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ABSTRACT 

In this  paper  we will show t h a t  every s implex X with e i rcumradius  ~o 

satisfies the  following geometr ic  par t i t ion  property,  which proves 

a conjecture  f rom [FR90]. 

For every posit ive real 5 there  exists  a posit ive real cr such  tha t  every 

~-colouring of the  n-d imens iona l  sphere  of radius  L)+ 5 wi th  X -< (1 + a )n  

resul ts  in a monochromat i c  copy of X.  

1. I n t r o d u c t i o n  

In this section we first introduce a few, related geometrical concepts and its 

history before we state the main result in section 1.4. Furthermore, we will 

outline the organisation of this paper in section 1.5. 

1.1. I:{AMSEY SETS. In a series of papers Erd5s et al. [EGM+73, EGM+75a, 

EGM+75b] introduced and investigated the following concept. 

Definition 1.1: A subset X of the &dimensional Euclidean space R d is called 

R a m s e y  if tbr every \ _> 2 there exists an integer 77 = n(X, ~) such that for every 

~-colouring of tile points of R n there exists a monochromatic subset X '  C_ R ~ 

congruent to X. 
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ErdSs et al. [EGM+73] have shown that all Ramsey sets are spherical that 

is, every Ramsey set is contained in all appropriate sphere. On the other hand, 

they also proved that vertex sets of d-dimensional boxes (i.e., the vertex set of 

rectangular parallelepipeds) are Ramsey. Since them the list of Ramsey sets was 

extended; first it was shown in [FR90] that any simplex (i.e., d + 1 points span- 

ning R d) is Ramsey. Ill [K~i91] K~i~ proved that if X has a solvable, transitive 

automorphism group, then X is Ramsey. 

The fundamental problem to characterise Ramsey sets remains, however, 

unanswered. In [Gra94] R. L. Graham conjectured that all spherical sets are 

Ramsey and offered $1000 for the solution. 

1.2. SPHERE I:{AMSEY SETS. In [Gra85], R. L. Graham introduced a concept 

stronger than being Ramsey. 

Definition 1.2: A subset X of a d is called s p h e r e  R a m s e y  if for every ~ > 2 

there exists an integer n -- n(X,  ~) and a positive real 0 = Q(X, \ )  such that for 

any ~C-colouring of the points of the sphere S(O, n) = {a: C R":  I1.~:11 = 0} there 

exists a monochromatic subset X '  c_ S(O, n) congruent to X. 

For a spherical set X let Q(X) denote its e i r e u m r a d i u s ,  i.e., the radius of the 

smallest sphere containing X. 

In [GraB5] R. L. Graham proved that boxes are sphere Ramsey and he asked 

if one can choose, in Definition 1.2, co = co(X) + 5 for an arbitrary small 5 > 0. 

This was shown to be true in [Fra87]. The following related result for X being a 

simplex was proved in [MR95]. 

THEOREM 1.3: Let X be a simplex with circamradius co(X) = co. Then for every 

>_ 2 and every real 5 > 0 there exists an integer n = n(X, ~, 6) such that for any 

X-colouring of the points of the sphere S(co + 5, n) there exists a monochromatic 

subset X'  C_ S(O + & n) congruent to X .  

1.3. EXPONENTIALLY RAMSEY SETS. Another area of investigation was 

to study how large the minimum n = n(X,  ~) from Definition 1.1 is. The 

special case that X consists of two points was proposed by Hadwiger and 

Nelson. In [Had61] the question for determining the chromatic number x(n) 

of the Euclidean space R n was raised, i.e., what is the maxinmm integer x(n) 

such that for every real A > 0 and every ()~(n) - 1)-colouring of the points of R n 

there are two monochromatic points with distance precisely A. It was proved 

in [Had61], [MM61], and [Woora] that 4 < ~:(2) _< 7. The current bounds for 

-((n) are 
(1.2. . . )n _~ ",(TI) _~ (3 + o(1)) '~. 
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The first exponentially growing lower bound was proved by Frankl and Wilson 

ill [FW81]. The base of the exponential lower bound was recently improved by 

Ra~gorodski~ in [Ra~00, Ra~01]. The upper bound was shown by Larman and 

Rogers in [LR72]. 

Extending this phenomenon to sets X consisting of more tl~an two points we 

introduce the following concept. 

Definition 1.4: A subset X of R d is called e x p o n e n t i a l l y  R a m s e y  if there 

exists a positive real cr = or(X) such that tbr every integer ~ > d and every 

\-colouring of the points of R ~' with \ _< (1 + or)" there exists a monochromatic 

subset X ~ C R"  congruent to X. 

Ill other words, X is exl)onentially Ralnsey if the chromatic number of the 

hypergralfll with vertex set R"  and edges formed by congruent copies of X grows 

exponentially with u. 

It was proved in [FR90] that boxes mad simplices are exponentially Ramsey. 

1.4. STRONG RAMSEY SETS. The following definition combines the concepts 

considered in sections 1.2 and 1.3. 

Definition 1.5: A subset X of R d with circmm'adius o(X) = ~ is called s t r o n g  

R a m s e y  if tbr every real 6 > 0 there exists a positive real or = a (X)  such that for 

every integer n _> d and every \-eolouring of the points of the sphere S(O + ~, n) 
with \ < (1 + or)" there exists a monochromatic subset X'  C_ S(O+ 6, 1~) congruent 

to X. 

From results in [FW81] and [FR90] it follows that boxes are strong Ramsey (see 

also section 3.1). Present knowledge, however, does not exclude the possibility 

that all spherical sets are strong Ramsey. A first step toward this problem is 

to answer the question of whether obtuse triangles are strong Ramsey. The 

main tmrpose of this paper is to answer this question positively and to extend 

Theorem 1.3 in the sense that it remains true if \ grows exponentially with n 

(i.e., \ < (1 + a ) ' ,  where cr = ~r(X) > 0). More precisely we will prove the 

following. 

THEOREM 1.6: Every simplex is strong Ramse~: 

1.5. ORGANISATION OF THE PAPER. This paper is organised a.s follows. In 

section 2 we state some already known results, which were proved in earlier 

papers. Then ill section 3 we introduce the concept of hyper Ramsey sets. This 

concept is stronger than strong Ramsey and, in fact., later we prove Theorem 3.3, 
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which claims that  every simplex is hyper Ramsey. In sections 3.2-3.4 we develop 

some tools about hyper Ramsey sets. These lemmas simplify the proof of the 

main result• Finally, the proof of Theorem 3.3 which implies Theorem 1.6 is 

given in section 4. 

2. Prel iminary facts 

In this section we review a few previously proved results that  will be useful in 

sections 3 and 4. 

2.1 .  EMBEDDING OF FINITE METRIC SPACES. First, we state a well known 

result that  characterises finite metric spaces, which are embeddable into the 

Euclidean space. 
~d+l Let M = (mijJi,j=l be a symmetric real matrix with zeros on the diagonal. 

Then M is said to be of negative type if 

d d + l  

(1) Z <_ o 
i=1  j = i + l  

holds for all choices of ~1, ~2 . . . .  • ~d+l  with z_.,i=lV'd+l (i = 0 and ~d+~i= ~2 = 1. 

The following well-known Theorem is due to I. J. Schoenberg (see [Sch38]). 

THEOREM 2.1: A finite metric space X = {xl,x2 . . . . .  Xd+l} with distances di j  

between xi and xj for 1 _< i, j < d + 1 can be embedded into the Euclidean 

space R d if and only if the matrix M with general entry mij = d~j is of negative 

type. 

Moreover, the embedded image of X is a~ne independent if and only if 

inequality (1) is always strict. 

2.2 .  INTERSECTIONS OF PARTITIONS. Another tool we are going to use is 

taken from [FR87]. It  asserts that  every sufficiently large family of (10, l l , . . . ,  Ik)- 

partitions of an n-element set contains r partitions intersecting in precisely a given 

pattern• 

For positive integers lo,ll,  Ik with lo + l l  +" "'+l~, = n let ( ['] ~ denote 
• " " ~ \1o,11 . . . . .  l k l  

the set of all ordered partitions .A = (Ao, A, . . . . .  Ak) of [n] = {1, 2 . . . .  , n} with 

IAil = ti. Obviously, the number of such partitions is 

(,0 '" " l l , . . .  ' lo!ll! . . . Ik!  
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For r given (lo, 11 , . . . ,  lk)-par t i t ions 

.,4 (') = (A(o'), A~ ' ) ,  A~t)), A(2) ,a(2) a(2) ,A(2)), 

A(i) (A~)A~i),  A[I~)), A(") /a(")  ~(r)  A[()) 
= " ' ' ~  " ' ' '  = ~,~10 ~ 1 1  ~ ' ' ' '  

consider the (k + 1) x . . .  x (k + 1) (r t imes) ar ray  M = M ( A ( 1 ) , A  (2) . . . . .  ,A (r)) 

with general entry  

(2) ,nt,t~...t~ = IA~ ) n AI~ ) n . . .  n AI:)I, 

for 0 < t l , t2  . . . . .  tr _< k. Observe tha t  for a fixed 0 < i < k and 1 _< j _< r 

t l  , . . . , t r  

In [FR87] we proved the following result. 

THEOREM 2.2: Let r and k be positive integers. Then for every real A > 0 there 

exists a real e = ¢(A) > 0 such that for eve1T positive integer n the following 

holds: 

~ l If lo,ll . . . . .  lk are positive integers with ~ i = 0  ,i = n and M is a 

(k + 1) x (k + 1) x . . .  x (k + 1) (r t imes) alTay satisfying 

(i) mt~t~...t, >_ An for anyO <_ to, t1 . . . . .  tr <_ k and 

(ii) ~ t ~  ..... t~{,nt, t ~ . . . t : t j = i } = l ~ f o r i - - 0 , 1  . . . . .  k, a n d l _ _ j _ < r  

then for every/C C ( In] ~ saris[ring 
- -  \ l o , I 1  . . . . .  I~ : ]  

(iii) I/C[ _> (1 -e)'~(to,,,')...,t~.) 
there exists ,3, (1), A ( 2 ) , . . . ,  A (') E/C such that 

M ( A  (~), A (2) . . . . .  A (~)) = M. 

2.3. APPROXIMATION OF SPHERICAL SETS. In this section we consider a result  

f rom [MR95]. This  l emma  roughly says t ha t  for every d and q there exist s, k, a 

unit  vector  a = (al ,  a 2 , . . . ,  ak) and a unit  sphere S(1, d) in R s such tha t  every z 

in tha t  sphere can be q approx ima ted  by some y in R ~, whose only nonzero 

entries are a l ,  a 2 ,  • • • ,  a k .  

More precisely, for Z a linear subspaee of R " let S(Z)  = S(1, s) N Z be the set 

of all unit  vectors in Z.  Let E~ = (el ,e2 . . . . .  e~) denote  an o r thonormal  basis 

of R ~. Fur thermore ,  let a -- (al ,  a 2 , . . . ,  ak) E R k be a k-dimensional  vector  and 

let I (  = (u~,u2 . . . . .  u~} be a k-element subset  of [s] with 'ul < u2 < - "  < 'uk. 

We will need the following definition, 

k 

spread(a,  K )  = ~ ajeuj. 
j = l  
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Fur thermore ,  let I(1, A'2 . . . . .  /~d E Is] k be disjoint sets each of cardinal i ty  k 

such t h a t  ~'1 < ~'2 < " ' "  < ~ 'd  (here/~" < ~ "  means  tha t  all e lements  of ~" are 

smaller  than  any element of /~") .  

We set 

= = s p r e a d ( . ,  

for 1 < i < d and we denote  by 

Z -- Z(a ,  K l ,  1(2 . . . . .  Rd) = span({zl ,  :2 . . . . .  Zd}) 

the vector  space spanned by zl ,  -2 . . . . .  Zd. Let [I]:: denote  the set of all k-elenlent 

subsets  of a set I .  

The  following l emma  was proved in [MR95]. 

LEMMA 2.3: For e v e w  real 71 > 0 and eve W integer d, there exist  intege2:~ s, k, 

and a k-dimensional  trait vector a E S(1, k), such that for some ~'1 < ~',2 < " "  < 

Kd, i~i E Is] ~, i = 1, 2 . . . . .  d the linear sl)a('e 

Z = Z(a ,  K l ,  K2 . . . . .  h',l) 

has the following property: 

For ever)" : E S ( Z )  there exists K E [s] k such that for y = spread(a,  K) ,  

d( : ,  y) _< ~1 

holds, where d(z ,  y) denotes the Euclidean distance between z and y in R*. 

3. Preliminary lemmas 

In this section we introduce the concept  of hyper  Ramsey  sets and we will prove a 

few, somewhat  technical l emmas  which will simplify the proof  of the main  result, 

Theo rem 1.6. 

3.1. HYPER RAMSEY SETS. The  following concept of hyper  Ramsey  sets, which 

was a l ready introduced in [FR90], is s t ronger  but  more  technical than  the concept  

of s t rong Ramsey  sets. 

Definition 3.1: Let a > 0 be  a real nmnber .  A subset  X of R d with c i rcmnradius  

0 (X)  = ~ is called a - h y p e r  R a m s e y  if there exist reals c = c ( X , a ) ,  e = 

e(X,  c,) > 0, and an integer m0 = m0(a )  such tha t  tbr every m _> mo there exist 

a finite subset  7- /= ?-/(m) C_ R m satisfying 

(i) ?-/(m) C_ S ( V ~ +  c~,m), 
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(ii) I (m)l < c and 

(iii) if/C C_ 7-/(m) and I~1 ~ (1 - c)'*l~(m)l, then there exists a subset X '  c_ 

congruent to X. 

Furthermore, X is called h y p e r  R a m s e y  if X is a-hyper Ramsey for every 

real a > 0. 

For sets X C_ R ~* and Y C_ R m consider their p r o d u c t  

X * Y = { x * y : x E X ,  y C Y }  

where x * y = (Xl,X2 . . . . .  x ~ , y l , y 2 , . . . , y m )  for x = (xl ,x2 . . . . .  xn) and 

Y = (Yl, Y2 . . . . .  ym) .  

It follows from [FW81] that sets of cardinality two are hyper Ramsey (see 

also [Gra83, Rhd83]). Moreover, it was shown in [FR90] that  the product of two 

hyper Ramsey sets is hyper Ramsey. Both results together imply the following 

theorem. 

THEOREM 3.2: Every box is hyper Ramsey. 

Again, stressing the fact that  if X is hyper Ramsey then X is also strong 

Ramsey, we observe that  every box is strong Ramsey as mentioned in section 1.4. 

By the same reason the main result of this paper, Theorem 1.6, is a consequence 

of the following theorem. 

THEOREM 3.3: Every simplex is hyper Ramsey. 

The rest of this paper is devoted to the proof of Theorem 3.3. 

3.2 .  PRODUCTS OF a-HYPER RAMSEY SETS. The following "product result", 

which is needed in our proof of the main result., is a modification of Theorem 2.2 

in [FR90]. 

LEMMA 3.4: Let V C_ R d~ be a finite, aV-hyper Ramsey set with Q(V) = ov 
and let T C R d2 be a finite, aT-hyper Ramsey set with 0(T) = QT Then V * T 
is aV*T-hy I )e r  Ramsey for O: V*T = a V -~- a T. 

Proof: Let c v, s v  mY be constants, and let ~-/V(m) for each m >_ m~ / be sets 

witnessing that V is aV-hyper Ramsey (see Definition 3.1). In the same way, let 

c T, ~T mo T, and ~lT(m) for each m ~ mot correspond to T. Set ~- to the solution 
of  (cT) (ITI-1)r : ( t -  sv) -1/2, let  ?}to V*T = ~ V * T ( v ,  a V , T ,  O~ T) be sufficiently 

large and ~ = n+ [7nJ >_ m~o " *T. We will show that HV,T (~) = ?_lV (n) ,~T ([Tnj ) 
witnesses that  V * T is av*T-hyper Ramsey. 
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Clear ly ,  co V*T = @(V * T) = X/(gv)  2 + (@T)2 and 

shows tha t  (i) of Definition 3.1 is satisfied. Suppose tha t  X = X(g )  C_ 7{U*T(g) 

does not contain a copy of V * T. For each v E ~ v ( n )  consider the set ,l'~, = 

X O ({v} * ~ T (  LrnJ )). X~, is congruent  to a subset, of 7 { r ( [ r n j )  and therefore 2<, 

contains more than  [X~,I - (1 - a T) k-,,J I~r ( [ rnJ ) [  copies of T. Now we es t imate  

the nmnber  X ( T )  of copies T* of T such tha t  T* C_ X and T* = v * T for some 

v E tqU(n) and r a copy o f T  in "HT(kTnJ): 

X ( Z )  >_ E ( l & l -  ( 1 -  ~T)L~,,a. i~Z(L~,,j)l) 
(3) ,,e~"(,o 

= l X l -  lUV(n)llUT(P,q)l(1 - c T )  L~nJ 

On the other  hand, for every copy T of T in ~ T ( L r n J )  let. F~ = {v E 

7~V(n): {v} * 5F C_ A2v}. Since X contains no copy of V * T, 

IV~l < ( 1 -  ~")nl~V(,,OI. 

This means that the number X(T) can be bounded from above by 

X ( T )  = }-~{IV~l: f is a eopy of T ill ~r(LTTz]) } 

( I~r(Lr'~j)l)- I~v(,Ot. (1 - sV) n 
(4) < \ IT[ £ 

< ( C ) L ~ ' ~ J ( I T I - 1 ) I ~ T ( L r r q ) I I ~ V O 0 1  • (1 -- ev)n 

_< I~T(L~<)ll~V(,01 • (1 - ~v),~/.~ 

where the last  inequality follows due to the choice of r and n. 

Combining (3) and (4), we infer tha t  

IXl < I~V(,011~r(LT,,J)l((1 - ev) n/2 + (1 - J )L=nJ ) ,  

and thus 

IXl < I~{v(~)II~RLTnJ)I(1 -cv*r) ~ = (1 -ev* r )~ l~ {v * r (a ) l  

for some appropr ia te ly  chosen e v*r  > 0 and n sufficiently large, which implies 

(iii) of Definition 3.1. In order to verify (ii) of Definition 3.1, set 

~v.~ : max{c v, ~} .  
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As 

I < < 

the sequence 7/v*T (~/) = 7-/v (n) * "H T ( [rnJ ) for all 7/_> mo v*T shows tha t  * T 

is c~V*T-hyper t /amsey.  | 

3 .3 .  o-HYPER P t . A M S E Y  SIMPLICES ARE DENSE. T h e  M m  of this section is to  

show tha t  for every simplex Z = {zl ,  z2 . . . . .  Zd+l} and for every positive real 0 

there exists an o.-hyper Ramsey  simplex I = {v l, 1,2 . . . . .  va+~} such tha t ,  for all 

l < _ i , i ' < _ d + l ,  

(5) ] (12(v~, ~'i') 2 ~. - d (: i ,  zi,)l _< 

This is proved in L e m m a  3.9. 

The  construct ion of 1" is done in two steps. First,  using L e m m a  2.3 we find 

integers s an(l k, a vector a = (al ,  a2 . . . . .  at,) and yj~ = spread(a,  K (j~)) with 

1 _< j ,  . . . . .  j(L+l _< (;) (where {K(i): 1 _< i _< ( ; )}  is an enumera t ion  of all 

k-element subsets of Is]) such tha t  

(6) I " d (9j,,Yj~,) - d (-'i,z~,)l is "small" for every 1 < i , i '  <_ d +  1. 

The  aim of the second step is to construct  an a,-l~yl)er 1Ramsey simplex V = 

{vl, v.) . . . . .  Vd+j } such tha t  

(7) I d 2 (i,i, t'i,) - (12(yj,, y j,, )1 is "snlall" for every 1 _< i, i '  _< d + 1. 

For this, we associate vi with a conveniently chosen 1)artition of [n] tbr some 

sufficiently large 'm For a par t i t ion  .4 = (A0, ,41 . . . . .  Ak) of In] and the vector  a = 

(al ,  a2 . . . . .  (,~) we will consider the , , -dimensional  vector  ~,A = (g~, ~¢ . . . . .  ~.~) 

defined as follows, 
~t A = { 0  i f t  E A0, 

( g / v ~  if t E Aj.  

The aim of the next  lemma,  L e m m a  3.5, is to construct  a family 

= { A  (i) = (A~ i) .410 4(i))" 1 < i < r}  

of par t i t ions  of [n] such tha t  

n -  IS 
(8) ] (12(vA(')' vA(")) - d2(Yi'Yi')] < 4/ (k  + 1) 

_ _ / ,  A O i )  for all 1 < .i, i '  < (~,). Set t ing vi = and choosing n and I appropr ia te ly  will 

imply (7). Then  (6) combined with (7) yields (5). 
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Next  we will formulate Lemma 3.5 in which we will work with the following 

set-up: 

(I) l, s, k, and n are integers, set 

s )  ~ _ n -  Is 
r =  k ' n(k  + l) r '  and 

l j = A n ( k T 1 ) r _ l + { } s - k ) l  i f j  = O, 
i f j  = 1 , 2 , . . . , k ,  

(II) { K ( 0 : 1  < i < r} is the family of all k-element subsets of [s], 

= = (~(i) ~(i) , A(i)) • 1 < i < r} is a family of (III) 92 { , 4  (~) A ( ~ ) ( K ( 0 )  = ~ ' o  , ~ 1  . . . .  k • 

(lo, l b . . . ,  lk)-parti t ions of [n], where .A (i) will depend on K (0, 

(IV) a = (al,  a2 . . . . .  ak) E S(1, k) is a unit vector and we define for i = 1, 2 . . . . .  r 

the n-dimensional vector vA(~) = \~I/''A(O , ¢2"A(° . . . .  , .,.I:A(~) ~, by 

• { 0  i f t  C Ao, 
~tA(') = a j / v ~  if t e Aj,  and 

(V) set yi = spread(a,  K (0) for i = 1, 2 . . . . .  r. 

The  next  lemma ensures the existence of a family 92 satisfying (8). 

LEMMA 3.5: Let 1, s, k, and n be integers such that n > ls and (k+l)(~ ' )  divides 

n - ls. Then there exists a family of (/o, ll . . . . .  lk)-partitions of In], 

92 = { A  (~) --  A ( O ( h ( ~ ) ) :  1 < i < r } ,  

such that for every a = (al, a2 . . . . .  ak) C S(1, k) the following holds: 

( 9 )  mt~t2...t, = IAI~ ) n A  (2) n - . - n  V '') t2 " tr I >- An for 0 < t l , t2  . . . . .  t~ <_ k, 

(10) {vA: ..4 E 92} is an atone independent set, and 

for every l <_ i ¢ i I < r, 

2" A (0 A(V).  n - -  is  
(11) Id (v ,v  ) - d 2 ( g i , y i , ) l < _ 4 1 ( k + l ) .  

Proof: Given integers l, s, k, and n satisfying the assumptions of the lemma, 

first, we will construct  a family ~ consisting of (lo, Ij . . . . .  /k)-partit ions .A 0) = 
(A~i), A~O, (i) satisfying (9). . . . .  A~¢ ) f o r l  < i < r  

Let (K(i)  = "tUl~ (i),u 2(0,.. ., u~0}: 1 < i < r} be an enumerat ion of all k-element 

subsets of [s] with u~/) < u(2 i) < . . .  < u[! ). Furthermore,  let L1,L2 . . . . .  L~ be 
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pairwise disjoint sets, each of size l. For each i = 1, 2 , . . . ,  r we define a different 

par t i t ion  (B~i),B~i),.. . ,B~ O) of U;= l  Lt by 

Bo(i)= 0 Lt, 
teEs]\~'(i/ 

. . . ,  

For each r - tuple  ( j l ,  j2 . . . . .  j r )  with 0 _< ji <- k let Cj~j~...j, be a set of cardinal-  

ity An (which is an integer by the assumpt ions  of the lemma)  and let Cj~j~...j,. 
and Cjlj~...j, be disjoint whenever the r - tuples  ( j l ,  j2 . . . .  , j~) and (Jl,  J~ . . . . .  J~-) 

differ in a t  least one entry. We now define ~ by set t ing 

(12) A~i)(I((i)) = A!i) (i) 

Ji = j  

where the union is taken over all (k + 1) r -1  different r - tuples  (jr ,  j2 . . . .  , j~) with 

j i  being fixed. 

CLAIM 3.6: Let 92 be defined as in (12). Then 

(i) 92 C_ ( ,o, , [ : ! . , t , )  and 
(ii) inequality (9) holds. 

Proofo[ Claim 3.6: Note tha t  A (i) = (A(i),A~ i) . . . .  ,A~ i)) forms a par t i t ion  of 

t=l (j,,j2 ..... j~) 

for each i = 1, 2 . . . .  , r. Clearly 

INI = Zs + An(k + 1)"  = n ,  

,A(o'), = IBo('), + ]U  cJ,'~~~ I 
j~ - 0  

= (s - k)l + An(k + 1) ( r - l )  = lo, and 

ji =J 

= l + A n ( k + l )  @ - l ) = l j  for e a c h j = l , 2 , . . . , k  

which implies (i) of Cla im 3.6. 

Also note tha t  given 0 < t l ,  t2 . . . .  , tr <_ k, 

A u). D_ U Cj~...j~ _D C~,t2...~ 
j~ =ti  

for each i = 1 , 2 , . . . ,  r, 



226 P. FRANKL AND V. RCIDL Isr. J. Math. 

and consequently 

= Ial > n 4 n . . . n  4/ ' /  

holds, which yields (9). I 

I t  is easy to see tha t  (10) holds. In fact, since a is a unit  vector, aq ~k 0 
.A (i) 

for some 1 < q_< k. Let ul ,u2  . . . . .  u,. be reals such tha t  ~ i u i v  = 0. For 

each i = 1, 2 . . . . .  r we are going to fix 1 _< xi  <_ n such that. the x i - t h  coordinate  

of v Au'~ is not equal to 0 if and only if i = i ' .  

For i = 1, 2 . . . . .  r we consider the set Ci = Cj~j~....j,., where j i  = q and all the 

other  indices are 0. Observe tha t  for such a set. 

{A~ i') if , / '=,/ ,  
Ci = C0,0 ..... o,q,o,...,o C_ A(0 i') if i '  ¢ i. 

In par t icular ,  for every a, E Ci the x - th  coordinate  of the vector  ,, Au') satisfies 

{°: ,; tvAU')~ = ~ 0  if - i  
" :;" if i' i 

and therefore for every i = 1, 2 . . . . .  r there is a i _< xi  <_ n such tha t  (v "~"') ),,,~ ¢ 0 

for v Au) only. This  implies ui = 0 for each i = 1,2 . . . . .  r. In other  words, 

{vA: A E 92} is a linearly and therefore affine independent  set. 

In order to prove inequali ty (11), we need to calculate the cardinali t ies of 

intersections of A~i) n A~ '). These  cardinalit ies will depend on u~ i) and u f  ). We 

summar ise  these s t ra ightforward calculations in the following claim. 

(i) for j = O, 1 . . . . .  k and  i = 1, 2 . . . . .  r be  def ined as in (12). CLAIM 3.7: L e t  A j  

T h e n  f o r l < j , j ' < k a n d l _ < i T ~ i ' < r ,  

' / An(k + 1) ' ' -2  i f @  i) # uSi, ') 

IAS*) nA}: )1 = / k',,(k + 1 ) ' - 2  + I  i[ ' , ,S i )= @ ' )  (13) 

and  

(14) 
" ~,~(/., ÷ I) r-~ + l i:.~ ° ¢ liu'), 

P r o o f  o f  C la im  3.7: First ,  suppose 1 _< j , j '  _< k, and I f  (i) = "tu~" (/),'u 2(i),.. ., u~:)}, 
• t . i  ~ . t  

k J are given and u (./) # u holds. This  implies 
" "  ~ 3 

BJ'> n = o, and therefore 

IAS0 n AS{')I-- U q,J_~.-.o~ = An(k + 1) "-=. 
j i=j , j i ,  =j '  
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(~) : n(i') Now, if on the other hand u ) / ) =  'uf  ), then Bj ~j, = L~o which yields 

~(~ )1 IA~ ° n ,~;, , = IL,,;,)I  + U Cj,j~_...j,, = 1 + ,~n(k + 1) "-2. 
j i  =J'JH = J '  

Next. we want to calculate A~i)Y1.4~i') I for j _> 1 and i :fi i'. If u~ i) ~ I(C) then 

L,,~, c A~')n A~ '') and t l..s 

4 (i) A~ i' ._j n )1 = ILq> l+  U Chj.-,...J,, = / + M , ( k + l ) " - " .  
g J 3d J 

Finally, ttf ) E I((i') implies 

] jl j'-, ""j,- .4 (.')., nAl,"')l = U C = Mi (k  + 1) ''-2. i 
I j i  =J ,J i '  = J '  

We now finish the 1)roof of Lemma 3.5 1)y showing (11). Let. a = (a~, a2 . . . . .  a~,) 

ill S(1, k) be given: ibr the sake of convenience we set (to = 0. Consider 1((i), IC (i') 

and the corresl)onding part i t ions A (i) = ,A(i)(/£ (i)) and A (i') = ,,4(i')(/((i')). Fur- 

thermore,  let v Au) and v A(''~ be defined as s ta ted above. Having in mind tha t  i 

and i '  (and thus K(i) = i t',~ ( i) ,  u2(i),... , u[: i) } and K (i') = {uli'), , , f  ), . . .  , u[/')}) 

have been fixed we now infer 

(15) 

• " I~.A ( i ' )  " 2 d~(,,A') ,,A'") = ~ ( C ( ' )  - _ ,  ) 
t = l  

k k 

"J 1 
j = l  j ' = l  

~' a ~ ~' a ~, 
A(i') :1 + Z A?n A'o '') -¢ + Z A(o ')n''y T 

j = l  j ' = l  

E (i')~ = {(aj--( t j , )2" it~i)= H,j, 
j,jt>_l 

j_>l j ' ~ l  

+ .~'n(k+ 1) "-~ k k 

t Z ~ ( ( 'J -  "y)~, 
j=O j '=O 
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where we used (13) and (14) for the last equality. Finally, let yi = spread(a, K (0) 
and Yi, -- spread(a, K(i')); then 

d2(Yi'Yi') = E {(aj - a j , ) 2 :  u~i)= u~ ')} 

(16) j , j 'k t  
+ E { a 2 :  @i) ft K (i')} + E {a2': 4 ~') ¢ K(i)}" 

j>_l j ' > l  

Before we finally prove (11), we derive the following (easily provable, but not the 

best possible) bound, 

k k k k 

E E ( a j -  a j , ) 2 :  E E(a ( j ' +b )m°dk+ l - - a j , ) 2  < 4(k +1) ,  
j = 0  j'=O b=0 j'=O 

from the fact that a = (do, at . . . .  , ak) has length 1. We finish the proof and 

infer (11) from (15), (16), the bound above, and An = (n - Is) / (k  + 1)L 

2- .4 (0 A (d) An(k -]- 1) r-2 k k n - Is 
d ~ ,~ )-d~(~'Y~')I- I ~ Z (aj-ay)2 -< 4l~-~-i) 

j =0 j'=O 

Remark 3.8: Keeping k, s (and thus r), and a = (al, a2 . . . .  , ak) fixed, we later 

(see Lemma 3.9) let l and n tend to infinity. The ratio An~l, however, will be 
a constant independent of I and n (see equality (22)). Consequently, it follows 
from the right-hand side of (15) that the distances d(v "4('), v "4<) ) will be fixed 
for 1 _< i, i' _< k as I and n tend to infinity. 

We are now able to prove the main lemma of this section. 

LEMMA 3.9: Let Z = {Zl,Z2 . . . . .  Zd+l} be an arbitrary simplex with circum- 

radius o(Z) = Qz and let 0 > 0 be an arbitrary real. Then there exists a simplex 

V = {vbv2 . . . .  ,vd+t} with Q(V) <_ ozv/1 + 0/8 which is a-hyper Ramsey for 

= ( ~ z ) 2 ( 1  + 0 / 8 )  - Q(v)  ~ 

and, moreover, such that 

(17) 

for all 1 < i , i '  <__ d + 1. 

I d2(v~, v~,) - d2(z~, zi,)l < 0 

Proof of Lemma 3.9: Without loss of generality, assume that oz = 1 and 0 

is rational, 0 = p/q with p, q > 0. Set r / = 0/16 and apply Lemma 2.3 for r/ 
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and d to find s, k, a k-dimensional unit vector a = ( ab  a 2 , . . . ,  ak) E S(1, k), and 

k-element sets /~'~ < /~'2 < "'" < ~'d, with h'i C Is] ~ for i = 1, 2 , . . .  ,d  (recall 

/~" < h'~ means tha t  all elements of ~" are smaller than  any element of ~-t). 

Wi thou t  loss of generality (using the nota t ion of section 2.3), assmne tha t  

Z C_ S ( Z )  where Z = Z(a,  I(1, 1(2 . . . .  , f(d). Moreover, by Lemma  2.3, we also 

find sets K ( ~ ) , K  (i-~) . . . . .  I((i"+~) such that  for t = 1,2 . . . . .  d +  1 the set Y = 

{Yb Y2, . . . ,  Yd+l} defined by Yt = spread(a,  K (it)) E S(1, s) satisfies 

(18) d(zt, Yt) <_ ~1. 

Clearly, the following inequality holds for every 1 <_ i, i' < d + 1 by (18) and our 

choice of y: 

I d2(yi, yi,) - d2(zi, ze)l = I d(zi, zi,) + d(yi, ye)["  I d(z~, ze)  - d(yi,  Yi')[ 

< I d(z~, z~,) + d(yi, Yi')I" I d(z~, y~) + d(ze ,  Yi')l 
(19) 

_< 4 . 2 7 / =  8~/ 

=  12. 

On the other  hand, let l be an arbi t rary  multiple o fw = 8q (k+  1)( ~)-1 and set 

(20) n = l ( s + O ( k + l ) ) .  
8 

Consequently, (k + 1) (~') divides 

(21) n - Is - h)(k + 1) 
8 

Hence, l, s, k, and n satisfy the assumptions of Lemma 3.5 and we find a family 

of part i t ions 

• ( s )  
91 = {A (i) = A(0(I(( i ) )  = (A~ 0, A~ i), , A(0)" 1 < i < }. 

• "" k • k 

From now on we will refer to the set-up (I)-(V) s ta ted before Lemma 3.5. 

Now, consider the subfamily of parti t ions,  {A (/1), A (i~),.. ., A (id+~) } c_ 91 (associ- 

ated with I((il) ,  K (i2) . . . . .  K(id+l)), and corresponding vectors (see Lemma 3.5) 

Vl = v A<~*>, v2 = vA(~) , . . . ,Vd+l  = v A<~d+v. Lemma 3.5 yields tha t  V = 

{vl, v 2 , . . . ,  Vd+l} is a simplex. Furthermore,  in the nota t ion of Lemma 3.5, 

An n - Is 0 
(22) 1 - / ( k + l )  r -  8 ( k + l )  ''-1 
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holds and A.n/1 is independent  of 1 and 7~. This implies, by Remark  3.8, tha t  the 

simplex V is independent  of I and n. Moreover, (11) and (21) yield 

n - Is 0 
(23) ] d2(v./, vi, ) 2 _ 

- d  ( y ~ , y ~ , ) l < _ 4 1 ( k + l )  2 

for every 1 _< i, i' < d + 1. Notice that  the upper  bound in (23) is independent  

of n. Combining (19) and (23) we obtain (17). 

Now we are going to show tha t  V is c~-hyper Ramsey. This means tha t  for every 

sufficiently large 7~ we need to show the existence of a set H(.n) satisfying (i)--(iii) 

of Definition 3.1. We first show the existence of 7/(o) for every 'n satisfying (20) 

with l an arbi t rary  nmltiple of oJ. 

Consider the fanlily 

{.vA: .4 E lo, ll  . . . . .  lk 7-1(n) 

of n-dimensional vectors. Again using the notation of Lemma 3.5, I) 3' (21) we 

infer 

k 2 
, - - ,  a j  11 n -  ls  0 

(24) IIvAII 2 = ~_. lj ~ -- I -- 1 + l (k  + IF) - 1 + -~ 
j = l  

for every v a E ~/(n) and therefore ?-/(n) C S ( V / f +  0/8 ,  n). This verifies (i) of 

Definition 3.1 for 0 z = 1 which we assunled above. If 0 Z # 1 the same calculation 

yields 

(25) ~(,) c s(ozv/l + o18, ,). 

Since {vA: A e (to,t/i'.!.&)} contains 1" = { v , , v 2  . . . . .  v,l+,} we have 0(1:) _< 

0 z V/1 + 0/8 .  Clearly (25) is equivalent to 

7-l(n) C S ( V / o ( V )  2 + o , n )  with o = (0z)2(1 + .0 /8 )  - 0(1:) 2. 

Therefore,  the proper ty  (i) of Definition 3.1 is verfied for every e z- 

On the other  hand, 

t~(-) l  < (k + 1)" 

and thus (ii) holds as well. Finally, we will verify proper ty  (iii) of Definition 3.1. 

For A mentioned above consider a = a(A) guaranteed by Theorem 2.2 and let 

K C_ 7-t(n) be such tha t  IKI ~ (1 - a )" lH(n) l  (i.e., K satisfies condit ion (iii) 

of Theorem 2.2, where we use the natural  correspondence between v A and .4 
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for v A E hi). Let ]~I = ]lI(. ,4(i ') ,A (ie) . . . . .  ,Z (id+l)) l)e an ar ray  (as defined 

in (2)) corresponding to the s implex I ' .  Note tha t  due to (9), condit ion (i) of 

Theo rem 2.2 is satisfied, while (ii) holds trivially. Consequently,  one can apply  

Theorem 2.2 to find a congruent  copy of l" in hi and therefore p roper ty  (iii) of 

Definition 3.1 is verified. 

There  is, however, as ment ioned earlier, one more  issue we need to clarify. By 

Definition 3.1, one needs to guarantee  the existence of the fanfily 7-/(u) for all 

n sufficiently large. Unfor tuna te ly  the construct ion above apl)lies only for some 

choices of 'm Given 0 = p/q  recall tha t  s and k were defined by L e m m a  2.3 with 

'~! = 0/16.  Due to the choice o f / w h i c h  must  be a nmltiple of w = 8q(k + 1)(;) - l ,  

say 1 = iw, we infer tha t  ~ is of the forxn l ( s + O ( k + l ) / 8 )  = i w ( s + O ( k + l ) / 8 )  = iD 

for D = w(s + 0(k + 1)/8).  Observe also tha t  the values o f / t  for wlfich the set 

?-/(.n) satisfies Definition 3.1 form an infinite a r i thmet ic  progression {~D}~=1. It  

remains  to verify Definition 3.1 for all sufficiently lm'ge. This  will tbllow fi'om 

the fact below. 

FACT 3.10: Let c, n, and ~ be fixed and let {~D}i=] be an infinite a r i thmet ic  

progression. Let 1" be a finite set such tha t  for every i _> 1 there exists a set 

~ ( i D )  C_ R iD satisfying (i) (iii) of Definition 3.1. Then  V is o.-hyper Ramsey.  

Proo f  of  Fact 3.10: Fix some ; < e and choose i0 sufficiently large such tha t  

(26) (1 - e) iD < (1 - N (i+l)D 

for all i > io. Set, m o =  ioD. In order to prove tha t  V is a -hype r  Ramsey  

consider m 2 mo such tha t  iD < m < ( i + l ) D  for i _> io. We set 7-/(m) = 

?t( iD)  c S(~ /O(I ' )2  + n , i D )  c S(V/Q(I ' )  2 + o,.,,,). Since c is fixed, p roper ty  

(ii) of Definition 3.1 hohts. Moreover,  p roper ty  (iii) of  Definition 3.1 (with 2; 

instead of ~) follows from (26). | 

We apply  Fact. 3.10 with D = w(s + 0(k + 1)/8) and this finishes the proof  of 

L e m m a  3.9. II 

3.4.  ALMOST REGULAR SIMPLICES ARE O-HYPER RAMSEY SETS. Ill this sec- 

t ion we apply a result from [FR90] to show that ahnost  regular simplices are 

a -hyper  Ramsey.  At first we define a lmost  regular (i.e., (p,/~)-regular) simplices.  

Definition 3.11: Let 1 > it >_ 0 and /3 > 0 be given reals. A s implex T = 

{ t ] ,  t.2 . . . . .  t d+ l }  is called ( p , / ~ ) - r e g u l a r  if, for every 1 _< i < j _< d + 1, 

/3(] - #)  <_ (12(t.  t~) <_ /~(] + 10. 
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The following lemma was proved in [FR90] (cf. Lemma 3.1 in [FR90]). 

LEMMA 3.12: For every integer d >_ 1 there exists a real 1 >_ # = fl(d + 1) > 0 

such that, for every (#, ~3)-regular simplex T = {tl, t2 . . . .  , t d + l } ,  there exists a 

(d+,)_dimensional box (i.e., the vertex set of a rectangular parallelepiped) P such 
that there exists a subset T' C_ P congruent to T. 

Due to the fact that any two vertices of T' (from the lemma above) are not 
more than/3(1 + p) apart, we can assume without loss of generality that each 

edge of the box is not longer than/3(1 + p). Therefore, without loss of generality 
we only consider boxes P with circumradius 

l ~ ( d +  1) ~ / ~  ) 
o(P) -< 2 2 /32(1 + p)2 _ /3(12 + it) +2 1 . 

Since, due to Definition 3.11, tt < 1, we infer that 

o(P) _</3~/i  d + l )  < / 3 ( d + l ) .  

Combining this observation with Lemma 3.12 and Theorem 3.2 we derive the 

following: 

LEMMA 3.13: For every integer d >_ 1 there exists p = p ( d +  1) > 0 such that 

every (#,/3)-regular simplex T = {tl, t2 , . . . ,  td+l } with circumradius o(T) = a T 
is a-hyper Ramsey for every a >_/32(d q- 1) 2 - -  (~0T) 2. 

4. P r o o f  o f  t h e  m a i n  re su l t  

In this section we prove the main result, Theorem 1.6, by proving the stronger 

statement, Theorem 3.3. We first outline the idea of the proof. 

Given a simplex X and a > 0, we construct a "smaller" simplex Z and a 

regular simplex 2 such that X C_ Z • Z. Then we find an aV-hyper Ramsey 
simplex i T which is "0-close" to Z (see Lemma 3.9). Furthermore, we define a 

simplex T such that V * T contains a subset X '  congruent to X. Since V is very 

close to Z, T will be very close to Z, and the right choice of constants will ensure 

that T is almost regular. Therefore, we will derive, by Lemma 3.13, that T is c~ T- 
hyper Ramsey for some appropriate a r .  Finally, the product result, Lemma 3.4, 
will yield that X is (a V + aT)-hyper Ramsey with a y + a T _< a. Since a > 0 

was arbitrary, X is hyper Ramsey. 
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Proof  of  Theorem 3.3: Let X = {x l ,x2 , . . . ,Xd+l}  be a simplex and 1 > a > 0 

be given. Without loss of generality assume that  0(X) = 1 and set 

Inij ---- d 2 ( x i ,  xj). 

As X is an affine independent set, we infer from Schoenberg's theorem, Theo- 

rem 2.1, that  there exists a real 7 > 0 such that  the left-hand side of (1) is always 

less than - 3 .  Let 

(27) O < / 3 < m i n  ( d + l )  2, 2(d~-1) 2 

be a sufficiently small real number (one additional upper bound on /3 will be 
]d+ l  t _ stated later, after Remark 4.1). Then the matrix M '  = (m~jji,j=l with mij - 

mij  - / 3  is of strictly negative type (by our choice of/3 in (27)) and thus, again 

by Theorem 2.1, there exists a simplex Z = { q ,  -2 . . . .  , Zd+a} C_ R d such that  for 

l < _ i < j < _ d + l ,  

(2s) £ ( z ~ ,  ~j) = m'~j = . ~  - / 3 .  

Remark  4.1: The regular simplex Z mentioned in the outline of the proof is the 

unique simplex with distance ~ between every two vertices. Due to the fact that, 

we make no use of Z, we don' t  explicitly mention it in the proof. 

Moreover, assume we earlier choose/3 to be small enough such that  

(29) 0(Z) = O z ___ 1 + a /8 .  

Let p = p(d  + 1) be given by Lemma 3.13. Fix a small positive real 0 by 

(30) 0 = min {a, ~3It} 

and apply Lemma 3.9 for Z and ~. Consequently, we obtain an aV-hyper Ramsey 

simplex V = {Vl, v2 . . . . .  Vd+l} with 

satisfying 

(31) 

~"  = (0z)"(1 + 0 /8 )  - (or)  2 

d2(z/, : j )  - 0 _< d2(v/, vj) _< d2(z~, : j)  + 0 

for all 1 < i < j < d ÷ 1, where 0 v equals the circumradius of V. 

Finally, let T = {tl, te . . . . .  td+l} be the (last auxiliary) simplex defined by 

(32) d2(t~, t j)  = m~j - d2(vi, vj) 
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with circunu'adius 0(T) = co T .  The simplex T is (p,,/3)-regular by our choice of O 
in (30). Indeed, by (28) and (31), 

/ 3 -  0 <_ d'2(ti,tj) </3  + "0 

and hence 

,q(1 - It) <_ d2(ti , t j)  <_/3(1 + p) 

holds. 

Thus, we may apply Lemma 3.13 and infer that T is o T-hyper Ramsey for 

aT  = /~2((i._~ 1)2 _ (COT)2. 

Now, Lemma 3.4 implies that V* T is ( o v +  o T)_hyper l=lamsey. Consequently, 

there exists an integer ?1~0 V*T a n d  sets 7-/V*T(m) for m _> ?ll0 V*T such that 

"~'~V*T(?Ft) G S(~/(~OV)2 ~-ctV @ (COT)2 @ ~T , , t l )  
(33) 

= S ( ~ / ( ~ z ) 2 ( 1 + O / 8 ) + / ' 3 2 ( d +  1)z, m) .  

By (27), (29) and (30) we infer 

( o) o ( J ) 2  1 + ~  + / 3 2 ( d + 1 ) 2 <  1 + ~  + : ~ < l + a ,  

which implies that 

7-/V*T(m) C_ S(v/1 + a, m + 1). 

On the other hand, it is easy to see that V ,  T contains a subset X'  congruent 

to X. In fact, setting X '  = {x~ = vi * t~: i = 1,2 . . . . .  d + 1} yields by (32) that 

2 . ,  ., (12(vi, d 2( t i ,  t j) ?li'ij d 2 (xi, x j),  d (;I i, 3.j ) --~ 'vj ) --~ = = 

which implies that X '  C_ V * T is congruent to X. Combining this with (33) we 

infer that X is a-hyper Ramsey. Since o: > 0 was chosen arbitrarily, X is hyper 

1Ramsey. | 
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