, k)

∣∣. (1)

This conjecture was proved partially by Frankl and Füredi [9], and then settled com-
pletely by Ahlswede and Khachatrian [1]. This result is one of the highlights of extremal 
set theory.

We will use the proof technique used in [9], in another direction, to deal with 
cross t-intersecting families. Two families A, B ⊂ 2[n] are called cross t-intersecting if 
|A ∩ B| ≥ t holds for all A ∈ A and B ∈ B. Pyber [20] considered the case t = 1, and 

proved that if n ≥ 2k and A, B ⊂
([n]

k

)
are cross 1-intersecting, then |A||B| ≤

(
n−1
k−1

)2. 
It was then proved in [18] that if n ≥ max{2a, 2b}, and A ⊂

([n]
a

)
and B ⊂

([n]
b

)
are 

cross 1-intersecting, then |A||B| ≤
(
n−1
a−1

)(
n−1
b−1

)
. See Borg [4] for a corresponding cross 

t-intersecting result for n > n0(k, t). Gromov [14] found an application of these inequal-
ities to geometry. For the general cross t-intersecting case, it is natural to expect that 
if n ≥ (t + 1)(k − t + 1) and A, B ⊂

([n]
k

)
are cross t-intersecting, then |A||B| ≤

(
n−t
k−t

)2. 
This conjecture was verified for n > 2tk in [24] using a combinatorial approach, and for 
k
n < 1 − 1

t√2 , or more simply, n > 1.443(t + 1)k in [25] using the eigenvalue method. 
We also mention that Suda and Tanaka [21] obtained a similar result concerning cross 
1-intersecting families of vector subspaces based on semidefinite programming.

In this paper we prove the following result which almost reaches the conjectured 
lower bound for n. We say that two families A and B in 2[n] are isomorphic if there is a 
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permutation f on [n] such that A = {{f(b): b ∈ B}: B ∈ B}, and in this case we write 
A ∼= B.

Theorem 1.1. For every k ≥ t ≥ 14 and n ≥ (t + 1)k we have the following. If A ⊂
([n]

k

)
and B ⊂

([n]
k

)
are cross t-intersecting, then

|A||B| ≤
(
n− t

k − t

)2

with equality holding iff A = B ∼= F t
0(n, k).

The extremal configuration has a stability; if |A||B| is very close to 
(
n−t
k−t

)2, then both 
families are very close to F t

0(n, k). By saying A is close to F we mean that the symmetric 
difference A �F = (A \ F) ∪ (F \A) is of small size. A family A ⊂ 2[n] is called shifted
if (A \ {j}) ∪ {i} ∈ A whenever 1 ≤ i < j ≤ n, A ∈ A, and A ∩ {i, j} = {j}. (We will 
explain more about shifting operations in the next section.)

Theorem 1.2. For every k ≥ t ≥ 14, δ > 0, n ≥ (t + 1 + δ)k, and η ∈ (0, 1], we have the 
following. If A and B are shifted cross t-intersecting families in 

([n]
k

)
, then one of the 

following holds.

(i)
√

|A||B| < (1 − γη)
(
n−t
k−t

)
, where γ ∈ (0, 1] depends only on t and δ.

(ii) |A �F t
0(n, k)| + |B � F t

0(n, k)| < η
(
n−t
k−t

)
.

We also consider the so-called p-weight version or measure version (see e.g. [11–13]) 
of the above result concerning k-uniform families. Let p ∈ (0, 1) be a fixed real, and let 
μp be the product measure on 2[n] defined by

μp(F ) := p|F |(1 − p)n−|F |.

For a family F ⊂ 2[n] let us define its p-weight (or measure) by

μp(F) :=
∑
F∈F

μp(F ).

Ahlswede and Khachatrian [2] proved that if F ⊂ 2[n] is t-intersecting, then

μp(F) ≤ max
i

μp

(
F t

i (n)
)

(2)

where

F t
i (n) :=

{
F ⊂ [n]:

∣∣F ∩ [t + 2i]
∣∣ ≥ t + i

}
.
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It is not difficult to derive (2) from (1), see [22,5]. In particular, if p ≤ 1
t+1 then 

maxi μp(F t
i (n)) = μp(F t

0(n)) = pt. In [13], Friedgut gave a proof of (2), in the case 
p ≤ 1

t+1 , using the eigenvalue method, which is the p-weight version of Wilson’s proof [28]. 
Friedgut’s proof can easily be extended to cross t-intersecting families if p < 0.69

t+1 as 
in [26]. More precisely, if t ≥ 1, p ≤ 1 − 1

t√2 , and two families A, B ⊂ 2[n] are cross 
t-intersecting, then we have μp(A)μp(B) ≤ p2t. In the present paper, we prove the same 
inequality for all t ≥ 14 and p ≤ 1

t+1 .

Theorem 1.3. For every t ≥ 14, n ≥ t, and p with 0 < p ≤ 1
t+1 , we have the following. 

If A ⊂ 2[n] and B ⊂ 2[n] are cross t-intersecting, then

μp(A)μp(B) ≤ p2t.

Equality holds iff either A = B ∼= F t
0(n), or p = 1

t+1 and A = B ∼= F t
1(n).

We have the following stability result as well. A family G ⊂ 2[n] is called inclusion 
maximal if G ∈ G and G ⊂ G′ imply G′ ∈ G.

Theorem 1.4. For every t ≥ 14, n ≥ t, ε > 0, η ∈ (0, 1], and p with 0 < p ≤ 1
t+1 − ε, 

we have the following. If A and B are shifted, inclusion maximal cross t-intersecting 
families in 2[n], then one of the following holds.

(i)
√

μp(A)μp(B) < (1 − γη)pt, where γ ∈ (0, 1] depends only on t and ε.
(ii) μp(A �F t

0(n)) + μp(B �F t
0(n)) < ηpt.

In [13], Friedgut obtained similar stability results for (not necessarily shifted) 
t-intersecting families. He used a result due to Kindler and Safra [16], which states that 
Boolean functions whose Fourier transforms are concentrated on small sets, essentially 
depend only on a few variables.

We cannot replace condition (ii) of Theorem 1.2 with the condition A, B ⊂ F t
0(n, k)

which is sometimes sought in such stability results. Indeed, we can construct a shifted 
t-intersecting family A ⊂

([n]
k

)
such that |A| =

(
n−t
k−t

)
(1 − o(1)) where o(1) → 0 as 

n, k → ∞ with n > (t + 1)k, but A �⊂ F for any F ∼= F t
0(n, k). For this, let T = {F ∈

F t
0(n, k): F∩[t +1, k+1] = ∅}, H = {[k+1] \{i}: 1 ≤ i ≤ t}, and let A = (F t

0(n, k) \T ) ∪H. 
Then it is easy to see that A fulfills the prescribed properties.

Similarly, we cannot replace condition (ii) of Theorem 1.4 with the condition A, B ⊂
F t

0(n). In fact there is a t-intersecting family G ⊂ 2[n] such that μp(G) is arbitrarily close 
to pt, but G is not a subfamily of any isomorphic copy of F t

0(n). For example, let T = [t], 
H = {[n] \ {i}: 1 ≤ i ≤ t}, and let G = (F t

0(n) \ {T}) ∪H. Then G is a shifted, inclusion 
maximal t-intersecting family with G �⊂ F t

0(n) and G � F t
0(n) = H ∪ {T}. Moreover we 

have μp(G) = pt − ptqn−t + tpn−1q = (1 − o(1))pt where o(1) → 0 as n → ∞ for fixed t
and p.
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We conjecture that Theorem 1.1 holds for all n, k, and t such that k ≥ t ≥ 1 and 
n > (t + 1)(k − t + 1), and Theorem 1.3 holds for all t ≥ 1. We also conjecture that 
Theorems 1.2 and 1.4 are valid for families that are not necessarily shifted as well. We 
mention that one can show Theorem 1.1 for t ≥ 14, k > k0(t), and n > (t + 1)(k− t + 1)
as well, see Theorem 4.8 in Section 4.

The approach in this paper follows that used in [9,24]. We relate subsets in the cross 
t-intersecting families with walks in the plane. After a normalizing process called shifting, 
these families will have the property that the corresponding walks all hit certain lines. 
In the p-weight version, the measure of such families is bounded by the probability that 
a certain random walk hits the same lines. Results for k-uniform cross t-intersecting 
families can often be inferred by corresponding p-weight results applied to the families 
obtained by taking all supersets of the original k-uniform families, which will also be cross 
t-intersecting. Indeed, using Theorem 1.4 it is relatively easy to prove results similar to 
Theorems 1.1 and 1.2 but with somewhat weaker bounds for n and k. However, to get 
our k-uniform results in full strength, we need to prove them directly instead of relying 
on our p-weight results. Nevertheless understanding the proof of p-weight results is very 
helpful for the proof of k-uniform results. They have a similar proof with corresponding 
steps, though the actual computations appearing in the proof of the p-weight version are 
usually much easier than those of the k-uniform version.

The paper is organized as follows. In Section 2 we present tools that we will use 
throughout the paper. In Section 3 we prove Proposition 3.1, our main result about 
the p-weight version of the problem, from which Theorems 1.3 and 1.4 easily follow. In 
Section 4 we prove Proposition 4.1, our main result about the k-uniform version of the 
problem, from which Theorems 1.1 and 1.2 follow. In Section 5 we present an application 
to families of t-intersecting integer sequences.

2. Tools

In this section we present some standard tools. The proofs are also standard (see, 
e.g. [9,12,23]), but we include them for completeness.

Throughout this paper let p ∈ (0, 1) be a real number, let q = 1 − p, and let α = p/q. 
The walk associated to a set F ⊂ [n] is an n-step walk on the integer grid Z2 starting 
at the origin (0, 0) whose i-th step is up (going from (x, y) to (x, y + 1)) if i ∈ F , and 
is right (going from (x, y) to (x + 1, y)) if i /∈ F . We thus refer to F ∈ 2[n] as either a 
set or a walk, depending on which point of view is more convenient. Correspondingly, 
consider an n-step random walk Wn,p whose i-th step is a random variable, independent 
of other steps, going ‘up’ with probability p and ‘right’ otherwise. Since μp is a probability 
measure on 2[n], the p-weight of a family μp(F), where F ⊂ 2[n] consists of all walks 
that satisfy a given property P, is exactly the probability that Wn,p satisfies P.

Example 2.1. The p-weight of the family of all walks in 2[n] that hit the point (0, t) is 
the probability that Wn,p hits (0, t), which is pt. The p-weight of the family of all walks 
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in 2[n] that hit (1, t) but not (0, t) is tptq. Indeed for a walk to hit (1, t) but not (0, t), it 
must move up t − 1 of its first t steps, this can be done in t ways, and then must move 
up on the (t + 1)-th step. So the probability is 

(
t
1
)
pt−1q · p, as needed.

Lemma 2.2. Let F ⊂ 2[n], and let t be a positive integer.

(i) If all walks in F hit the line y = x + t, then μp(F) ≤ αt.
(ii) For every ε there is an n0 such that if n > n0 and no walk in F hits the line 

y = x + t, then μp(F) < 1 − αt + ε.
(iii) If all walks in F hit the line y = x + t at least twice, but do not hit the line 

y = x + (t + 1), then μp(F) ≤ αt+1.

Proof. We notice that, for fixed p, the probability Pn := Prob(Wn,p hits y = x + t)
is monotone increasing and bounded, and hence limn→∞ Pn exists. In fact this limit is 
known to be exactly αt = (p/q)t, see e.g., [23]. This gives (i) and (ii).

There is an injection from (I) the family of walks that hit the line y = x + t at least 
twice but do not hit y = x + (t + 1) to (II) the family of walks that hit y = x + (t + 1). 
Indeed for a walk F in (I) that hits y = x + t for the first time at (x1, x1 + t) and for the 
second time at (x2, x2 + t), we get a walk in (II) by reflecting the portion of F between 
(x1, x1 + t) and (x2, x2 + t) across the line y = x + t. Further, these walks have the same 
p-weight. Thus we have (iii). �

For 1 ≤ i < j ≤ n we define the shifting operation sij : 2[n] → 2[n] by

sij(F) :=
{
sij(F ): F ∈ F

}

where F ⊂ 2[n] and

sij(F ) :=
{

(F \ {j}) ∪ {i} if F ∩ {i, j} = {j} and (F \ {j}) ∪ {i} /∈ F ,

F otherwise.

A family F is called shifted if sij(F) = F for all 1 ≤ i < j ≤ n. Here we list some basic 
properties concerning shifting operations.

Lemma 2.3. Let 1 ≤ i < j ≤ n and let F , G ⊂ 2[n].

(i) Shifting operations preserve the p-weight of a family, that is, μp(sij(G)) = μp(G).
(ii) If G1 and G2 in 2[n] are cross t-intersecting families, then sij(F) and sij(G) are 

cross t-intersecting families as well.
(iii) For a pair of families we can always obtain a pair of shifted families by repeatedly 

shifting families simultaneously finitely many times.
(iv) If G is inclusion maximal, and sij(G) = F t

� (n), then G ∼= F t
� (n) for � = 0, 1.
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Proof. Since |sij(G)| = |G| for G ⊂ [n] we have μp(sij(G)) = p|sij(G)|qn−|sij(G)| =
p|G|qn−|G| = μp(G). Thus μp(sij(G)) =

∑
G∈G μp(sij(G)) =

∑
G∈G μp(G) = μp(G). This 

gives (i).
Let F ′ = sij(F) and G′ = sij(G). Suppose that F and G are cross t-intersecting, 

but F ′ and G′ are not. Then there are F ∈ F and G ∈ G such that |F ∩ G| ≥ t but 
|F ′∩G′| < t, where F ′ = sij(F ) and G′ = sij(G). Consider the case when F∩{i, j} = {j}
and G ∩{i, j} = {j}. (The other cases are ruled out easily.) By symmetry we may assume 
that F ′ ∩ {i, j} = {j} and G′ ∩ {i, j} = {i}. This means that F ′ = F and this happens 
because F1 := (F \ {j}) ∪ {i} is already in F . Then |F1 ∩ G| = |F ′ ∩ G′| < t, which 
contradicts the cross t-intersecting property of F and G. This shows (ii).

Next we show (iii). Let G1, G2 ⊂ 2[n]. Suppose that at least one of these families, 
say, G1 is not shifted. Then there is a shifting sij such that sij(G1) �= G1. Let f(G) be 
the total sum of elements in the subsets of G, that is, f(G) :=

∑
G∈G

∑
x∈G x. Then 

f(sij(G1)) ≤ f(G1) − j + i ≤ f(G1) − 1. Namely, we can decrease the value f(G1) + f(G2)
at least 1 by applying a shifting operation unless both of the families are already shifted. 
On the other hand f(G1) + f(G2) ≥ 0 for all G1, G2. Thus we get (iii).

Finally we prove (iv). Let G′ = sij(G) = F t
� (n). Observe that 

([t+2�]
t+�

)
is a ‘generating 

set’ of G′, namely,

G′ =
{
G ⊂ [n]: F ⊂ G for some F ∈

(
[t + 2�]
t + �

)}
.

First let � = 0. Then since G′ = F t
0(n) we have [t] ∈ G′. Thus G must contain some 

t-element set G0, and so as G is inclusion maximal, G contains {G ⊂ [n]: G0 ⊂ G} ∼=
F t

0(n). On the other hand, by (i) and our assumption, we have μp(G) = μp(sij(G)) =
μp(F t

0(n)). Thus we indeed have G ∼= F t
0(n).

Next let � = 1. If |{i, j} ∩ [t + 2]| = 0 or 2, then it is easy to see that sij(G) = G
and we are done, so we may assume that i = t + 2 and j = t + 3. Since G′ = F t

1(n) we 
have 

([t+2]
t+1

)
⊂ G′. If 

([t+2]
t+1

)
⊂ G then G = F t

1(n), too. If 
([t+2]
t+1

)
�⊂ G then there is some 

G′ ∈
([t+2]
t+1

)
such that G′ /∈ G. In this case we have G′ = A ∪ {t + 2} ∈ G′ \ G for some 

A ∈
([t+1]

t

)
, and G = A ∪{t + 3} ∈ G \G′. This means sij(G) = G′. For x ∈ {t + 2, t + 3}

let G(x) := {A ∈
([t+1]

t

)
: A ∪ {x} ∈ G}. Then G(t + 2) ∪ G(t + 3) is a partition of 

([t+1]
t

)
. 

It follows from G ∈ G(t + 3) that G(t + 3) �= ∅. If there is some G′′ ∈ G(t + 2) then 
|G ∩ G′′| ≥ t implies that G′′ = G′, which is a contradiction because G′ /∈ G. Thus 
G(t + 2) = ∅ must hold. Consequently we have G = {G ⊂ [n]: |G ∩ T | ≥ t + 1} where 
T = [t + 3] \ {t + 2}, and G ∼= F t

1(n). �
The following two simple facts are used only to prove Lemma 2.6 below. For n > 2k

we define a Kneser graph K(n, k) = (V, E) on the vertex set V =
([n]

k

)
by (F, F ′) ∈ E iff 

F ∩ F ′ = ∅.
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Fact 2.4. If n > 2k, then the Kneser graph K(n, k) is connected and non-bipartite.

Proof. We use Katona’s cyclic permutation method [15]. Observe that K(2k + 1, k)
contains C2k+1 (a cycle of length 2k + 1). To see this, let Fi = {i, i + 1, . . . , i + k − 1}
(indices are read modulo 2k + 1), then F0, Fk, F2k, . . . , F(k−1)k give the cycle. Moreover 
any two vertices F, F ′ ⊂ [2k + 1] are on some C2k+1, because one can choose a cyclic 
ordering i1, i2, . . . , i2k+1 such that both F and F ′ consist of consecutive elements in this 
ordering. Since K(n, k) (n > 2k) contains K(2k+1, k) as an induced subgraph, it follows 
that K(n, k) is connected and non-bipartite. �

For two graphs G and H we define the direct product G ⊗ H = (V, E) on V =
V (G) × V (H) by ((u, v), (u′, v′)) ∈ E iff uu′ ∈ E(G) and vv′ ∈ E(H).

Fact 2.5. Let G and H be connected and non-bipartite graphs.

(i) G ⊗H is connected and non-bipartite.
(ii) G ⊗K2 is connected, where K2 is the complete graph of order 2.

Proof. By a closed trail of length n in G we mean a sequence of vertices x0x1 . . . xn−1x0

such that xixi+1 ∈ E(G) for all i (indices are read modulo n). Since G is connected and 
non-bipartite, one can find a closed trail of odd length containing any given two vertices. 
Now let (x, y), (x′, y′) ∈ G ⊗H be given. Choose a closed trail x0x1 . . . xn−1x0 containing 
x, x′ in G, and a closed trail y0y1 . . . ym−1y0 containing y, y′ in H, where both n and m
are odd. Then (xi, yi), i = 0, 1, . . . , mn − 1, give a closed trail of length mn in G ⊗H, 
where indices of xi are read modulo n, while indices of yi are read modulo m. This closed 
odd trail contains both (x, y) and (x′, y′), so there is a path from (x, y) to (x′, y′) and 
there is an odd cycle in this closed trail. Thus we get (i).

One can prove (ii) directly, but this is a special case of Weichsel’s result [27] which 
states that if G and H are connected, then G ⊗H is connected iff G or H contains an 
odd cycle. �
Lemma 2.6. Let k − t ≥ � ≥ 0 and F := F t

� (n, k).

(i) If F and B ⊂
([n]

k

)
are cross t-intersecting, and |F| = |B|, then F = B.

(ii) Let n ≥ 2k − t + 2 and t ≥ 2. If A and B are cross t-intersecting families in 
([n]

k

)
, 

and sij(A) = sij(B) = F , then A = B ∼= F .

Proof. To prove (i) we notice that F is a maximal t-intersecting family in the sense that 
adding any k-subset (not contained in F) to F would destroy the t-intersecting property. 
Since F and B are cross t-intersecting, for any B ∈ B, F ∪{B} is still t-intersecting. This 
with the maximality of F forces B ∈ F , namely, B ⊂ F . Then |F| = |B| gives F = B.
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Next we prove (ii) following [1]. For 1 ≤ i < j ≤ n and a family G ⊂ 2[n], let

G [̄ij] :=
{
G ∈ G: i /∈ G, j ∈ G,

(
G ∪ {i}

)
\ {j} /∈ G

}
,

G[ij̄] :=
{
G ∈ G: j /∈ G, i ∈ G,

(
G ∪ {j}

)
\ {i} /∈ G

}
,

and let G̃ be the family obtained from G by exchanging the coordinates i and j. We list 
some basic properties about these families.

• By definition, G ∼= G̃. Also G[ij̄] ∼= G̃ [̄ij], G [̄ij] ∼= G̃[ij̄].
• It follows that G \ sij(G) = G [̄ij] and sij(G) \ G = G̃[ij̄].
• If G [̄ij] = ∅, then sij(G) = G.
• It follows that G \ G̃ = G [̄ij] ∪ G[ij̄] and G̃ \ G = G̃ [̄ij] ∪ G̃[ij̄].
• If G[ij̄] = ∅, then G ∩ G̃ = G ∩ sij(G) = G \ G [̄ij] = G̃ \ G̃[ij̄].
• If G[ij̄] = ∅, then sij(G) = G̃. In fact, if G[ij̄] = ∅, then G̃ [̄ij] = ∅, and

G̃ = (G ∩ G̃) ∪ G̃[ij̄] =
(
G ∩ sij(G)

)
∪ G̃[ij̄] = sij(G).

Now we assume that A and B are cross t-intersecting, and sij(A) = sij(B) = F . Then 
clearly |A| = |B|. We will show that A = B = F or A = B = F̃ .

If A[̄ij] = ∅, then sij(A) = A. Thus A = F , and (i) gives that A = B = F , as desired. 
Similarly, if A[ij̄] = ∅, then sij(A) = Ã. Thus Ã = F , and (i) gives that Ã = B̃ = F , or 
equivalently, A = B = F̃ .

Thus we may assume that A[̄ij] �= ∅ and A[ij̄] �= ∅. By the same reasoning, we may 
assume that B[̄ij] �= ∅ and B[ij̄] �= ∅. We will show that this is impossible. Without loss 
of generality we may also assume that i = t + 2� and j = i + 1.

Note that F ∈ F [ij̄] iff |F ∩ [t + 2� − 1]| = t + � − 1. Keeping this in mind, let

H :=
{
H ∈

(
[n] \ {i, j}

k − 1

)
:
∣∣H ∩ [t + 2�− 1]

∣∣ = t + �− 1
}
.

For every H ∈ H we have H ∪ {i} ∈ F and H ∪ {j} /∈ F . Since F = sij(A) it follows 
that

either H ∪ {i} ∈ A or H ∪ {j} ∈ A (but not both). (3)

(In fact, if both hold, then sij(H ∪ {j}) = H ∪ {j} ∈ sij(A) = F , a contradiction.) If 
A ∈ Aij := A[ij̄] ∪ A[̄ij], then |A ∩ [t + 2� − 1]| = t + � − 1. (In fact if A ∈ A[ij̄], then 
A′ := (A ∪{j}) \{i} /∈ A, which means that there is some B ∈ B such that |A ∩B| ≥ t but 
|A′∩B| < t, and this happens only when |A′∩ [t +2� −1]| = |B∩ [t +2� −1]| = t + � −1.) 
Thus (3) defines a bijection f : H → Aij . Similarly we obtain a bijection g : H → Bij , 
where Bij := B[ij̄] ∪ B[̄ij].

Here we construct a bipartite graph G = (VA ∪ VB, E), where both VA and VB are 
copies of H, and (HA, HB) ∈ E iff |HA ∩ HB | = t − 1. We divide VA into VA[ij̄] and 
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VA[̄ij] according to whether f(H) ∈ A[ij̄] or f(H) ∈ A[̄ij]. In the same way, we also get 
the partition VB = VB[ij̄] ∪ VB[̄ij] using g. It then follows from the cross t-intersecting 
property that there are no edges between A[̄ij] and B[ij̄], and no edges between A[ij̄]
and B[̄ij]. Recall that none of A[ij̄], A[̄ij], B[ij̄], and B[̄ij] are empty. Thus the graph G
is disconnected.

Let G0 = (V0, E0) be a graph such that V0 = H and (F0, F ′
0) ∈ E′ iff |F0 ∩ F ′

0| =
t − 1. If n ≥ 2k − t + 2 and t ≥ 2, then it is readily seen that G0 is isomorphic to 
K(n1, k1) ⊗K(n2, k2), where

n1 = t + 2�− 1, k1 = (t + 2�− 1) − (t + �− 1) = �,

n2 = (n− 2) − (t + 2�− 1), k2 = (k − 1) − (t + �− 1) = k − t− �.

(We used n ≥ 2k − t + 2 and t ≥ 2 to ensure that n1 > 2k1 and n2 > 2k2.) So it follows 
from Fact 2.4 and Fact 2.5 that G0 is connected and non-bipartite. By definition, G is 
isomorphic to G0 ⊗K2, and by Fact 2.5, G is connected. This is a contradiction. �

Similarly one can show the following, which can be used as an alternative to Lem-
ma 2.3(iv). (For a proof we use that a graph G = (V, E), where V = 2[n] and (F, F ′) ∈ E

iff F ∩ F ′ = ∅, is connected and non-bipartite for n ≥ 3.)

Lemma 2.7. Let n ≥ 3, t ≥ 2, and k − t ≥ � ≥ 0. If A and B are cross t-intersecting 
families in 2[n], and sij(A) = sij(B) = F t

� (n), then A = B ∼= F t
� (n).

For A ⊂ [n] let (A)i denote the i-th element of A, where (A)1 < (A)2 < · · · . For 
A, B ⊂ [n], we say A shifts to B, and write

A → B

if |A| ≤ |B| and (A)i ≥ (B)i for all i ≤ |A|. E.g., {2, 4, 6, 8} → {1, 2, 4, 8, 9}.
We list some easy facts below, which we will use without referring to explicitly.

Fact 2.8. Let A ⊂ 2[n] be shifted.

(i) If A ∈ A, A → A′, and |A| = |A′|, then A′ ∈ A.
(ii) If A is inclusion maximal, A ∈ A, and A → A′′, then A′′ ∈ A.

Let t ∈ [n] and A ⊂ [n]. We define the dual of A with respect to t by

dualt(A) :=
[
(A)t − 1

]
∪
(
[n] \A

)
.

Clearly we have |A ∩ dualt(A)| = t − 1. The following simple fact is very useful, and 
we will use it for some particular choices of A.
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Fact 2.9. If A and B are cross t-intersecting and A ∈ A, then dualt(A) /∈ B.

For F ⊂ 2[n] let λ(F) be the maximum λ such that all walks in F hit the line y = x +λ. 
Let

F[u] := [u] ∪
{
u + 2i ∈ [n]: i ≥ 1

}

be the “maximal” walk that does not hit y = x + (u + 1). If u ≤ t, then

dualt(F[u]) = F[2t−u−1].

Note also that if F ⊂ [n] does not hit the line y = x + (u + 1), then F → F[u]. In 
particular, we have the following.

Fact 2.10. For a shifted, inclusion maximal family F ⊂ 2[n], if F[u] /∈ F then λ(F) ≥ u +1.

Lemma 2.11. Let A and B be shifted cross t-intersecting families in 2[n].

(i) For every A ∈ A and B ∈ B there is some i such that |A ∩ [i]| + |B ∩ [i]| ≥ i + t.
(ii) Suppose further that A and B are inclusion maximal cross t-intersecting families. 

Then λ(A) + λ(B) ≥ 2t.

Proof. Suppose the contrary to (i). Choose a pair of counterexamples A ∈ A, B ∈ B so 
that |A ∩B| is minimal. Let j = (A ∩B)t. (Recall that this is the t-th element of A ∩B.) 
Then we have |A ∩ [j]| + |B ∩ [j]| < t + j = |A ∩ B ∩ [j]| + |[j]|, which is equivalent to 
|(A ∪B) ∩ [j]| < |[j]|. Thus we can find some i with 1 ≤ i < j such that i /∈ A ∪B, where 
i �= j follows from j = (A ∩ B)t. Since B is shifted, we have B′ := (B − {j}) ∪ {i} ∈ B. 
Then |B ∩ [j]| = |B′ ∩ [j]|, and so A and B′ are also counterexamples. But we get 
|A ∩B′| < |A ∩B|, which contradicts the minimality. This gives (i).

Let u = λ(A) ≤ λ(B). We may assume that u < t. Since A is inclusion maximal and 
u = λ(A) we have that F[u] ∈ A. Then cross t-intersecting property yields dualt(F[u]) =
F[2t−u−1] /∈ B. Since B is also inclusion maximal this with Fact 2.10 gives λ(B) ≥ 2t −u, 
as desired. �

Cross t-intersecting families have the following monotone property. Let f(n) be the 
maximum of μp(A)μp(B) where A and B are cross t-intersecting families in 2[n].

Lemma 2.12. f(n) ≤ f(n + 1).

Proof. Suppose that A and B are cross t-intersecting families in 2[n] with f(n) =
μp(A)μp(B). Let A′ = A ∪ A′′ ⊂ 2[n+1] where A′′ = {A ∪ {n + 1}: A ∈ A}. We 
write μn

p for the p-weight to emphasize the size of the ground set. Then we have 
μn+1
p (A′) = qμn

p (A) +pμn
p (A) = μn

p (A). Similarly, letting B′ = B∪{B∪{n +1}: B ∈ B}, 
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we also have μn+1
p (B′) = μn

p (B) and thus μn+1
p (A′)μn+1

p (B′) = μn
p (A)μn

p (B). Since A′ and 
B′ are cross t-intersecting families in 2[n+1], we have f(n) ≤ f(n + 1). �

Many of the above results have natural k-uniform versions. For example Lemma 2.2
can be transformed as follows.

Lemma 2.13. Let x0, y0, c be integers with 0 < c < y0 < x0 + c.

(i) The number of walks from (0, 0) to (x0, y0) which hit the line y = x + c is 
(
x0+y0
y0−c

)
. 

In particular, if all walks in F ⊂
([n]

k

)
hit the line y = x + c, then |F| ≤

(
n

k−c

)
.

(ii) The number of walks from (0, 0) to (x0, y0) which do not hit the line y = x + c is (
x0+y0

x0

)
−
(
x0+y0
y0−c

)
. In particular, if no walk in F ⊂

([n]
k

)
hits the line y = x + c, then 

|F| ≤
(
n
k

)
−

(
n

k−c

)
.

(iii) If all walks in F hit the line y = x + c at least twice, but do not hit the line 
y = x + (c + 1), then |F| ≤

(
n

k−c−1
)
.

Proof. The walks from O = (0, 0) to P = (x0, y0) that hit the line L : y = x + c are in 
bijection with the walks from (−c, c) to P ; this is seen by reflecting the part of the walk, 
from O to the first hitting point on the line L, in this line, and the number of such lines 
is 

(
x0+y0
y0−c

)
. This gives (i). If F ⊂

([n]
k

)
, then notice that x0 = n − k and y0 = k.

There are 
(
x0+y0

x0

)
walks from (0, 0) to (x0, y0), and 

(
x0+y0
y0−c

)
of them hit the given line 

by (i). This gives (ii).
Consider walks from (0, 0) to (n − k, k). Then, as in the proof of (iii) of Lemma 2.2, 

there is an injection from (I) the family of walks that hit the line y = x + c at least twice 
but do not hit y = x + (c + 1) to (II) the family of walks that hit y = x + (c + 1). Thus 
(iii) follows from (i). �

In the k-uniform setting, observe that if A, B ∈
([n]

k

)
, A → B simply means that 

(A)i ≥ (B)i for all i ≤ k. So Fact 2.8 reads as follows.

Fact 2.14. Let A ⊂
([n]

k

)
be shifted. If A ∈ A, and A → A′, then A′ ∈ A.

For A = {x1, x2, . . . , xk, . . .} with |A| ≥ k and x1 < x2 < · · · , let firstk(A) be the first 
k elements of A, that is,

firstk(A) := {x1, x2, . . . , xk}.

For t ≤ k ≤ n we define the dual of A ∈
([n]

k

)
with respect to t and k by

dual(k)
t (A) := firstk

(
dualt(A)

)
.

Again, we clearly have that |A ∩ dual(k)
t (A)| = t − 1, and Fact 2.9 reads as follows.
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Fact 2.15. If A and B are k-uniform cross t-intersecting families and A ∈ A, then 
dual(k)

t (A) /∈ B.

Let F (k)
[u] := firstk(F[u]). If u ≤ t and 2t − u − 1 ≤ k, then

dual(k)
t

(
F

(k)
[u]

)
= F

(k)
[2t−u−1].

If F ∈
([n]

k

)
does not hit the line y = x + (u + 1), then F → F

(k)
[u] .

Fact 2.16. For a shifted family F ⊂
([n]

k

)
, if F (k)

[u] /∈ F then λ(F) ≥ u + 1.

We remark that (i) of Lemma 2.11 is valid for A, B ⊂
([n]

k

)
as well. As for (ii) we 

assume that both families are non-empty instead of inclusion maximal, as follows.

Lemma 2.17. Let A and B be shifted cross t-intersecting families in 
([n]

k

)
. If |A||B| > 0, 

then λ(A) + λ(B) ≥ 2t.

Proof. Let u = λ(A) ≤ λ(B). We may assume that u < t. Since A is shifted and u =
λ(A) we have that F (k)

[u] ∈ A. Then cross t-intersecting property yields dual(k)
t (F (k)

[u] ) =
F

(k)
[2t−u−1] /∈ B. If 2t −u −1 ≤ k, then this gives λ(B) ≥ 2t −u, as desired. If 2t −u −1 > k, 

then

∣∣[k] ∩ F
(k)
[u]

∣∣ ≤ u + k − u

2 < u + 2t− 2u− 1
2 < t,

and [k] /∈ B. Since B is shifted, this means B = ∅. But this contradicts our assumption 
|A||B| > 0. �
3. Results about weighted families

In this section we prove the following main result from which Theorems 1.3, 1.4, 
and 5.1 will follow.

Proposition 3.1. For every t ≥ 14, n ≥ t, η ∈ (0, 1], and p with 0 < p ≤ 1
t+1 , we have the 

following. If A and B are shifted, inclusion maximal cross t-intersecting families in 2[n], 
then one of the following holds.

(i)
√

μp(A)μp(B) < (1 − γη)pt, where γ ∈ (0, 1] depends only on t.
(ii) μp(A �F t

s(n)) + μp(B �F t
s(n)) < ημp(F t

s(n)), where s = 0 or 1.

If (ii) happens then 
√
μp(A)μp(B) < μp(F t

s(n)) with equality holding iff A = B = F t
s(n).
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We need some definitions which we will continue to use throughout the proof of the 
main proposition.

Let Fu be the family of all walks that hit the line y = x + u. We identify a subset 
and its walk, so formally,

Fu =
{
F ⊂ [n]:

∣∣F ∩ [j]
∣∣ ≥ (j + u)/2 for some j

}
.

We partition Fu into the following three subfamilies:

F̃u :=
{
F ∈ Fu: F hits y = x + u + 1

}
,

Ḟu :=
{
F ∈ Fu: F hits y = x + u exactly once, but does not hit y = x + u + 1

}
,

F̈u :=
{
F ∈ Fu: F hits y = x + u at least twice, but does not hit y = x + u + 1

}
.

We remark that no walk F in Ḟu ∪ F̈u hits the line y = x + (u + 1). This can also be 
stated as the fact that if F ∈ Ḟu ∪ F̈u then |F ∩ [i]| ≤ (i + u)/2 for all i.

If u + 2s ≤ n, then, for simplicity, we also use Fu
s to mean Fu

s (n). This is the family 
of walks that hit the line y = x +u within the first u +2s steps. So if F ∈ Fu

s then there 
is some 0 ≤ i ≤ s such that the walk corresponding to F hits (i, u + i).

To simplify the notation we write X <t Y if there is a positive function γ = γ(t) > 0
depending only on t such that X < (1 − γ(t))Y for all t ≥ 14 (or t ≥ t0 for some 
specified value t0 ≤ 14). For example, we write μp(A)μp(B) <t p

2t to mean μp(A)μp(B) <
(1 − γ)p2t for some γ = γ(t) > 0, which would give (i) of Proposition 3.1.

3.1. Proof of the main proposition: setup

Let t ≥ 14, 0 < p ≤ 1
t+1 , q = 1 −p, and α = p/q. Here we record some basic inequalities 

that will be used frequently:

p ≤ 1
t + 1 , q ≥ t

t + 1 , q−t ≤
(

1 + 1
t

)t

< e, α ≤ 1
t
, pq ≤ t

(t + 1)2 .

(4)

By Lemma 2.12, we may assume that n is sufficiently large. Let A and B be shifted, 
inclusion maximal cross t-intersecting families in 2[n].

Let u = λ(A) and v = λ(B). Recall that by Lemma 2.11(ii) we have u + v ≥ 2t. If 
u + v ≥ 2t + 1, then (i) of Lemma 2.2 with (4) yields

μp(A)μp(B) ≤ αuαv ≤ α2t+1 = p2t p

q2t+1 < p2t e
2+1/t

t + 1 .

One can check that e2+1/t

t+1 <t 1 for t ≥ 8, which gives μp(A)μp(B) <t p2t. Thus if 
u + v ≥ 2t + 1, then (i) of the proposition holds.
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From now on let u + v = 2t. By symmetry we may assume that u ≤ v.
We partition A ⊂ Fu into families Ȧ := A ∩ Ḟu, Ä := A ∩ F̈u, and Ã := A ∩ F̃u. 

Similarly, we define Ḃ := B ∩ Ḟv, B̈ := B ∩ F̈v, and B̃ := B ∩ F̃v. We remark that if 
A ∈ Ȧ ∪ Ä, then |A ∩ [i]| ≤ (i + u)/2 for all i. Moreover equality holds exactly once if 
A ∈ Ȧ, and at least twice if A ∈ Ä.

If Ȧ = ∅ then A = Ä ∪ Ã and μp(A) = μp(Ä) + μp(Ã). Thus by (i) and (iii) of 
Lemma 2.2 we have

μp(A)μp(B) ≤
(
αu+1 + αu+1)αv ≤ 2α2t+1 <t p

2t, (5)

where the last inequality holds for t ≥ 14. (This is the point where we really need 
t ≥ 14.) The same holds for the case when Ḃ = ∅. Thus if Ȧ = ∅ or Ḃ = ∅ then (i) of the 
proposition holds.

From now on we assume that Ȧ �= ∅ and Ḃ �= ∅. Thus there exist s, s′ such that 
Ȧ ∩ Fu

s �= ∅ and Ḃ ∩ Fv
s′ �= ∅. Remarkably, these s and s′ are uniquely determined. 

Extending a result in [9] we show this structural result as follows.

Lemma 3.2. There exist unique nonnegative integers s and s′ such that s −s′ = (v−u)/2, 
As := Ȧ ∪ Ä ⊂ Fu

s , and Bs′ := Ḃ ∪ B̈ ⊂ Fv
s′ .

Proof. Suppose that Ȧ ∩ Fu
s �= ∅ and Ḃ ∩ Fv

s′ �= ∅. For any A ∈ Ȧ ∩ Fu
s we have

∣∣A ∩ [i]
∣∣ ≤ (i + u)/2 (6)

for all i, with equality holding iff i = 2s + u. Similarly, for any B ∈ Ḃ ∩ Fv
s′ , we have 

|B ∩ [i]| ≤ (i + v)/2 with equality holding iff i = 2s′ + v. These two inequalities give

∣∣A ∩ [i]
∣∣ +

∣∣B ∩ [i]
∣∣ ≤ i + (u + v)/2 = i + t (7)

with equality holding iff i = 2s + u = 2s′ + v. By Lemma 2.11(i), equality must hold 
in (7) for this i, which gives s − s′ = (v − u)/2. If there is some B′ ∈ Ḃ ∩ Fv

x , then, 
by considering A and B′, we also have s − x = (v − u)/2. This gives x = s′, and hence 
Ḃ ⊂ Fv

s′ . Similarly we have Ȧ ⊂ Fu
s .

We need to show Ä ⊂ Fu
s and B̈ ⊂ Fv

s′ . Suppose, to the contrary, that B̈ �⊂ Fv
s′ . Then 

there is some B ∈ B̈ such that |B ∩ [i]| ≤ (i + v)/2 for all i, and where equality does not
hold at i = 2s′ + v. For any A ∈ Ȧ ⊂ Fu

s , we have (6) with equality holding only at this 
same i = 2s +u = 2s′+v. So equality in (7) never holds for these A and B, contradicting 
Lemma 2.11(i). One can show Ä ⊂ Fu

s similarly. �
Here we record our setup.

• t ≥ 14, 0 < p ≤ 1
t+1 , q = 1 − p, and α = p/q.

• u + v = 2t, 0 ≤ u ≤ t ≤ v ≤ 2t, s ≥ s′ ≥ 0, and s − s′ = (v − u)/2.
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• u = t − (s − s′) and v = t + (s − s′).
• A = Ȧ ∪ Ä ∪ Ã ⊂ Fu, B = Ḃ ∪ B̈ ∪ B̃ ⊂ Fv, Ȧ �= ∅ and Ḃ �= ∅.
• As := Ȧ ∪ Ä ⊂ Fu

s and Bs′ := Ḃ ∪ B̈ ⊂ Fv
s′ .

The rest of the proof of the proposition is divided into three parts, which break 
over three more subsections. In Section 3.2, we deal with easy cases, namely, all cases 
but (s, s′) = (1, 0), (0, 0), (1, 1), and in Section 3.3 we settle one of the more difficult 
cases, (s, s′) = (1, 0). In these cases, only (i) of the proposition happens. Finally in 
Section 3.4, we consider the last two cases (s, s′) = (0, 0), (1, 1) where the extremal 
configurations satisfying (ii) appear. Then Theorems 1.3 and 1.4 will be easily proved 
using the proposition.

3.2. Proof of Proposition 3.1: easy cases

Let F̄r
i := (Ḟr ∪ F̈r) ∩ Fr

i .

Claim 3.3. Let r ≥ 1 and i ≥ 0 be integers, let p ≤ p0 < 1/2, and let ε = 0.001. There 
exists an n0 such that for all n ≥ n0 we have

μp

(
F̃r ∪ F̄r

i

)
< prf(r, i, p)(1 + ε),

where

f(r, i, p) = p

qr+1 +
(

2i + r

i

)
r + 1

r + i + 1

(
1 − p

q

)
(pq)i.

Proof. Let L be the line y = x +r+1. Then every walk in F̃r hits L, and (i) of Lemma 2.2
yields

μp

(
F̃r

)
≤ αr+1 = pr+1

qr+1 ≤ pr+1

qr+1 (1 + ε). (8)

A walk W ∈ F̄r
i must go from O = (0, 0) to Q = (i, i + r) without hitting the line L, 

and then continue on without hitting L. It follows from (ii) of Lemma 2.13 that the 
number of walks from O to Q that do not hit L is(

i + (i + r)
i

)
−

(
i + (i + r)

(i + r) − (r + 1)

)
=

(
2i + r

i

)
r + 1

r + i + 1 ,

so the probability of a random walk W2i+r,p hitting Q without hitting L is 
(2i+r

i

)
r+1

r+i+1 ×
pr+1qi. By Lemma 2.2(ii), the random walk continues on from Q without hitting L, with 
probability at most 1 − α + δ ≤ (1 − α)(1 + ε), where δ = 1−2p0

1−p0
ε. Therefore we have

μp

(
F̄r

i

)
≤

(
2i + r

i

)
r + 1

r + i + 1p
r+iqi(1 − α)(1 + ε). (9)

Combining (8) and (9) completes the proof of Claim 3.3. �
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Lemma 3.4. If s ≥ 2, then μp(A)μp(B) <t p
2t.

Proof. Since μp(A)μp(B) ≤ μp(F̃u ∪ F̄u
s )μp(F̃v ∪ F̄v

s′), it suffices to show the RHS is 
<t p2t. We will show that f(u, s, p)f(v, s′, p) <t 0.99 for all n ≥ n0. We claim that it 
implies Lemma 3.4. Indeed, since 0.99(1 + ε)2 < 0.992 and Claim 3.3 holds, we have 
μp(A)μp(B) <t p

2t for all n ≥ n0. By Lemma 2.12, this implies Lemma 3.4 for all n.
Now we show that f(u, s, p)f(v, s′, p) <t 0.99 for all n ≥ n0. Since u ≤ t and f(u, s, p)

is an increasing function of u, we have f(u, s, p) ≤ f(t, s, p). The first term of f(t, s, p)
is clearly increasing in p, and the second term is also an increasing function of p iff 
1
p + 4p > 4 + 1

s , which is certainly true for p ≤ 1
t+1 ≤ 1/15 and s ≥ 1. Thus we have 

f(t, s, p) ≤ f(t, s, 1
t+1 ) =: g(s, t). By a direct computation we see that g(s, t) > g(s +1, t)

iff

(t + 1)2(s + 1)(s + t + 2)
t(2s + t + 2)(2s + t + 1) > 1,

or equivalently,

s2(t− 1)2 + s
(
t3 + t2 + t + 3

)
+
(
t2 + 3t + 2

)
> 0

which is true for t ≥ 1 and s ≥ 0. Similarly, noting that v ≤ 2t, we have

f
(
v, s′, p

)
≤ f

(
2t, s′, p

)
≤ f

(
2t, s′, 1

t + 1

)
:= h

(
s′, t

)
,

and h(s′, t) > h(s′ +1, t) holds for all t ≥ 1 and s′ ≥ 1. Thus for t ≥ 14, s ≥ 3 and s′ ≥ 1
we have

f(u, s, p)f
(
v, s′, p

)
≤ g(s, t)h

(
s′, t

)
≤ g(3, t)h(1, t) ≤ g(3, 14)h(1, 14) < 0.87.

The remaining cases are s′ = 0 or s = 2. If s′ = 0 and s ≥ 2 then, observing that 
f(v, 0, p) is (decreasing in p but) bounded by 1 as p goes to 0, we have

f(u, s, p)f
(
v, s′, p

)
≤ g(2, 14) · 1 < 0.96.

If s = 2 and s′ = 1 then u = t − 1, v = t + 1, and

f(u, s, p)f
(
v, s′, p

)
≤ f

(
t− 1, 2, 1

t + 1

)
f

(
t + 1, 1, 1

t + 1

)

≤ f

(
13, 2, 1

15

)
f

(
15, 1, 1

15

)
< 0.68.

If s = s′ = 2 then u = v = t and
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Fig. 1. (a) DA
I and (b) DB

J .

f(u, s, p)f
(
v, s′, p

)
≤ f

(
t, 2, 1

t + 1

)2

≤ f

(
14, 2, 1

15

)2

< 0.46.

This completes the proof of Lemma 3.4. �
We have proved the proposition for the cases s ≥ 2, and the remaining cases are 

s ≤ 1, namely, (s, s′) = (0, 0), (1, 1), (1, 0). We will discuss these three cases in the next 
two subsections.

3.3. Proof of Proposition 3.1: a harder case

Here we consider the case (s, s′) = (1, 0). In this case, we have u = t −1 and v = t +1.

Lemma 3.5. We have μp(A)μp(B) <t p
2t for (s, s′) = (1, 0).

Proof. For 1 ≤ i ≤ n − t − 2, let

DA
i = [t− 2] ∪ {t, t + 1} ∪

{
t + 1 + i + 2� ∈ [n]: � = 1, 2, . . .

}
∈ Ḟ t−1 ∩ F t−1

1 ,

and for 1 ≤ j ≤ n − t − 2, let

DB
j = [t + 1] ∪

{
t + 1 + j + 2� ∈ [n]: � = 1, 2, . . .

}
∈ Ḟ t+1 ∩ F t+1

0 .

(See Fig. 1.)
Let I := max{i: DA

i ∈ A}. We claim that I is well defined. Indeed, we have assumed 
that ∅ �= Ȧ ⊂ A1 (see setup in Section 3.1), and A → DA

1 for any A ∈ Ȧ. Thus we have 
that DA

1 ∈ A, and so {i: DA
i ∈ A} �= ∅. Similarly, we have ∅ �= Ḃ ⊂ B0 and B → DB

1 for 
any B ∈ Ḃ. Thus DB

1 ∈ B and we can define J := max{j: DB
j ∈ B}.
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We consider several cases separately. During this subsection, ε is an arbitrarily small 
constant, depending only on n, where ε → 0 as n → ∞.

Case 1. When I ≥ 2 and J ≥ 2.
First we show

μp(A) < pt(eα + 1 + tq + tε). (10)

Note that μp(A) = μp(Ã) +μp(A1). To estimate μp(Ã), let A ∈ Ã. Then A hits the line 
L0: y = x + t. At the same time, since the dual walk dualt(DB

J ) is not in A, where

dualt
(
DB

J

)
= [t− 1] ∪ [t + 2, t + J + 2] ∪ {t + J + 4, t + J + 6, . . .},

we have that A � dualt(DB
J ) (see Fig. 1). To satisfy these conditions, it suffices for A

that one of the following properties holds:

(1a) A hits the line L1: y = x + (t + J − 1). (Then A hits the line L0 automatically.)
(1b) A does not hit L1, but hits (0, t). (Notice that (0, t) is on L0, and a walk hitting 

this point cannot shift to dualt(DB
J ).)

(1c) A does not hit L1 or (0, t), but hits (1, t) and the line L0. (Notice that a walk 
hitting (1, t) cannot shift to dualt(DB

J ).)

Thus we have

μp(Ã) ≤ μp

(
walks of (1a)

)
+ μp

(
walks of (1b)

)
+ μp

(
walks of (1c)

)
≤ αt+J−1 + pt

(
1 − αJ−1 + ε

)
+ tptq

(
α− αJ + ε

)
.

The last inequality uses Lemma 2.2(i) for the first term. For the second and third terms, 
we use Lemma 2.2(ii) in combination with Example 2.1. Hence,

μp(Ã) ≤ αt+J−1 + pt + tptqα. (11)

To bound μp(A1) we simply use A1 ⊂ F̄ t−1
1 and simply bound μp(F̄ t−1

1 ). Let F ∈
F̄ t−1

1 = F t−1
1 ∩ (Ḟ t−1 ∪ F̈ t−1). Then, it follows from F ∈ F t−1

1 that
∣∣F ∩

[
(t− 1) + 2

]∣∣ ≥ (t− 1) + 1,

that is, F hits (0, t + 1) or (1, t). On the other hand, it follows from F ∈ Ḟ t−1 ∪ F̈ t−1

that F hits the line y = x + t − 1, but does not hit y = x + t. Combining these things, 
we have that F ∈ F̄ t−1

1 hits (1, t) without hitting (0, t), and then from (1, t) it will never 
hit y = x + 1. Therefore we have

μp(A1) ≤ μp

(
F̄ t−1

1
)
≤ tptq(1 − α + ε) = tptq(1 + ε) − tptqα, (12)

where again we use Lemma 2.2(ii) in combination with Example 2.1.
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Combining (11) and (12) implies that

μp(A) = μp(Ã) + μp(A1) ≤ αt+J−1 + pt + tptq(1 + ε)

= pt
(

1
qt
αJ−1 + 1 + tq(1 + ε)

)
< pt(eα + 1 + tq + tε),

where the last inequality follows from q−t ≤ (1 + 1
t )

t < e and J ≥ 2. This proves (10).
Next we show

μp(B) ≤ pt
(
eα3 + p + pε

)
. (13)

Since μp(B) = μp(B̃) + μp(B0) we estimate the p-weights of B̃ and B0 separately.
Let B ∈ B̃. It follows from B̃ ⊂ F̄ t+1 that B hits the line y = x + t + 2. On the other 

hand, it follows from dualt(DA
I ) /∈ B that B hits (0, t + 1) or the line y = x + (t + 1 + I). 

Thus we get

μp(B̃) < μp

(
walks in B̃ hitting y = x + (t + 1 + I)

)
+ μp

(
walks in B̃ hitting both (0, t + 1) and y = x + t + 2

)
≤ αt+1+I + pt+1α. (14)

As for B0 ⊂ F̄ t+1
0 , noting that walks in F̄ t+1

0 hit (0, t + 1) but do not hit the line 
y = x + t + 2, we obtain

μp(B0) ≤ μp

(
F̄ t+1

0
)
≤ pt+1(1 − α + ε) = pt+1(1 + ε) − pt+1α. (15)

Combining (14) and (15) yields that

μp(B) = μp(B̃) + μp(B0) ≤ αt+1+I + pt+1α + pt+1(1 + ε) − pt+1α

= pt
(

1
qt
α1+I + p(1 + ε)

)
< pt

(
eα3 + p + pε

)
,

where the last inequality follows from q−t < e and I ≥ 2. This proves (13).
Now we are ready to show μp(A)μp(B) <t p

2t. By (10) and (13) we have

μp(A)μp(B) < p2t(eα + 1 + tq + tε)
(
eα3 + p + pε

)
= p2t(epα + p + tpq + tpε)

(
ep2/q3 + 1 + ε

)

< p2t
(

e

t(t + 1) + 1
t + 1 + t2

(t + 1)2 + ε

)(
e
t + 1
t3

+ 1 + ε

)

< p2t
((

e

t(t + 1) + 1
t + 1 + t2

(t + 1)2

)(
e
t + 1
t3

+ 1
)

+ 4ε
)

=: p2t(g(t) + 4ε
)
, (16)
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where the second inequality follows from (4). Note that d
dtg(t) < 0 for t ≤ 13 while 

d
dtg(t) > 0 for t ≥ 14. In addition, g(7) < 0.999, and limt→∞ g(t) = 1. Hence, we have 
g(t) <t 1 for all t ≥ 7. Hence we have μp(A)μp(B) <t p

2t for all t ≥ 7. This completes 
the proof for Case 1.

Case 2. When I = 1.
We first estimate μp(A). Trivially,

μp(Ã) ≤ αt = pt

qt
≤ pt

(
1 + 1

t

)t

.

Next we consider the walks in A1. These walks hit the line y = x + t − 1 but do not 
hit y = x + t, and A1 ⊂ F t−1

1 implies that they hit (0, t + 1) or (1, t). Consequently, 
walks in A1 hit (1, t) without hitting the y = x + t. The weight of these walks is at most 
tptq(1 − α + ε). Among them, we look at the walks that hit all of (1, t − 2), (1, t), (3, t), 
and do not hit y = x + t − 2 after hitting (3, t). These walks cannot be in A1, as they 
shift to

DA
2 = [t− 2] ∪ {t, t + 1} ∪ {t + 5, t + 7, . . .};

but DA
2 /∈ A. The weight of such walks is at least (t − 1)ptq · q2(1 − α). Hence we infer

μp(A1) ≤ tptq(1 − α + ε) − (t− 1)ptq · q2(1 − α)

= pt
(
(1 − α)

(
tq − (t− 1)q3) + tqε

)
.

Then we use the fact that (1 −α)(tq− (t −1)q3) is increasing in p for 0 ≤ p ≤ 1
t+1 , which 

gives

(1 − α)
(
tq − (t− 1)q3) ≤ t(t− 1)(3t + 1)

(t + 1)3 . (17)

Thus we have

μp(A) ≤ μp(Ã) + μp(A1) ≤ pt
((

1 + 1
t

)t

+ t(t− 1)(3t + 1)
(t + 1)3 + tε

)
. (18)

On the other hand, we trivially have

μp(B) ≤ αt+1 = pt+1

qt+1 ≤ pt
(

1 + 1
t

)t+1 1
t + 1 = pt

(
1 + 1

t

)t 1
t
.

Combining this with (18) yields that

μp(A)μp(B)
2t ≤ g(t) + tε

(
1 + 1

)t 1
< g(t) + eε,
p t t
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where

g(t) :=
((

1 + 1
t

)t

+ t(t− 1)(3t + 1)
(t + 1)3

)(
1 + 1

t

)t 1
t
. (19)

Thus it suffices to show that g(t) <t 1. By direct computation we see that g(13) < 1. 
For t ≥ 14 we use (1 + 1

t )
t < e again to get

g(t) <
(
e

t
+ (t− 1)(3t + 1)

(t + 1)3

)
e =: g2(t). (20)

The RHS is decreasing in t for t > 0, and is less than 1 when t = 14. This completes the 
proof for Case 2.

Case 3. When J = 1.
Clearly, we have

μp(A) ≤ αt−1 = pt−1 1
qt−1 ,

and

μp(B̃) ≤ αt+2 = pt+2

qt+2 .

As for B0 we count the walks that hit (0, t + 1) and do not hit the line y = x + t + 2. 
Among them we delete the walks that hit both (0, t + 1) and (2, t + 1), and do not hit 
the line y = x + t − 1 after hitting (2, t +1). (If such walk was in B, then this would give 
DB

2 ∈ B, which is a contradiction.) Thus we have

μp(B0) ≤ pt+1(1 − α + ε− q2(1 − α)
)
.

Hence we infer

μp(A)μp(B) ≤ p2t 1
qt−1

(
p

qt+2 + 1 − α + ε− q2(1 − α)
)

≤ p2te

(
e
(t + 1)2

t2
p + (1 − α)

(
1 − q2) + ε

)

≤ p2t
(
e2 (t + 1)

t2
+ e

(t− 1)(2t + 1)
t(t + 1)2 + eε

)
=: p2t(h(t) + eε

)
,

where the second inequality follows from 1
q ≤ t+1

t and 1
qt ≤ (1 + 1

t )
t < e, and the 

third inequality follows from p ≤ 1
t+1 and the fact that the function (1 − α)(1 − q2) is 

increasing in p for p ≤ 0.274. Since dh(t)
dt < 0 and h(13) < 0.96, we have that h(t) < 0.96

for all t ≥ 13, and hence, for all t ≥ 13,
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Fig. 2. The walk DI when (a) s = 0 and (b) s = 1.

μp(A)μp(B) < 0.97p2t.

This completes the proof for Case 3, and so for Lemma 3.5. �
We state now a partial version of Proposition 3.1, recording what we have proved so 

far.

Corollary 3.6. For every t ≥ 14, n ≥ t, and p with 0 < p ≤ 1
t+1 , we have the following. 

If A and B are shifted, inclusion maximal cross t-intersecting families in 2[n], then one 
of the following holds.

(i)
√

μp(A)μp(B) < (1 − γ)pt, where γ ∈ (0, 1] depends only on t.
(ii) (s, s′) = (0, 0), (1, 1).

3.4. Proof of Proposition 3.1: extremal cases

Finally, we consider the cases (s, s′) = (0, 0), (1, 1). In these cases u = v = t.
Recall that F t

s = {F ⊂ [n]: |F ∩ [t + 2s]| ≥ t + s}. Let

Di = [1, t− 1] ∪ {t + s, t + 2s} ∪
{
t + 2s + i + 2j ∈ [n]: j = 1, 2, . . .

}
∈ Ḟ t ∩ F t

s

for 1 ≤ i ≤ n − t − 2s − 1 =: imax. (See Fig. 2.) Notice that

Dimax = [1, t− 1] ∪ {t + s, t + 2s}

and
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Dimax−1 = [1, t− 1] ∪ {t + s, t + 2s} ∪ {n}.

Let I := max{i: Di ∈ A}. We claim that I exists. Indeed, one can check that A → D1
for any A ∈ Ȧ ∩ As, and D1 ∈ A. (Recall from the setup at the end of Section 3.1 that 
we assume ∅ �= Ȧ ⊂ As.) Similarly, J := max{j: Dj ∈ B} �= ∅.

Claim 3.7. If I �= imax, then μp(B \ F t
s) <t μp(F t

s \ A).

Proof. We first show that

μp

(
F t

s \ A
)
≥

(
t

s

)
pt+sqs+I+1(1 − α) (21)

and

μp

(
B \ F t

s

)
≤ αt+I . (22)

Consider a walk W that hits (s, t + s) and shifts to DI+1. Since DI+1 /∈ A we have 
W ∈ F t

s \A. Further, such a walk W must hit Q1 = (s, t − s) and Q2 = (s + I +1, t + s). 
There are 

(
t
s

)
ways for W to go from (0, 0) to Q1, then the next 2s +I+1 steps to Q2 are 

unique. A random walk Wt+2s+I+1,p has this property with probability 
(
t
s

)
pt+sqs+I+1. 

From Q2, a point on the line y = x + (t − I − 1), the walk must not hit y = x + (t − I). 
(Otherwise W → DI+1 fails.) This happens, by Lemma 2.2(i), with probability at least 
1 − α, which gives (21).

Next we show (22). Since dualt(DI) /∈ B, each walk in B hits at least one of (0, t + s), 
(s, t + s), and y = x +(t + I). Since each walk hitting (0, t + s) or (s, t + s) is in F t

s, each 
walk in B \ F t

s hits y = x + (t + I). This yields (22).
Therefore it suffices, by (21) and (22), to show αt+I <t

(
t
s

)
pt+sqs+I+1(1 −α). We have

(
t
s

)
pt+sqs+I+1(1 − α)

αt+I
=

(
t

s

)
psqt+s+1(1 − α)

(
q2

p

)I

≥
(
t

s

)
ps−1qt+s+2(q − p),

where the first inequality holds because of q2/p > 1 for p < 0.38. Since p ≤ 1/(t + 1), 
one can easily check that 

(
t
s

)
ps−1qt+s+2(q − p) >t 1 if s = 0 and t ≥ 5, or if s = 1 and 

t ≥ 6. �
The following part will also be used in proving k-uniform results. To make this reuse 

easier we introduce some names as follows. Let f = μp(F t
s), a = μp(A), a0 = μp(A ∩F t

s), 
a1 = μp(A �F t

s), af = μp(A \ F t
s), and fa = μp(F t

s \ A). (So f = a0 + fa, a = a0 + af , 
and a1 = af + fa.) Define b, b0, b1, bf , fb similarly.

Lemma 3.8. Let η > 0 be given. If I �= imax, then one of the following holds.

(i)
√
ab < (1 − βη

4 )f , where β ∈ (0, 1] depends only on t.
(ii) a1 + b1 < ηf and 

√
ab < f .
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Proof. We first show that there exists β = β(t) > 0 such that

bf ≤ (1 − β)fa and af ≤ (1 − β)fb. (23)

By Claim 3.7, there is β1 = β1(t) > 0 such that bf ≤ (1 − β1)fa. Similarly if J �= imax, 
then there is β2 > 0 such that af ≤ (1 −β2)fb. If J = imax, then A ⊂ F t

s, that is, af = 0, 
and af ≤ (1 − β2)fb holds for any β2 < 1. Thus, letting β = min{β1, β2} = β(t) > 0, we 
have (23).

Now suppose that a0 + b0 < (1 − η
4 )2f . Then, using (23), we have

a + b = a0 + af + b0 + bf ≤ (1 − β)(a0 + fa + b0 + fb) + β(a0 + b0)

≤ (1 − β)2f + β(a0 + b0) < (1 − β)2f + β

(
1 − η

4

)
2f =

(
1 − βη

4

)
2f.

Thus we have 
√
ab ≤ a+b

2 < (1 − βη
4 )f .

Next suppose that a0 + b0 ≥ (1 − η
4 )2f . This gives fa + fb ≤ η

2f . Thus, using (23), 
we have a1 + b1 = af + fa + bf + fb < 2(fa + fb) ≤ ηf . Also it follows from (23) that 
a + b = a0 + b0 + af + bf < a0 + b0 + fa + fb ≤ 2f which gives 

√
ab < f . �

If I �= imax, then one of (i) or (ii) of Proposition 3.1 holds by Lemma 3.8. (In this case 
we always have 

√
ab < f .) The same holds for the case J �= imax.

Consequently we may assume that I = J = imax. It follows from I = imax that 
Dimax ∈ A, and hence the dual, dualt(Dimax) = [n] \ {t + s, t + 2s} is not in B. Thus all 
walks B in B satisfy B � dualt(Dimax), and B ⊂ F t

s holds. Also, J = imax yields A ⊂ F t
s. 

In this situation, we clearly have 
√
ab ≤ f with equality holding iff A = B = F t

s. Thus 
all we need to do is to show that one of (i) or (ii) of Proposition 3.1 holds. Let fa = ξaf , 
fb = ξbf , and let ξ = ξa + ξb. Then a1 + b1 = fa + fb = ξf . On the other hand it follows 
that 

√
ab =

√
a0b0 =

√
(1 − ξa)(1 − ξb)f ≤ (1−ξ1)+(1−ξb)

2 f = (1 − ξ
2 )f ≤ (1 − ξ

2 )pt. Now 
let η be given. If ξ < η, then (ii) holds. If ξ ≥ η, then (i) holds by taking γ slightly 
smaller than 1/2. This completes the whole proof of Proposition 3.1. �
Proof of Theorem 1.3. This follows from Proposition 3.1 if A and B are shifted. (Recall 
that if 0 < p ≤ 1

t+1 then μp(F t
0) ≥ μp(F t

1) with equality holding iff p = 1
t+1 .) If they 

are not shifted, then we use Lemma 2.3(iii) to get shifted families A′ and B′ starting 
from A and B. By Lemma 2.3(i) they have the same p-weights as A and B, and so by 
Proposition 3.1,

√
μp

(
A′

)
μp

(
B′
)

=
√
μp(A)μp(B) ≤ μp

(
F t

s

)
≤ pt (s = 0, 1).

Moreover if both equalities hold then either A′ = B′ = F t
0, or p = 1

t+1 and A′ = B′ = F t
1, 

and Lemma 2.3(iv) (or Lemma 2.7) gives us that either A = B ∼= F t
0, or p = 1

t+1 and 
A = B ∼= F t

1. �
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Proof of Theorem 1.4. This directly follows from Proposition 3.1 unless (ii) of Proposi-
tion 3.1 happens with s = 1. In this last case, we notice that

g(p) := μp

(
F t

1
)/

μp

(
F t

0
)

= (t + 2)p(1 − p) + p2

is an increasing function of p on (0, 1
t+1 (1 + t

2 )], and g( 1
t+1 ) = 1. Thus we have

√
μp(A)μp(B) ≤ μp

(
F t

1(n)
)
< g

(
1

t + 1 − ε

)
pt.

This gives (i) of Theorem 1.4 by choosing γ so that g( 1
t+1 − ε) = 1 − γη. �

4. Results about uniform families

In this section, we prove Proposition 4.1 about k-uniform cross t-intersecting families, 
from which Theorems 1.1 and 1.2 will follow.

Proposition 4.1. For every k ≥ t ≥ 14, n ≥ (t + 1)k and η ∈ (0, 1] we have the following. 
If A and B are shifted cross t-intersecting families in 

([n]
k

)
, then one of the following 

holds.

(i)
√

|A||B| < (1 − γ∗η)
(
n−t
k−t

)
, where γ∗ ∈ (0, 1] depends only on t.

(ii) |A �F t
s(n, k)| + |B � F t

s(n, k)| < η|F t
s(n, k)|, where s = 0 or 1.

If (ii) happens then 
√
|A||B| ≤ |F t

s(n, k)| with equality holding iff A = B = F t
s(n, k).

Our proof of Proposition 4.1 closely follows the proof of Proposition 3.1. We will 
use k-uniform versions of the concepts of that proof, but instead of introducing another 
index k, we redefine our notation. In particular we let Fu be the family of walks from 
(0, 0) to (n − k, k) that hit the line y = x + u, or equivalently,

Fu =
{
F ∈

(
[n]
k

)
:
∣∣F ∩ [j]

∣∣ ≥ (j + u)/2 for some j

}
.

Let F̃u, Ḟu, and F̈u be defined as before, but with respect to this new Fu. Similarly, 
we now use F t

i to mean F t
i (n, k). (One can think of this redefinition as applying the 

function firstk to everything in the previous definitions of the families.)

4.1. Proof of Proposition 4.1: setup

Let k ≥ t ≥ 14 and n ≥ (t +1)k be given (η ∈ (0, 1] will be given later). The following 
basic inequalities will be used frequently without referring to explicitly.
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k

n
≤ 1

t + 1 ,
n− k

n
≥ t

t + 1 ,
n

n− k
≤ t + 1

t
,

(
n

n− k

)t

≤
(

1 + 1
t

)t

< e,
k

n− k
≤ 1

t
,

k(n− k)
n2 ≤ t

(t + 1)2 .

Let A and B be non-empty shifted cross t-intersecting families in 
([n]
k

)
. Let u = λ(A)

and v = λ(B). By Lemma 2.17 we have u + v ≥ 2t. If u + v ≥ 2t + 1, then (i) of 
Lemma 2.13 gives

|A||B| ≤
(

n

k − u

)(
n

k − v

)
≤

(
n

k − t

)(
n

k − t− 1

)
<t

(
n− t

k − t

)2

,

which gives (i) of the proposition. In fact, the last inequality can be shown as follows:

(
n

k − t

)(
n

k − t− 1

)(
n− t

k − t

)−2

= n · · · (n− t + 1)
(n− k + t) · · · (n− k + 1)

n · · · (n− t + 1)(k − t)
(n− k + t + 1) · · · (n− k + 1)

=
(

n · · · (n− t + 1)
(n− k + t) · · · (n− k + 1)

)2
n

n− k + t + 1
k − t

n

<

(
n− t + 1
n− k + 1

)2t+1 1
t + 1 <

(
1 + 1

t

)2t+1 1
t + 1 <

e2+1/t

t + 1 <t 1,

where the last inequality holds for t ≥ 8.
So we may assume that u + v = 2t, and by symmetry that u ≤ v. For later use, we 

also notice that e2+1/t

t+1 <t
1
2 for t ≥ 15, while (1 + 1

t )
2t+1 1

t+1 < 1
2 is true even when 

t = 14. Thus we have
(

n

k − t

)(
n

k − t− 1

)(
n− t

k − t

)−2

<t
1
2 (24)

for t ≥ 14.
We partition A and B into families Ȧ, Ä, Ã and Ḃ, B̈, B̃, as we do near the beginning 

of Section 3.1 (but relative to the k-uniform versions of F̃u, Ḟu, and F̈u.)
If Ȧ = ∅, then A = Ä ∪ Ã. Using (iii) and (i) of Lemma 2.13 we have |Ä| ≤

(
n

k−u−1
)
, 

|Ã| ≤
(

n
k−u−1

)
and |B| ≤

(
n

k−v

)
. Thus we get

|A||B| ≤ 2
(

n

k − u− 1

)(
n

k − v

)
≤ 2

(
n

k − t

)(
n

k − t− 1

)
<t

(
n− t

k − t

)2

,

where the last inequality follows from (24), and this is one of the points we really need 
t ≥ 14. The same holds for the case when Ḃ = ∅. Thus if Ȧ = ∅ or Ḃ = ∅ then (i) of the 
proposition holds.
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From now on we assume that Ȧ �= ∅ and Ḃ �= ∅. Then Lemma 3.2 holds in our 
k-uniform setting as well, namely, there exist unique nonnegative integers s and s′ such 
that s − s′ = (v−u)/2, As := Ȧ ∪ Ä ⊂ Fu

s , and Bs′ := Ḃ ∪ B̈ ⊂ Fv
s′ . It then follows from 

∅ �= Ḃ ⊂ Fv
s′ that

k ≥ v + s′ = v +
(
s− v − u

2

)
= u + v

2 + s = t + s.

In summary, we may assume the following setup.

• t ≥ 14, s ≥ s′ ≥ 0, k ≥ t + s, and n ≥ (t + 1)k.
• u + v = 2t, 0 ≤ u ≤ t ≤ v ≤ 2t, and s − s′ = (v − u)/2.
• u = t − (s − s′) and v = t + (s − s′).
• A = Ȧ ∪ Ä ∪ Ã ⊂ Fu, B = Ḃ ∪ B̈ ∪ B̃ ⊂ Fv, Ȧ �= ∅ and Ḃ �= ∅.
• As := Ȧ ∪ Ä ⊂ Fu

s and Bs′ := Ḃ ∪ B̈ ⊂ Fv
s′ .

From here, our division into cases is the same as in the p-weight version.

4.2. Proof of Proposition 4.1: easy cases

In this subsection, we prove the following.

Lemma 4.2. If s ≥ 2 then 
√
|A||B| < 0.89

(
n−t
k−t

)
.

Proof. Let F̄u
s := (Ḟu ∪ F̈u) ∩ Fu

s . Since A = Ã ∪ As, Ã ⊂ F̃u, As ⊂ F̄u
s , we have 

A ⊂ F̃u ∪ F̄u
s and

|A| ≤
∣∣F̃u

∣∣ +
∣∣F̄u

s

∣∣.
By (i) of Lemma 2.13 we have

∣∣F̃u
∣∣ =

(
n

k − u− 1

)
.

Since all walks in F̄u
s hit (s, u + s), by counting the number of walks from (0, 0) to 

(s, u + s), and from (s, u + s) to (n − k, k), we get

∣∣F̄u
s

∣∣ ≤
(
u + 2s

s

)(
n− u− 2s
k − u− s

)
.

Thus we have

|A| ≤ (a1 + a2)
(
n− u

)
,

k − u
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where

a1 := f(n, k, u, s) :=
(

n

k − u− 1

)(
n− u

k − u

)−1

,

a2 := g(n, k, u, s) :=
(
u + 2s

s

)(
n− u− 2s
k − u− s

)(
n− u

k − u

)−1

.

This rather generous estimation is enough for our purpose (if s ≥ 2 and t ≥ 14) as we 
will see. In the same way we have

|B| ≤ (b1 + b2)
(
n− v

k − v

)
,

where b1 = f(n, k, v, s′) and b2 = g(n, k, v, s′). Notice that

(
n− u

k − u

)(
n− v

k − v

)
≤ · · · ≤

(
n− (t− 1)
k − (t− 1)

)(
n− (t + 1)
k − (t + 1)

)
≤

(
n− t

k − t

)2

.

Thus, to prove the lemma, it is enough to show that

(a1 + a2)(b1 + b2) < 0.89.

First we find bounds on the individual components.

Claim 4.3. For s ≥ 2, we have a1 < 0.195, b1 < 0.528, and a1b1 < 0.038. For s = 2, we 
have b1 < 0.224.

Proof. Using n ≥ (t + 1)k we have

a1 = n · · · (n− u + 1)(k − u)
(n− k + u + 1)(n− k + u) · · · (n− k + 1)

≤
(
n− u + 1
n− k + 1

)u
k − u

n− k + u + 1

<

(
(t + 1)k + 1

tk + 1

)u
k

kt
<

(
t + 1
t

)u 1
t
<

eu/t

t
.

The RHS is decreasing in t and increasing in u. So eu/t/t is maximized when u = t (recall 
that u ≤ t). Using also t ≥ 14 we have

a1 <
e

t
≤ e

14 < 0.195.

In the same way we have
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b1 = f
(
n, k, v, s′

)
<

ev/t

t
.

Since v ≤ 2t, the RHS is maximized when v = 2t, and we get

b1 <
ev/t

t
≤ e2

t
≤ e2

14 < 0.528

in general. Further, when s = 2, we have v = t + s − s′ ≤ t + 2, and

b1 <
ev/t

t
≤ e1+ 2

t

t
≤ e

16
14

14 < 0.224.

Also we have

a1b1 <
eu/t

t

ev/t

t
= e(u+v)/t

t2
= e2

t2
≤ e2

142 < 0.038. �
Claim 4.4. For s ≥ 3, a2 < 0.34, b2 < 2.21 and a2b2 < 0.12. For s = 2, a2 < 0.68, 
b2 < 1.14, and a2b2 < 0.47.

Proof. Using that n ≥ (t + 1)k and that k ≥ t + s ≥ u + s we have

a2

(
u + 2s

s

)−1

= (k − u) · · · (k − u− s + 1)(n− k) · · · (n− k − s + 1)
(n− u) · · · (n− u− 2s + 1)

<

(
k − u

n− u

)s(
n− k

n− u− s

)s

≤
(
k

n

)s

≤
(

1
t + 1

)s

,

and

a2 = g(n, k, u, s) <
(
u + 2s

s

)(
1

t + 1

)s

=: h(t, u, s).

Similarly, noting that k ≥ v + s′, we have

b2 = g
(
n, k, v, s′

)
< h

(
t, v, s′

)
.

We check that h(t, u, s) is decreasing in s for s ≥ 2. In fact

h(t, u, s) > h(t, u, s + 1)

is (after some computation) equivalent to

s2(t− 3) + s(tu + 2t− 3u− 4) +
(
tu− u2 + t− 2u− 1

)
> 0.



P. Frankl et al. / Journal of Combinatorial Theory, Series A 128 (2014) 207–249 237
Considering the LHS as a quadric of s, it is minimized at s = −(u+2
2 + 1

t−3 ) < 0. So the 
LHS is increasing in s for s ≥ 2, and it suffices to check the above inequality at s = 2, 
that is,

3tu + 9t− u2 − 8u− 21 > 0.

This is certainly true for u = 0. If u ≥ 1, then, using t ≥ u, the LHS satisfies

u(t− u) + 8(t− u) + (2u + 1)t− 21 ≥ 3t− 21 > 0,

which verifies that h(t, u, s) is decreasing in s.
Thus if s ≥ 3, then, noting that h(t, u, 3) is increasing in u, we have

h(t, u, s) ≤ h(t, u, 3) ≤ h(t, t, 3) =
(
t + 6

3

)(
1

t + 1

)3

.

The derivative of the RHS is − (2t+11)(3t+13)
3(t+1)4 < 0, and h(t, t, 3) is decreasing in t. Conse-

quently, if s ≥ 3 and t ≥ 14, then

a2 < h(14, 14, 3) < 0.34.

Similarly, if s = 2 and t ≥ 14, then

a2 < h(14, 14, 2) = 0.68.

Since b2 = h(t, v, s′) is increasing in v and v ≤ 2t, we have b2 < h(t, 2t, s′). For 
s′ = 0, 1, we have h(t, 2t, 0) = 1 and h(t, 2t, 1) = 2. Now let s′ ≥ 2. Then h(t, 2t, s′) is 
decreasing in t. In fact, we have

h(t, 2t, s′)
h(t + 1, 2(t + 1), s′) = (2t + s′ + 2)(2t + s′ + 1)

(2t + 2s′ + 2)(2t + 2s′ + 1)

(
1 + 1

t + 1

)s′

>
(2t + s′ + 2)(2t + s′ + 1)

(2t + 2s′ + 2)(2t + 2s′ + 1)

(
1 + s′

t + 1

)

= 1 + s′(s′ − 1)
2(t + 1)(2s + 2s′ + 1) > 1.

Thus, for s′ ≥ 2 and t ≥ 14, we have

h
(
t, 2t, s′

)
≤ h

(
14, 28, s′

)
=

(
28 + 2s′

s′

)
1

15s′ ,

where the RHS is decreasing in s′, and h(14, 28, s′) ≤ h(14, 28, 2) < 2.21. Consequently, 
for s′ ≥ 0 and t ≥ 14, we get

b2 = h
(
h, v, s′

)
≤ h(14, 28, 2) < 2.21.
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If s = 2, then we replace v ≤ 2t with v = t +s −s′ ≤ t +2, and we get b2 = h(t, v, s′) ≤
h(t, t + 2, s′). Since 0 ≤ s′ ≤ s, by computing h(t, t + 2, s′) for s′ = 0, 1, 2, it turns out 
that the maximum is taken when s′ = 1. Namely, for s = 2 and t ≥ 14, we have

b2 ≤ h(t, t + 2, 1) = t + 4
t + 1 ≤ h(14, 16, 1) = 1.2.

Finally, using that u + 2s = v + 2s′ = t + s + s′, we have

a2b2 = h(t, u, s)h
(
t, v, s′

)
=

(
t + s + s′

s

)(
t + s + s′

s′

)(
1

t + 1

)s+s′

≤
(
t + s + s′

(s + s′)/2

)2( 1
t + 1

)s+s′

= h

(
t, t,

s + s′

2

)2

≤ h(t, t, s)2.

Computing this for s = 2 and s = 3 gives the required bounds on a2b2. �
Now, in the case that s ≥ 3 we have

(a1 + a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2

< 0.038 + 0.195 · 2.21 + 0.34 · 0.528 + 0.12 < 0.77,

and when s = 2 we have

a1b1 + a1b2 + a2b1 + a2b2 < 0.038 + 0.195 · 1.14 + 0.68 · 0.224 + 0.47 < 0.89,

which completes the proof of Lemma 4.2. �
4.3. Proof of Proposition 4.1: a harder case

Lemma 4.5. For (s, s′) = (1, 0), we have 
√
|A||B| <t

(
n−t
k−t

)
.

Proof. Setting (s, s′) = (1, 0) yields that u = t − 1 and v = t + 1. We again follow the 
proof of Lemma 3.5, redefining the constructions of that proof by applying the firstk
operation to them.

That is, let us define DA
i ∈ Ḟ t−1∩F t−1

1 (1 ≤ i ≤ n −2k+t −1) and DB
j ∈ Ḟ t+1∩F t+1

0
(1 ≤ j ≤ n − 2k + t + 1) by

DA
i := firstk

(
[t− 2] ∪ {t, t + 1} ∪

{
t + 1 + i + 2� ∈ [n]: � = 1, 2, . . .

})
,

DB
j := firstk

(
[t + 1] ∪

{
t + 1 + j + 2� ∈ [n]: � = 1, 2, . . .

})
.

Since ∅ �= Ȧ ⊂ A1 and A → DA
1 for any A ∈ Ȧ, we have DA

1 ∈ A and {i: DA
i ∈ A} �= ∅. 

Similarly, {j: DB
j ∈ B} �= ∅. So the following values are well defined:

I := max
{
i: DA

i ∈ A
}
, J := max

{
j: DB

j ∈ B
}
.
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The argument below is almost the same as in Section 3.3. The only difference is that 
all walks considered here are from (0, 0) to (n − k, k). So we use Lemma 2.13 instead of 
Lemma 2.2. In each case we will show that

|A||B| =
(
|Ã| + |A1|

)(
|B̃| + |B0|

)
<t

(
n− t

k − t

)2

.

Case 1. When I ≥ 2 and J ≥ 2.
We divide walks in Ã into three types (1a), (1b), and (1c) as in Case 1 of Section 3.3. 

The number of walks of (1a) is 
(

n
k−t−J+1

)
by (i) of Lemma 2.13. For (1b) use (ii) of 

Lemma 2.13 and we get 
(
n−t
k−t

)
−

(
n−t

k−t−J+1
)
. Similarly, with aid of Example 2.1, we get 

t(
(
n−t−1
k−t−1

)
−
(
n−t−1
k−t−J

)
) for (1c). Thus we have

|Ã| ≤
(

n

k − t− J + 1

)
+

((
n− t

k − t

)
−

(
n− t

k − t− J + 1

))

+ t

((
n− t− 1
k − t− 1

)
−

(
n− t− 1
k − t− J

))

≤
(

n

k − t− 1

)
+
(
n− t

k − t

)
+ t

(
n− t− 1
k − t− 1

)
.

As for A1 ⊂ F̄ t−1
1 we notice that all walks in F̄ t−1

1 hit (1, t) without hitting (0, t), and 
then from (1, t) they never hit y = x + 1. This gives

|A1| ≤ t

((
n− t− 1
k − t

)
−
(
n− t− 1
k − t− 1

))
.

Any walk in B̃ hits the line y = x +(t +1 + I), or hits both (0, t +1) and y = x + t +2
(see Section 3.3 for details). Thus we get

|B̃| ≤
(

n

k − t− 1 − I

)
+
(
n− t− 1
k − t− 2

)
≤

(
n

k − t− 3

)
+

(
n− t− 1
k − t− 2

)
.

Any walk in B0 ⊂ F̄ t+1
0 hits (0, t + 1) but does not hit the line y = x + t + 2. This gives

|B0| ≤
(
n− t− 1
k − t− 1

)
−

(
n− t− 1
k − t− 2

)
.

In summary, we get

|A| ≤
(

n

k − t− 1

)
+

(
n− t

k − t

)
+ t

(
n− t− 1
k − t

)
,

|B| ≤
(

n
)

+
(
n− t− 1

)
.

k − t− 3 k − t− 1
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Then

|A|
(
n− t

k − t

)−1

≤ n · · · (n− t + 1)(k − t)
(n− k + t + 1) · · · (n− k + 2)(n− k + 1) + 1 + t

n− k

n− t

<

(
n

n− k

)t
k

n− k
+ 1 + t

n− k

n− t
,

|B|
(
n− t

k − t

)−1

≤ n · · · (n− t + 1)(k − t)(k − t− 1)(k − t− 2)
(n− k + t + 3) · · · (n− k + 1) + k − t

n− t

<

(
n

n− k

)t(
k

n− k

)2
k − t− 2
n− k + 1 + k − t

n− t
.

We also use

k − t− 2
n− k + 1 <

k

n− k
,

k − t

n− t
<

k

n
,

n− k

n− t

k − t− 2
n− k + 1 <

n− k

n

k

n− k
,

n− k

n− t

k − t

n− t
<

n− k

n

k

n
.

Then

|A||B|
(
n− t

k − t

)−2

≤
((

n

n− k

)t
k

n− k
+ 1 + t

n− k

n

)((
n

n− k

)t(
k

n− k

)3

+ k

n

)

=
((

n

n− k

)t
n

n− k

(
k

n

)2

+ k

n
+ t

k(n− k)
n2

)((
n

n− k

)t(
n

n− k

)3(
k

n

)2

+ 1
)

<

(
e

t(t + 1) + 1
t + 1 + t2

(t + 1)2

)(
e
t + 1
t3

+ 1
)
.

(For the first inequality, we remark that we did not estimate |A| and |B| separately. 
Instead, we estimated each term appeared in the expansion of |A||B| first, then we 
factorized the sum of the terms afterwards.) The RHS is equal to the g(t) from (16), and 
thus <t 1 for t ≥ 7.

Case 2. When I = 1.
Since walks in Ã hit y = x + t, and walks in B hit y = x + t + 1, we get

|Ã| ≤
(

n

k − t

)
and |B| ≤

(
n

k − t− 1

)
.

As for A1 we look at the walks that hit (1, t) without hitting y = x + t. Among them, 
we delete the walks that hit all of (1, t − 2), (1, t), (3, t), and do not hit y = x + t − 2
after hitting (3, t). (Here we use the fact that DA

2 /∈ A.) Thus we get
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|A1| ≤ t

((
n− t− 1
k − t

)
−
(
n− t− 1
k − t− 1

))
− (t− 1)

((
n− t− 3
k − t

)
−
(
n− t− 3
k − t− 1

))
.

For Ã and B we simply use the following estimation.

|Ã|
(
n− t

k − t

)−1

≤ n · · · (n− t + 1)
(n− k + t) · · · (n− k + 1) ≤

(
n− t + 1
n− k + 1

)t

<

(
1 + 1

t

)t

,

|B|
(
n− t

k − t

)−1

≤ n · · · (n− t + 1)
(n− k + t) · · · (n− k + 1)

k − t

n− k + t + 1 <

(
1 + 1

t

)t 1
t
.

For A1 we need to estimate

|A1|
(
n− t

k − t

)−1

≤ t

(
n− k

n− t

(
1 − k − t

n− k

))

− (t− 1)
(

(n− k)(n− k − 1)(n− k − 2)
(n− t)(n− t− 1)

(
1 − k − t

n− k − 2

))

= t
n− 2k + t

n− t
− (t− 1)(n− k)(n− k − 1)(n− 2k + t + 2)

(n− t)(n− t− 1)(n− t− 2)

<

(
t
n− 2k

n
− (t− 1)(n− k)2(n− 2k)

n3

)
+ t

(
n− 2k + t

n− t
− n− 2k

n

)
.

Let p = k
n ≤ 1

t+1 . Then the first term of the RHS is

t(1 − 2p) − (t− 1)(1 − p)2(1 − 2p) = (1 − α)
(
tq − (t− 1)q3),

where q = 1 − p and α = p
q , and thus we can reuse (17). For the second term we note 

that

n− 2k + t

n− t
− n− 2k

n
≤ n− 2k + 2t

n
− n− 2k

n
= 2t

n
.

Consequently we get

|A1|
(
n− t

k − t

)−1

<
t(t− 1)(3t + 1)

(t + 1)3 + 2t2

n
.

Finally we use g(t) from (19), g2(t) from (20), and note that n ≥ (t + 1)k ≥ (t + 1)t to 
obtain

|A||B|
(
n− t

k − t

)−2

< g(t) + 2t2

n

(
1 + 1

t

)t 1
t
< g(t) + 2e

t + 1 (25)

< g2(t) + 2e
. (26)
t + 1
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The RHS (26) is decreasing in t for t > 0 and is less than 1 when t = 20, and using 

g(19) instead of g2(19) we get that g(19) + 2e
19+1 < 1. This means that |A||B| <t

(
n−t
k−t

)2
for t ≥ 19. For the remaining cases 14 ≤ t ≤ 18 we check |A||B| <t

(
n−t
k−t

)2 by brute force 
as follows. If n > n0(t) := 2t

1−g(t) (1 + 1
t )

t then the RHS of (25) is still < 1. For smaller 
n ≤ n0(t) we use the trivial bounds for |Ã|, |A1| and |B| given above to get:

|A||B| <
{(

n

k − t

)
+ t

((
n− t− 1
k − t

)
−

(
n− t− 1
k − t− 1

))

− (t− 1)
((

n− t− 3
k − t

)
−

(
n− t− 3
k − t− 1

))}(
n

k − t− 1

)
,

and check that the RHS is less than 1 for all t ≤ k, (t + 1)k ≤ n ≤ n0(t) with the aid of 
computer. For example, in the case t = 14, we have �n0(14)� = 1023, and we compute 
the RHS of the above inequality for all k and n with 14 ≤ k, 15k ≤ n ≤ 1023. The cases 
15 ≤ t ≤ 18 are similar and easier. In the end, it turns out that |A||B| <t

(
n−t
k−t

)2 for 
all k ≥ t ≥ 14, n ≥ (t + 1)k in Case 2.

Case 3. When J = 1.
Using the same reasoning as in Section 3.3, we get

|A| ≤
(

n

k − t + 1

)
,

|B̃| ≤
(

n

k − t− 2

)
,

|B0| ≤
(
n− t− 1
k − t− 1

)
−
(
n− t− 1
k − t− 2

)
−
((

n− t− 3
k − t− 1

)
−

(
n− t− 3
k − t− 2

))
.

We continue to bound as follows:

|A|
(
n− t

k − t

)−1

≤ n · · · (n− t + 2)(n− t + 1)
(n− k + t− 1) · · · (n− k + 1)(k − t + 1)

≤
(
n− t + 2
n− k + 1

)t−1
n− t + 1
k − t + 1 <

(
1 + 1

t

)t−1
n− t

k − t
,

|B̃|
(
n− t

k − t

)−1

≤ n · · · (n− t + 1)
(n− k + t + 2) · · · (n− k + 3)

(k − t)(k − t− 1)
(n− k + 2)(n− k + 1)

≤
(
n− t + 1
n− k + 3

)t (k − t)(k − t− 1)
(n− k + 2)(n− k + 1) <

(
1 + 1

t

)t(
k − t

n− k

)2

,

|B0|
(
n− t

k − t

)−1

≤ k − t

n− t

((
1 − k − t− 1

n− k + 1

)
− (n− k)(n− k − 1)

(n− t− 1)(n− t− 2)

(
1 − k − t− 1

n− k − 1

))

<
k − t

(
1 −

(
n− k

)2

+ k(n− k)
2

)
.

n− t n n
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(For simplicity we just threw away the first − k−t−1
n−k+1 from the last inequality, while this 

term was used in the p-weight version.) Finally we get

|A||B|
(
n− t

k − t

)−2

<

(
1 + 1

t

)t−1((
1 + 1

t

)t
nk

(n− k)2 + 1 −
(
n− k

n

)2

+ k(n− k)
n2

)

≤
(

1 + 1
t

)t−1((
1 + 1

t

)t 1 + t

t2
+ 1 −

(
t

t + 1

)2

+ t

(t + 1)2

)

< e

(
e(t + 1)

t2
+ 3t + 1

(t + 1)2

)
. (27)

The RHS is decreasing in t, and less than 1 when t = 16. Further, (27) is less than 1
when t = 14, 15. Thus |A||B| <t

(
n−t
k−t

)2 for t ≥ 14. This completes the proof of Case 3, 
and so of Lemma 4.5. �
4.4. Proof of Proposition 4.1: extremal cases

This is the case that s = s′ ∈ {0, 1}. Let s ∈ {0, 1} and let

D′
i = firstk(Di) = firstk

(
[1, t− 1] ∪ {t + s, t + 2s} ∪ {t + 2s + i + 2j: j ≥ 1}

)

for 1 ≤ i ≤ k − t − s =: ikmax. Notice that

D′
ikmax

= firstk
(
[1, t− 1] ∪ {t + s, t + 2s} ∪ {k + s + 2j: j ≥ 1}

)

and

D′
ikmax−1 = firstk

(
[1, t− 1] ∪ {t + s, t + 2s} ∪ {k + s + 2j − 1: j ≥ 1}

)
.

For any A ∈ Ȧ �= ∅ it is easy to check that A → D′
1, and hence D′

1 ∈ A. Similarly 
D′

1 ∈ B. Let I ′ := max{i: D′
i ∈ A} and J ′ := max{j: D′

j ∈ B}.

Claim 4.6. If I ′ �= ikmax, then there is β = β(t) > 0 such that

∣∣B \ F t
s(n, k)

∣∣ ≤ (1 − β)
∣∣F t

s(n, k) \ A
∣∣.

Proof. First we show that

∣∣F t
s(n, k) \ A

∣∣ ≥
(
t

s

)(
n− 2s− t− I ′

k − s− t

)
n− 2k + t− I ′

n− 2s− t− I ′
(28)

and

∣∣B \ F t
s(n, k)

∣∣ ≤
(

n
′

)
. (29)
k − t− I
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Consider a walk W that hits (s, s + t) and satisfies W → DI′+1. Since D′
I′+1 /∈ A we 

have W ∈ F t
s(n, k) \ A. Also W must hit Q1 = (s, t − s) and Q2 = (s + I ′ + 1, s + t). 

There are 
(
t
s

)
ways for W to go from (0, 0) to Q1, then the next 2s + I ′ + 1 steps to 

Q2 are unique. From Q2 the walk must not hit y = x + (t − I ′). The number of such 
walks is equal to the number of walks from (0, 0) to (x0, y0) that hit y = x + c where 
x0 = (n − k) − (s + I ′ + 1), y0 = k − (s + t), and c = 1. So we can count this number 
using (ii) of Lemma 2.13 as follows:

(
n− 2s− t− I ′ − 1

k − s− t

)
−
(
n− 2s− t− I ′ − 1

k − s− t− 1

)
=

(
n− 2s− t− I ′

k − s− t

)
n− 2k + t− I ′

n− 2s− t− I ′
.

Thus the number of walks in F t
s(n, k) \ A is at least the RHS of (28).

Next we show (29). Since firstk(dualt(D′
I′)) /∈ B, each walk in B hits at least one of 

(0, t + s), (s, t + s), and y = x + (t + I ′). Since each walk that hits (0, t + s) or (s, t + s)
is in F t

s(n, k), each walk in B \ F t
s(n, k) hits y = x + (t + I ′). This yields (29).

Now we consider a lower bound for |F t
s(n, k) \ A| based on (28). We have

n− 2k + t− I ′

n− t− 2s− I ′
>

n− 3k − s + 1
n− k − s + 1 >

n− 3k
n− k

>
(t + 1)k − 3k
(t + 1)k − k

= t− 2
t

.

We also have
(
n− t− 2s− I ′

k − t− s

)/(
n

k − t− s

)

>

(
n− k − s− I ′

n− k + t + s

)k−t−s

=
(

1 + t + 2s + I ′

n− k − s− I ′

)−(k−t−s)

>

(
1 + t + 2 + I ′

(t− 1)(k − t− s)

)−(k−t−s)

> e−
t+2+I′

t−1 .

Thus we infer

(
RHS of (28)

)/(
n

k − t− s

)
> ts

t− 2
t

e−
t+2+I′

t−1 .

Finally we consider an upper bound of |B \ F t
s(n, k)| based on (29). We have

(
n

k − t− I ′

)/(
n

k − t− s

)
≤

(
k − t− s

n− k + t + I ′

)I′−s

≤
(

1
t

)I′−s

.

Therefore, it suffices to show that

ts
t− 2

e−
t+2+I′

t−1 >t

(
1
)I′−s

, or f(t, i) := t− 2
e−

t+2+i
t−1 ti >t 1.
t t t
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By direct computation, we have ∂f∂t > 0 for t ≥ 2. Further we have ∂f(8,i)
∂i > 0 for i ≥ 1, 

and f(8, 1) > 1.2. Hence, f(t, i) >t 1 for every t ≥ 8 and i ≥ 1. �
Let f = |F t

s(n, k)|, a = |A|, a0 = |A ∩F t
s(n, k)|, a1 = |A �F t

s(n, k)|, af = |A \F t
s(n, k)|, 

and fa = |F t
s(n, k) \ A|. Define b, b0, b1, bf , fb similarly. The proof of the next lemma is 

identical to that of Lemma 3.8 (use Claim 4.6 in place of Claim 3.7).

Lemma 4.7. Let η > 0 be given. If I ′ �= ikmax, then one of the following holds.

(i)
√
ab < (1 − βη

4 )f , where β ∈ (0, 1] depends only on t.
(ii) a1 + b1 < ηf and 

√
ab < f .

Finally we finish the proof of Proposition 4.1. If I �= ikmax, then one of (i) or (ii) of 
Proposition 4.1 holds by Lemma 4.7. (In this case we always have 

√
ab < f .) The same 

holds for the case J �= ikmax.
Consequently we may assume that I ′ = J ′ = ikmax. Since I ′ = ikmax we have 

D′
ikmax

∈ A. Then C := [k + s + 1] \ {t + s, t + 2s} /∈ B because |D′
ikmax

∩ C| = t − 1. 
Thus all walks B in B satisfy B � C, and B ⊂ F t

s(n, k) follows. Similarly, J ′ = ikmax
yields A ⊂ F t

s(n, k). Thus we have ab ≤ f2 with equality holding iff A = B = F t
s(n, k). 

Now we show that one of (i) or (ii) of Proposition 4.1 holds. Let fa = ξaf , fb = ξbf , 
and let ξ = ξa + ξb. Then a1 + b1 = fa + fb = ξf . On the other hand it follows that √
ab =

√
a0b0 =

√
(1 − ξa)(1 − ξb)f ≤ (1−ξ1)+(1−ξb)

2 f = (1 − ξ
2 )f ≤ (1 − ξ

2 )
(
n−t
k−t

)
. Let η

be given. If ξ < η, then (ii) holds. If ξ ≥ η, then (i) holds by taking γ∗ slightly smaller 
than 1/2. This completes the proof of Proposition 4.1. �
Proof of Theorem 1.1. This follows from Proposition 3.1 if A and B are shifted. (Recall 
that if n > (t + 1)k then |F t

0(n, k)| > |F t
1(n, k)|.) If they are not shifted, then let A′ and 

B′ be shifted families we get from shifting A and B. Then the result holds for A′ and B′. 
By Lemma 2.6 the same is true for A and B, yielding the theorem. �
Proof of Theorem 1.2. This follows from Proposition 4.1 unless (ii) of Proposition 4.1
happens with s = 1. In this last case, we have 

√
|A||B| ≤ |F t

1(n, k)|. Let p := k/n. We 
will show that

∣∣F t
1(n, k)

∣∣/∣∣F t
0(n, k)

∣∣ < (t + 2)p(1 − p) + p2 =: g(p). (30)

Then, as in the proof of Theorem 1.4, we get (i) of Theorem 1.2 by choosing γ so that 
g( 1

t+1+δ ) = 1 − γη, and this completes the proof.
Now noting that the LHS of (30) is

k − t

(n− t)(n− t− 1)
(
(t + 2)(n− k) − (k − t− 1)

)
,

we can rearrange (30) as follows:
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f(p) :=
(
(t + 2) − p(t + 1)

)
n2 − (t + 1)(t + 2)n + t(t + 1)2 > 0.

Since p ≤ 1
t+1+δ we have f(p) > f( 1

t+1 ). Then f( 1
t+1 ) > 0 is equivalent to n2− (t +2)n +

t(t + 1) > 0, which is certainly true for n ≥ (t + 1)k ≥ t(t + 1). �
We proved Proposition 3.1 for p ≤ 1

t+1 , but our proof works for p ≤ 1
t+1−ε as well, 

where ε > 0 is a sufficiently small constant depending on t only. To see this we just notice 
that the functions used to bound the p-weights of families are continuous as functions 
of p. (This is not surprising. In fact it seems very likely that Proposition 3.1 holds for 
p ≤ 2

t+3+δ , where δ > 0 is any given constant.) In the same way, one can verify that 
Proposition 4.1 is true for n ≥ (t + 1 − ε)k as well, where ε > 0 is a sufficiently small 
constant depending on t only. Thus the upper bound for |A||B| in Theorem 1.1 is also 
true even if we replace the condition n ≥ (t +1)k with n ≥ (t +1 − ε)k. If k is sufficiently 
large for fixed t, then (t + 1)(k − t + 1) > (t + 1 − ε)k. Namely we have the following.

Theorem 4.8. For every t ≥ 14 there is some k0 such that for every k > k0 and n ≥
(t +1)(k−t +1) we have the following. If A ⊂

([n]
k

)
and B ⊂

([n]
k

)
are cross t-intersecting, 

then

|A||B| ≤
(
n− t

k − t

)2

with equality holding iff A = B ∼= F t
0(n, k), or n = (t +1)(k−t +1) and A = B ∼= F t

1(n, k).

5. An application to integer sequences

As an application of Theorem 1.3 we consider families of t-intersecting integer se-
quences, see e.g., [8]. Let n, m, t be positive integers with m ≥ 2 and n ≥ t. Then 
H ⊂ [m]n is considered to be a family of integer sequences (a1, . . . , an), 1 ≤ ai ≤ m. We 
say that H is t-intersecting if any two sequences intersect in at least t positions, more 
precisely, #{i: ai = bi} ≥ t holds for all (a1, . . . , an), (b1, . . . , bn) ∈ H. To relate a family 
of sequences with a family of subsets, let us define an obvious surjection σ : [m]n → 2[n]

by σ((a1, . . . , an)) = {i: ai = 1}. Then

Ht
i(n) :=

{
a ∈ [m]n: σ(a) ∈ F t

i (n)
}

is a t-intersecting family of integer sequences of size
∣∣Ht

i(n)
∣∣ = mnμ 1

m

(
F t

i (n)
)
.

It is known from [2,10,3] that if r = � t−1
m−2�, n ≥ t + 2r, and H ⊂ [m]n is a family of 

t-intersecting integer sequences, then

|H| ≤
∣∣Ht

r(n)
∣∣. (31)
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Observe that |Ht
0(n)| = mn−t. We extend (31) in the case of r = 0 to cross t-intersecting 

families of integer sequences. We say that A, B ⊂ [m]n are cross t-intersecting if #{i: ai =
bi} ≥ t for all (a1, . . . , an) ∈ A and (b1, . . . , bn) ∈ B. Two such families are called 
isomorphic, denoted A ∼= B, if there are permutations f1, . . . , fn of [m] and a permutation 
g of [n] such that

{(
f1(a1), . . . , fn(an)

)
: (a1, . . . , an) ∈ A

}
=

{
(bg(1), . . . , bg(n)): (b1, . . . , bn) ∈ B

}
.

Using Theorem 1.3 we prove a conjecture posed in [26] as follows.

Theorem 5.1. Let t ≥ 14, m ≥ t + 1 and n ≥ t. If A and B are cross t-intersecting 
families of integer sequences in [m]n, then |A||B| ≤ (mn−t)2. Equality holds iff either 
A = B ∼= Ht

0(n), or m = t + 1 and A = B ∼= Ht
1(n).

To prove Theorem 5.1 we need some more preparation. For H ⊂ [m]n, j ∈ [n] and 
c ∈ [m], define another shifting operation Sc

j (H) = {Sc
j (a): a ∈ H} ⊂ [m]n as follows. 

For a = (a1, . . . , an) let Sj(a1, . . . , an) := (b1, . . . , bn) where b� = a� for � ∈ [n] \ {j}
and bj = 1. Then let Sc

j (a) = Sj(a) if aj = c and Sj(a) /∈ H, otherwise let Sc
j (a) = a. 

Namely, by Sc
j (a), we replace aj with 1 if aj = c, but we do this replacement only if the 

resulting sequence is not in the original family H. We say that H is shifted if Sc
j (H) = H

for all j ∈ [n] and c ∈ [m].

Lemma 5.2. For A, B ⊂ [m]n, j, t ∈ [n], and c ∈ [m], we have the following.

(i) |Sc
j (A)| = |A|.

(ii) If A and B are cross t-intersecting families, then Sc
j (A) and Sc

j (B) are cross 
t-intersecting families as well.

(iii) Starting from A and B we obtain shifted families of sequences by repeatedly shifting 
two families simultaneously finitely many times.

(iv) Let m ≥ 3, and let � be chosen so that maxi |Ht
i(n)| = |Ht

�(n)|. If A and B are cross 
t-intersecting families with Sc

j (A) = Sc
j (B) = Ht

�(n), then A = B ∼= Ht
�(n).

(v) If A and B are shifted cross t-intersecting, then σ(A) and σ(B) are cross 
t-intersecting families of subsets in 2[n].

One can prove the above (i)–(iv) similarly as the proof of Lemmas 2.3 and 2.6. See [26]
for the proof of (v). We mention that (ii) is due to Kleitman [17], and (v) is observed by 
Frankl and Füredi [8].

Proof of Theorem 5.1. Let A and B be cross t-intersecting families in [m]n, and let A′

and B′ be corresponding shifted families guaranteed by Lemma 5.2. By letting F :=
σ(A) ⊂ 2[n] we have

|A| =
∣∣A′∣∣ ≤ ∑

(m− 1)n−|x| = mnμ 1
m

(F). (32)

x∈F
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Similarly |B| = mnμ 1
m

(G), where G := σ(B). Since F and G are cross t-intersecting 
families it follows from Theorem 1.3 that

μ 1
m

(F)μ 1
m

(G) ≤ (1/m)2t. (33)

By (32) and (33) we have

|A||B| ≤
(
mn

)2
μ 1

m
(F)μ 1

m
(G) ≤

(
mn

)2(1/m)2t =
(
mn−t

)2
.

Now suppose that |A||B| = (mn−t)2. Then we need equality in (33). By Theorem 1.3
we have F = G ∼= F t

0(n), or m = t + 1 and F = G ∼= F t
1(n). We also need equality 

in (32). By the definition of F and G we have A′
1 = B′

2
∼= Ht

0(n), or m = t + 1 and A′
1 =

B′
2
∼= Ht

1(n). By this together with Lemma 5.2(v) we can conclude that A = B ∼= Ht
0(n), 

or m = t + 1 and A = B ∼= Ht
1(n). This completes the proof of Theorem 5.1. �

Acknowledgments

The authors thank the anonymous referees for their valuable comments. The authors 
also thank Hajime Tanaka for telling us that Moon [19] proved Theorem 5.1 for all t ≥ 2
and m ≥ t + 2.

References

[1] R. Ahlswede, L.H. Khachatrian, The complete intersection theorem for systems of finite sets, Eu-
ropean J. Combin. 18 (1997) 125–136.

[2] R. Ahlswede, L.H. Khachatrian, The diametric theorem in Hamming spaces—optimal anticodes, 
Adv. in Appl. Math. 20 (1998) 429–449.

[3] C. Bey, K. Engel, Old and new results for the weighted t-intersection problem via AK-methods, in: 
Ingo Althofer, et al. (Eds.), Numbers, Information and Complexity, Kluwer Academic Publishers, 
Dordrecht, 2000, pp. 45–74.

[4] P. Borg, The maximum product of sizes of cross-t-intersecting uniform families, Australas. J. Com-
bin. 60 (1) (2014) 69–78.

[5] I. Dinur, S. Safra, On the hardness of approximating minimum vertex-cover, Ann. of Math. 162 
(2005) 439–485.

[6] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 
2 (12) (1961) 313–320.

[7] P. Frankl, The Erdős–Ko–Rado theorem is true for n = ckt, in: Combinatorics, vol. I, Proc. Fifth 
Hungarian Colloq., Keszthey, 1976, in: Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, 
1978, pp. 365–375.

[8] P. Frankl, Z. Füredi, The Erdős–Ko–Rado theorem for integer sequences, SIAM J. Algebr. Discrete 
Math. 1 (1980) 376–381.

[9] P. Frankl, Z. Füredi, Beyond the Erdős–Ko–Rado theorem, J. Combin. Theory Ser. A 56 (1991) 
182–194.

[10] P. Frankl, N. Tokushige, The Erdős–Ko–Rado theorem for integer sequences, Combinatorica 19 
(1999) 55–63.

[11] P. Frankl, N. Tokushige, Weighted 3-wise 2-intersecting families, J. Combin. Theory Ser. A 100 
(2002) 94–115.

[12] P. Frankl, N. Tokushige, Weighted multiply intersecting families, Studia Sci. Math. Hungar. 40 
(2003) 287–291.

http://refhub.elsevier.com/S0097-3165(14)00113-7/bib414B31s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib414B31s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib414B2D70s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib414B2D70s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4245s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4245s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4245s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib42s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib42s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4453s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4453s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib454B52s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib454B52s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib46636B74s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib46636B74s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib46636B74s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4646696E74736571s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4646696E74736571s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4646s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4646s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4654s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4654s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib465432303032s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib465432303032s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib465477s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib465477s1


P. Frankl et al. / Journal of Combinatorial Theory, Series A 128 (2014) 207–249 249
[13] E. Friedgut, On the measure of intersecting families, uniqueness and stability, Combinatorica 28 
(2008) 503–528.

[14] M. Gromov, Singularities, expanders and topology of maps. Part 2: from combinatorics to topology 
via algebraic isoperimetry, Geom. Funct. Anal. 20 (2010) 416–526.

[15] G. Katona, A simple proof of the Erdös–Chao Ko–Rado theorem, J. Combin. Theory Ser. B 13 
(1972) 183–184.

[16] G. Kindler, S. Safra, Noise-resistant boolean functions are juntas, preprint.
[17] D.J. Kleitman, Families of non-disjoint subsets, J. Combin. Theory 1 (1966) 153–155.
[18] M. Matsumoto, N. Tokushige, The exact bound in the Erdős–Ko–Rado theorem for cross-

intersecting families, J. Combin. Theory Ser. A 52 (1989) 90–97.
[19] A. Moon, An analogue of the Erdös–Ko–Rado theorem for the Hamming schemes H(n, q), J. Com-

bin. Theory Ser. A 32 (1982) 386–390.
[20] L. Pyber, A new generalization of the Erdős–Ko–Rado theorem, J. Combin. Theory Ser. A 43 (1986) 

85–90.
[21] S. Suda, H. Tanaka, A cross-intersection theorem for vector spaces based on semidefinite program-

ming, Bull. Lond. Math. Soc. 46 (2014) 342–348.
[22] N. Tokushige, Intersecting families — uniform versus weighted, Ryukyu Math. J. 18 (2005) 89–103.
[23] N. Tokushige, The random walk method for intersecting families, in: Horizons of Combinatorics, in: 

Bolyai Soc. Math. Stud., vol. 17, 2008, pp. 215–224.
[24] N. Tokushige, On cross t-intersecting families of sets, J. Combin. Theory Ser. A 117 (2010) 

1167–1177.
[25] N. Tokushige, The eigenvalue method for cross t-intersecting families, J. Algebraic Combin. 38 

(2013) 653–662.
[26] N. Tokushige, Cross t-intersecting integer sequences from weighted Erdős–Ko–Rado, Combin. 

Probab. Comput. 22 (2013) 622–637.
[27] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47–52.
[28] R.M. Wilson, The exact bound in the Erdős–Ko–Rado theorem, Combinatorica 4 (1984) 247–257.

http://refhub.elsevier.com/S0097-3165(14)00113-7/bib467269s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib467269s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib47s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib47s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4B61s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4B61s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4Bs1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4D54s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4D54s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4Ds1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib4Ds1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib50s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib50s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5354s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5354s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5475767377s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5462616C61746F6Es1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5462616C61746F6Es1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5430s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib5430s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib54656967656E31s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib54656967656E31s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib54656967656E32s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib54656967656E32s1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib576569636873656Cs1
http://refhub.elsevier.com/S0097-3165(14)00113-7/bib57s1

	An Erdős-Ko-Rado theorem for cross t-intersecting families
	1 Introduction
	2 Tools
	3 Results about weighted families
	3.1 Proof of the main proposition: setup
	3.2 Proof of Proposition 3.1: easy cases
	3.3 Proof of Proposition 3.1: a harder case
	3.4 Proof of Proposition 3.1: extremal cases

	4 Results about uniform families
	4.1 Proof of Proposition 4.1: setup
	4.2 Proof of Proposition 4.1: easy cases
	4.3 Proof of Proposition 4.1: a harder case
	4.4 Proof of Proposition 4.1: extremal cases

	5 An application to integer sequences
	Acknowledgments
	References


