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ABSTRACT

In this paper we will show that every simplex X with circumradius ¢
satisfies the following geometric partition property, which proves
a conjecture from [FR90].

For every positive real § there exists a positive real o such that every
x-colouring of the n-dimensional sphere of radius g+ 6 with x < (1+0)"
results in a monochromatic copy of X.

1. Introduction

In this section we first introduce a few, related geometrical concepts and its
history before we state the main result in section 1.4. Furthermore, we will
outline the organisation of this paper in section 1.5.

1.1. RAMSEY SETS. In a series of papers Erdds et al. [EGM*73, EGM™* 75a,
EGM*75b] introduced and investigated the following concept.

Definition 1.1: A subset X of the d-dimensional Euclidean space R? is called
Ramsey if for every \ > 2 there exists an integer n = n{X, x) such that for every
y-colouring of the points of R" there exists a monochromatic subset X’ C R”
congruent to X.
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Erdés et al. [EGM™*73] have shown that all Ramsey sets are spherical, that
is, every Ramsey set is contained in an appropriate sphere. On the other hand,
they also proved that vertex sets of d-dimensional boxes (i.e., the vertex set of
rectangular parallelepipeds) are Ramsey. Since then, the list of Ramsey sets was
extended; first it was shown in [FR90] that any simplex (i.e., d + 1 points span-
ning RY) is Ramsey. In [K#{91] Kifz proved that if X has a solvable, transitive
automorphism group, then X is Ramsey.

The fundamental problem to characterise Ramsey sets remains, however,
unanswered. In [Gra94] R. L. Graham conjectured that all spherical sets are
Ramsey and offered $1000 for the solution.

1.2. SPHERE RAMSEY SETS. In [Gra85], R. L. Graham introduced a concept
stronger than being Ramsey.

Definition 1.2: A subset X of R¢ is called sphere Ramsey if for every \ > 2
there exists an integer n = n(X, \) and a positive real ¢ = p(X,\) such that for
any Y-colouring of the points of the sphere S(g,n) = {# € R": x| = o} there
exists a monochromatic subset X’ C 5(g,n) congruent to X.

For a spherical set X let o(X) denote its circumradius, i.e., the radius of the
smallest sphere containing X.

In [Gra85] R. L. Graham proved that boxes are sphere Ramsey and he asked
if one can choose, in Definition 1.2, ¢ = o(X) + ¢ for an arbitrary small § > 0.
This was shown to be true in [Fra87]. The following related result for X being a
simplex was proved in [MR95].

THEOREM 1.3: Let X bhe a simplex with circumradius ¢(X) = ¢. Then for every
Y > 2 and every real § > 0 there exists an integer n = n(X, x, 8) such that for any
y-colouring of the points of the sphere S(g + 6,n) there exists a monochromatic
subset X' C S(p + 6,n) congruent to X.

1.3. EXPONENTIALLY RAMSEY SETS. Another area of investigation was
to study how large the minimum n = n(X,y) from Definition 1.1 is. The
special case that X consists of two points was proposed by Hadwiger and
Nelson. In [Had61] the question for determining the chromatic number \(n)
of the Euclidean space R" was raised, i.e., what is the maximum integer \(n)
such that for every real A > 0 and every (x(n) — 1)-colouring of the points of R"
there are two monochromatic points with distance precisely A. It was proved
in [Had61], [MM61], and [Woo73] that 4 < x(2) < 7. The current bounds for
x(n) are
(1.2..)" < x(n) < (3+o0(1))™.
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The first exponentially growing lower hound was proved by Frankl and Wilson
in [FW81]. The base of the exponential lower bound was recently improved by
Raigorodskii in [Rai00, Rai01]. The upper bound was shown by Larman and
Rogers in [LR72].

Extending this phenomenon to sets X consisting of more than two points we
introduce the following concept.

Definition 1.4: A subset X of R? is called exponentially Ramsey if there
exists a positive real ¢ = ¢(X) such that for every integer n > d and every
\-colouring of the points of R"” with \ < (1 4+ ¢)" there exists a monochromatic
subset X' C R” congruent to X.

In other words, X is exponentially Ramsey if the chromatic number of the
hypergraph with vertex set R™ and edges formed by congruent copies of X grows
exponentially with n.

It was proved in [FR90] that hoxes and simplices are exponentially Ramsey.

1.4. STRONG RAMSEY SETS. The following definition combines the concepts
considered in sections 1.2 and 1.3.

Definition 1.5: A subset X of R? with circumradius o(X) = g is called strong
Ramsey if for every real § > 0 there exists a positive real ¢ = o(X) such that for
every integer n > d and every \-colouring of the points of the sphere S(g+ d,n)
with \ < (140)" there exists a monochromatic subset X’ C S(g+4, n) congruent
to X.

Frow results in [FW81] aud [FR90] it follows that hoxes are strong Ramsey (see
also section 3.1). Present knowledge, however, does not exclude the possibility
that all spherical sets are strong Ramsey. A first step toward this problem is
to answer the question of whether obtuse triangles are strong Ramsey. The
main purpose of this paper is to answer this question positively and to extend
Theorem 1.3 in the sense that it remains true if \ grows exponentially with »
(i.e., \ £ (1 + 0)", where 0 = o(X) > 0). More precisely we will prove the
following.

THEOREM 1.6: Every simplex is strong Ramsey.

1.5. ORGANISATION OF THE PAPER. This paper is organised as follows. In
section 2 we state some already known results, which were proved in earlier
papers. Then in section 3 we introduce the concept of hyper Ramsey sets. This
concept is stronger than strong Ramsey and, in fact, later we prove Theorem 3.3,
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which claims that every simplex is hyper Ramsey. In sections 3.2-3.4 we develop
some tools about hyper Ramsey sets. These lemmas simplify the proof of the
main result. Finally, the proof of Theorem 3.3 which implies Theorem 1.6 is
given in section 4.

2. Preliminary facts

In this section we review a few previously proved results that will be useful in
sections 3 and 4.

2.1. EMBEDDING OF FINITE METRIC SPACES. First, we state a well known
result that characterises finite metric spaces, which are embeddable into the
Euclidean space.

Let M = (mij)ﬁj-il be a symmetric real matrix with zeros on the diagonal.
Then M is said to be of negative type if

d d+1

(1) oS miGg <o

=1 j=i+1
holds for all choices of (3,(2, ..., {441 with zg:ll ; =0 and Z‘,i:ll ¢=1

The following well-known Theorem is due to I. J. Schoenberg (see [Sch38}).

THEOREM 2.1: A finite metric space X = {x1,2,...,Zq41} with distances d;;
between x; and x; for 1 < i,j < d+ 1 can be embedded into the Euclidean
space R if and only if the matrix M with general entry my; = (l?j is of negative
type.

Moreover, the embedded image of X is affine independent if and only if
inequality (1) is always strict.

2.2. INTERSECTIONS OF PARTITIONS. Another tool we are going to use is
taken from [FR87]. It asserts that every sufficiently large family of (lo,14,. .., lx)-
partitions of an n-element set contains r partitions intersecting in precisely a given
pattern.

For positive integers lo, [y, ..., [y with lo+ 0L+ -+ = n let (lO,ll[r.'i]qu) denote
the set of all ordered partitions A = (Ag, A1,...,Ax) of [n] = {1,2,...,n} with

[A;] = {;. Obviously, the number of such partitions is

[n] . n _ n!
loliyo i) Nolas .o ) Lolqt-- 1Y
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For r given (lg,1,-..,lx)-partitions

AW =AM AN Ay, A® = AP AP Ay, L
AD = (AP, 4D, ADY A0 = Al A Al

consider the (k+1) x ... x (k4 1) (r times) array M = M(AM, A® A
with general entry

(2) Mirts.tr = A0 N AP 0. A,
for 0 < tq,t9,...,t, <k. Observe that forafixed 0 <i<kand1<j<r

z {Mue et —z}—lA(J)l_l

,,,,,

In [FR87] we proved the following result.

THEOREM 2.2: Let r and k be positive integers. Then for every real A > 0 there
exists a real ¢ = £(A) > 0 such that for every positive integer n the following
holds:

If lg,ly,....l; are positive integers with Zf:o l;, = n and M is a
(k4+1)x (k+1) x---x (k+1) (r times) array satisfying

(1) mu,,..¢, = An for any 0 < tg,ty,...,1. < k and

(i) > oAty =it =1 fori=0,1,....,k,and 1 < j<r
then for every K C (Io,ll[tl.]...lk) satisfying

(iif) K] = (1 - g)n(lg,h?,l...,lk)
there exists AN, AP, .. A" € K such that

M(AM, A® Ay = M

2.3. APPROXIMATION OF SPHERICAL SETS. In this section we consider a result
from [MR95]. This lemma roughly says that for every d and 75 there exist s, k, a
unit vector @ = (@1, ae,...,ax) and a unit sphere S(1,d) in R® such that every z
in that sphere can be 7 approximated by some y in R*, whose only nonzero
entries are a, s, ..., k.

More precisely, for Z a linear subspace of R® let S(Z) = S(1, s) N Z be the set
of all unit vectors in Z. Let E; = (e;,es,...,€5) denote an orthonormal basis
of R*. Furthermore, let a = (a1, ay,...,ar) € R* be a k-dimensional vector and
let K = {uy,ua,...,ux} be a k-element subset of [s] with u; < ug < -+ < .

We will need t.he following definition,

spread(a, i) g jey;.
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Furthermore, let I:'I,K"z, . ...I:'d € [s]* be disjoint sets each of cardinality &
such that I 1< K 2 < & K’d (here I < K’ means that all elements of I’ are
smaller than any element of K’ ).

We set

s =i Ry) = spread(a, k)

for 1 <i < d and we denote by
2 = Z(a, Ky, I~\'2, cees I:'d) = span({z1,22,....24})

the vector space spanned by 31, 23, .. ., 34. Let [I]* denote the set of all k-element
subsets of a set 1.
The following lemma was proved in [MR95].

LEMMA 2.3: For every real n > 0 and every integer d, there exist integers s, k,
and a k-dimensional unit vector « € S(1, k), such that for some K1 < Ny < -+ <
K4, K € [s]*, i =1,2,....d the linear space

Z=Z(a, K. K., Kq)

has the following property:
For every = € S(Z) there exists I € [s]* such that for y = spread(a, Iv).

A(zvy) <

holds, where {(z,y) denotes the Euclidean distance between = and y in R®.

3. Preliminary lemmas

In this section we introduce the concept of hyper Ramsey sets and we will prove a
few, somewhat technical lemmas which will simplify the proof of the main result,
Theorem 1.6.

3.1. HYPER RAMSEY SETS. The following concept of hyper Ramsey sets, which
was already introduced in [FR90], is stronger but more technical than the concept
of strong Ramsey sets.

Definition 3.1: Let o > 0 be a real number. A subset X of R? with circumradius
o(X) = o is called a-hyper Ramsey if there exist reals ¢ = ¢(X,q), ¢ =
¢(X,a) > 0, and an integer mg = mo(a) such that for every m > myg there exist
a finite subset H = H(m) C R™ satisfying

(i) H(m) C S(V/e* + a,m),
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(ii) |H(m)| < ™, and
(iii) if £ C H(m) and |K| > (1 — €)™|H(m)]|, then there exists a subset X’ C K
congruent to X.
Furthermore, X is called hyper Ramsey if X is a-hyper Ramsey for every
real o > 0.

For sets X C R™ and Y C R™ consider their product
XxY={zxypzeX,ycY}

where z x y = (T1,22,-. ., Tn,¥1.Y2,---,Ym) for © = (x1,29,...,2,) and
y= (Y42 Ym)-

It follows from [FWS81] that sets of cardinality two are hyper Ramsey (see
also [Gra83, R6d83]). Moreover, it was shown in [FR90] that the product of two
hyper Ramsey sets is hyper Ramsey. Both results together imply the following
theorem.

THEOREM 3.2: Every box is hyper Ramsey.

Again, stressing the fact that if X is hyper Ramsey then X is also strong
Ramsey, we observe that every box is strong Ramsey as mentioned in section 1.4.
By the same reason the main result of this paper, Theorem 1.6, is a consequence
of the following theorem.

THEOREM 3.3: Every simplex is hyper Ramsey.
The rest of this paper is devoted to the proof of Theorem 3.3.

3.2. PRODUCTS OF a-HYPER RAMSEY SETS. The following “product result”,

which is needed in our proof of the main result, is a modification of Theorem 2.2
in [FR90].

LEMMA 3.4: Let V C R% be a finite, ¥ -hyper Ramsey set with o(V) = oV
and let T C R% be a finite, aT -hyper Ramsey set with o(T) = oT. Then V T
is oV*T-hyper Ramsey for a"*T = o +aT.

Proof: Let ¢V, ", m{ be constants, and let H (m) for each m > m} be sets
witnessing that V is a¥'-hyper Ramsey (see Definition 3.1). In the same way, let
T, eT, mf, and HT (m) for each m > m correspond to T. Set 7 to the solution
of ((MUTI=NT = (1 — eV)=12 let m}{*T = m¥*T(V,oV,T,aT) be sufficiently
large and 72 = n+|n) > my*T. We will show that HY*T (=) = HV (n)xHT (|rn])
witnesses that V * T is o"*T-hyper Ramsey.
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Clearly, 0"*T = o(V x T) = \/(0V)% + (¢7)? and

HV*T(7) C S(\/(Qv)z +a¥ + (o7)2 + aTﬂfﬁ,) = S( (0V*T)2 + av*Tﬁ)

shows that (i) of Definition 3.1 is satisfied. Suppose that X = X(n) € HV*T (%)
does not contain a copy of V * T. For each v € H" (n) consider the set X, =
XN ({v}«HT(|mn])). X, is congruent to a subset of H? (|rn]) and therefore X,
contains more than |X,| — (1 — )L™ |HT (| 7n])| copies of T. Now we estimate
the number X (T") of copies T* of T such that T* C X and T = v % T for some
v € HV(n) and T a copy of T in HT(|mn)):

XT)z Y (%= Q=D ()
(3) vEHY (n)

=|] = [HY @) [T (]| (1 - T) ),

On the other hand, for every copy T of T in HT(|rn]) let Ve = {v €
HY (n): {v} * T C X,}. Since X contains no copy of V * T,

Vil < (1= <¥)"HY (n)].
This means that the number X' (T") can be bounded from above by

X(T) = Z{|VT| T is a copy of T in HT(|rn])}

|HT(LT7LJ)| Vv nY! - _ Vyn
< (M g -2

< (CT)LT”J(ITl_l)H'lT([TTLJ)H?{V(n)| - &.V)n
< [HT(LraDIHY ()] - (1 — V)72,

where the last inequality follows due to the choice of 7 and n.
Combining (3) and (4), we infer that

|X1 < IHV(yl)”HT(‘_TTIJ)K(l — 5V)n/2 + (1 . ET)L-rnj)’
and thus
] < [HY ()| HT (Lrn))(1 = eV T) = (1= " T) P T ()|

for some appropriately chosen ¢¥*7 > 0 and n sufficiently large, which implies
(iii) of Definition 3.1. In order to verify (ii) of Definition 3.1, set

T = max{c", T}
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As
YT @) = Y () (L) < () (D)) € (VT
the sequence H'*T(71) = HY (n) + HT(|rn]) for all @ > my*T shows that V' « T

is o *T-hyper Ramsey. [ |

3.3. a-HYPER RAMSEY SIMPLICES ARE DENSE. The aim of this section is to
show that for every simplex Z = {z.23,..., 2441} and for every positive real ¥
there exists an a-hyper Ramsey simplex V' = {3, 12,..., 0441} such that, for all
1< <d+1.

(5) ](12('l’i~ vir) — (2 200 )] < 0.

This is proved in Lennna 3.9.

The construction of V" is done in two steps. First, using Lemma 2.3 we find
integers s and k. a vector a = (ay,ay,...,ay) and y;, = spread(a, KU?) with
1 < jicoooijagr < (3) (where {K: 1 < i < (§)} is an enumeration of all
k-element subsets of [s]) such that

(6) |(12(yj,,yji,) ~ d%(z,20)| is “small” for every 1 < 4,4’ < d+1.

The aim of the second step is to construct an a-hyper Ramsey simplex V' =
{v1,v9.. .., vgp1} such that

(7) | d? (v, vp0) — (12(yj,,yjl,)| is “small” for every 1 < i, <d+ L.

For this. we associate v; with a conveniently chosen partition of [n] for some
sufficiently large n. For a partition A = (Ag, A,...., Ag) of [n] and the vector a =
(a1, @z ..., ax) we will consider the n-dimensional vector v = (£7,€51,.... &)

4 [0 if t € Ao,
6’ B (l‘j/\ﬁ ifl‘e;‘lj.

The aim of the next lemma, Lemma 3.5, is to construct a family

defined as follows,

%= {AD = (4 AP A 1< <)
of partitions of [n] such that

n—Is

8 2 AT Ay 2y yi)| < 4—m— 25
(8) [d“(x ¢ ) = d“ (i, yi)| < 1k +1)

forall1 <i4,¥ < (f) Setting v; = A% and choosing n and | appropriately will
imply (7). Then (6) combined with (7) yields (5).
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Next we will formulate Lemma 3.5 in which we will work with the following
set-up:

(I) 1, s, k, and n are integers, set

s n—ls
= yOA= d
' (k) nk+nr
(k4 Y1 (s—k) ifj=0,
b= Anfk +1) +{l =12,k
(II) {K®:1 < <r}is the family of all k-element subsets of [s],
WD) 2 = {AD = AO(KE) = (AP AP . A 1 < i <7} is a family of
(lo, 1, . . ., I)-partitions of [n], where A will depend on i (),
(IV) a = (a1,a9,...,ax) € S(1,k) is a unit vector and we dejﬁne fori=1,2,...,r
the n-dimensional vector vA" = (&£, 647, ..., 2"y by

and

ORI R if t € Ap,
t T Va/VI ift e A,

(V) set y; = spread(a, K®) for i = 1,2,...,r.
The next lemma ensures the existence of a family 2 satisfying (8).

LEMMA 3.5: Letl, s, k, and n be integers such that n > ls and (k+1)(:) divides
n — ls. Then there exists a family of (lg, 11, . ..,lx)-partitions of [n],

A= {AD = ADNRO).1<i<r),
such that for every a = (ay,as,...,ax) € S(1,k) the following holds:

(9) Myty-t, — |A§11)0Ag)ﬂnfl§:‘)| Z An for 0 Stl,tz....,tr S k,
(10) {v*: A € U} is an affine independent set, and

forevery 1 <i#i <,

(1) |2 ") = @y )] < 413—;1—)
Proof: Given integers [, s, k, and n satisfying the assumptions of the lemma,
first, we will construct a family 2 consisting of (lg, 11, ..., I;)-partitions A® =
(A(()i),A(l"'),. . Agi)) for 1 < i < r satisfying (9).

Let {K® = {u{?,u{), ..., ug)}: 1 < i < r} be an enumeration of all k-element
Y) < ugi) < e < u;f).

subsets of [s] with u Furthermore, let L, Ls,..., L, be
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pairwise disjoint sets, each of size [. For each i = 1,2,...,r we define a different
partition (B(()”, Bi”, .. .,B,(f)) of Uj_; L¢ by

s
B(()l) = U Lt,
e[S

(1) _ , (1) _ _ (i) _ ‘
Bl = Lugl), B2 = Lugz), ey Bk = Luy).
For each r-tuple (j1,j2,...,Jr) with 0 < j; <k let Cj, j,...5, be a set of cardinal-
ity An (which is an integer by the assumptions of the lemma) and let Cj ;,...;,
and Cjj j; .. be disjoint whenever the r-tuples (ji, j2, ..., Jr) and (51,3, - -, Jj;)
differ in at least one entry. We now define 2 by setting
(12) ADVED) = 4D = BOU | Cjrjgeoiin
Ji=j
where the union is taken over all (k+1)"~! different r-tuples (j1, ja, ..., jr) With
Ji being fixed.
CLAIM 3.6: Let A be defined as in (12). Then

(i) Ac (10,11[7,1.]..,“) and
(i) inequality (9) holds.

Proof of Claim 3.6: Note that A® = (4, AW . AD) forms a partition of

N= U Ly U lejZ"'jr

t=1 (1.d2.--dr)

for each i =1,2,...,r. Clearly
IN|=1ls+ An(k +1)" =n,
AP = 1BP 1+ | Chusase
7:=0
=(s—k)+A(k+1)"Y =1, and
|A§-l)| = |B](-1)| + U lej2"'jr
Ji=j
=1+ An(k+ 1) =1 foreachj=1,2,...,k

which implies (i) of Claim 3.6.
Also note that given 0 < ty,t5,...,t, <k,

Agf) 2 U Cijpjy 2 Cityer, foreachi=1,2,...,7,

ji=t;
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and consequently
Miity-- |A§}) N “1(2) n- 4'151)| Z |Ci’1f2~--f,<| = An
holds, which yields (9). 1

It is easy to see that (10) holds. In fact, since @ is a unit vector, aq # 0
for some 1 < ¢ < k. Let vy.v,..., 1, be reals such that ) _, 1/,,-17’4“) = 0. For
eachi=1,2,...,r we are going to fix 1 < @; < n such that the x;-th coordinate
of A" is not equal to 0 if and only if i = #'.

Fori=1,2,...,r we consider the set C; = Cj,j,...;., where j; = q and all the
other indices are 0. Observe that for such a set

A e
C; = Cop....04.0...0 € A‘(’,,-/) lfl - I
Ayl i #£L

AGD

In particular, for every x € C; the a-th coordinate of the vector v satisfies

(,UA(.u) :{%7&0 if i =i
0 if i £

and therefore foreveryi=1,2,...,r thereisal < x; < n such that (U'A“I) Yo, 0
for vA” only. This implies v; = 0 for each i = 1,2,...,r. In other words,
{v*: A € A} is a linearly and therefore affine independent set.

In order to prove inequality (11), we need to calculate the cardinalities of

(i)

intersections of Ay) N A . These cardinalities will depend on u; and uy, ). We

summarise these straightforwald calculations in the following clalm.

CramM 3.7: Let Ay) for j =0,1,....,k and i = 1,2,...,r be defined as in (12).
Thenfor 1 <j,j'<kandl1 <i#i <vr,

. 7 e (0 4 (i')
(13) A A = A DT iy A
’ ’ M(k+1)""24+1 if 'u;l) = uy,
and
14) |4(.i) R 4(il)| _ An(k+1)y""24+1 if u,;-l.) ¢ K,
J 0 Mk +1)72 ifu;-?) e KU,

Proof of Claim 3. 7 First, Suppose 1<j,j' <k,and K = {ul') 11(2')‘ cens llkl)}
LK) = {ul' 112 ,...,u,\ )} are given and u() # u(,) holds. This implies
Bj(fi) B](f =, and therefore

149 n Al = = An(k+1)"2

U lejz'"jr

Ji=dge =y’
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Now, if on the other hand 'ujf") = uji ) then B;i) = Bj(f b= Lu(i) which yields
3

=1+ An(k+1)2

U Cj1j2"’j7‘

Ji=iji=j'

() ~ 4Gy _
IAJ» ﬂ:lj, ' = IL“;,')| +

Next we want to calculate |A§<i) NA) for j>1and i # ¢ If ‘uﬁ.i) ¢ KU then
Lo<C A;“ n Ag ) and thus

A0 = Lol +

U Cilj'.?"’jr

Ji=jgp=j'

=1+ n(k+1)""2

Finally, © Ve K" implies

1A 0 Al = —n(k+1)""2  ®

1
U lej?"',jv~

Ji=idp=Jj'

We now finish the proof of Lemma 3.5 by showing (11). Let @ = (ay, a2, . ... ax)
in S(1.k) be given; for the sake of convenience we set ag = 0. Consider k'), Kt
and the corresponding paltmons AD = AD (KDY and AT = ACV(KE), Fur-
thermore, let vA'” and vA A e deﬁned as stated above. Havmg m mmd that i
and ¢ (and thus K = {u{,ul”, .. 4} and KO = {7 80, Wl !
have been fixed we now infer

n
: (i) (i") (i) (i)
G = )

t=1
Eok 2
_ A A 4] (a5 —ajr)
33 | | e
j=1jr=1
2
i Sy @ i YN
A Ay Jnal | -
(15) j=1 ’ j'=1 d
l —a; j = U /I
=Y ;- ) }
Ja'21
+Z{af mé] (’)}+Z{a, uj, ¢I\m}
j>1 j'>1

L A A+1)" ZZ(“J ),

.'_OJ/_O
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where we used (13) and (14) for the last equality. Finally, let y; = spread(a, K )
and y; = spread(a, K @); then

yzayz Z{ "_a’ -U§Z)_U/}

(16) Hi'21
+Z{a u(l)gl(’}+2{a,u g KOy,
ji>l1 ji'>1

Before we finally prove (11), we derive the following (easily provable, but not the
best possible) bound,

k& kE k
Z Z Z Z A(j'+b) mod k+1 ~ aj')2 <4(k+1),
j=04'=0 b=0 3'=0

from the fact that a = (ag,aq,...,ax) has length 1. We finish the proof and
infer (11) from (15), (16), the bound above, and An = (n —~Is)/(k + 1)"

A() Yy A k+1" 2 &
‘d( )~ d(yza?h)l_ JZOJEO(QJ Q]) - l(k+1 '

Remark 3.8: Keeping k, s (and thus r), and a = (a1, a9, ..., ax) fixed, we later
(see Lemma 3.9) let | and n tend to infinity. The ratio An/l, however, will be
a constant independent of I and n (see equality (22)). Consequently, it follows
from the right-hand side of (15) that the distances d(vA(i),vA(i')) will be fixed
for 1 < 4,7’ <k asl and n tend to infinity.

We are now able to prove the main lemma of this section.

LEMMA 3.9: Let Z = {21,29,...,24+1} be an arbitrary simplex with circum-
radius o(Z) = ¢” and let ¥ > 0 be an arbitrary real. Then there exists a simplex
V = {v1,v9,...,v441} with o(V) < 0% \/1 + 9/8 which is a-hyper Ramsey for

a=(e?)*(1+9/8) - o(V)?
and, moreover, such that
(17) |2 (v, vir) = d*(2i, 200)| S 9
forall1 <4, <d+1.

Proof of Lemma 3.9: Without loss of generality, assume that ¢? = 1 and 9
is rational, ¥ = p/q with p,q > 0. Set n = ¥/16 and apply Lemma 2.3 for 5
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and d to find s, k, a k-dimensional unit vector a = (ay,as, ..., ax) € S(1,k), and
k-element sets hy < Ky < -+ < Ky, with K; € [s]* for i = 1,2,...,d (recall
K < K’ means that all elements of K are smaller than any element of K).

Without loss of generality (using the notation of section 2.3), assume that
Z C 8(2) where Z = Z(a,f(’l,f('g, . ..,f(d). Moreover, by Lemma 2.3, we also
find sets K KG2) R a+1) guch that for t = 1,2,...,d+ 1 the set Y =
{y1,Y2,-- -, Ya+1} defined by y, = spread(a, Ky € S(1, s) satisfies

(18) d(z,y:) < .

Clearly, the following inequality holds for every 1 <4, < d + 1 by (18) and our
choice of #:

| d® (s yir) — A2 (200 2)| = [d(zi 200) + s yir) | - 1 d (26, 200) = d(win )|
< N d(zivzir) + AW, yi)l - |z i) + Az yar)|
<4-2n=28n
—9/2.

(19)

On the other hand, let ! be an arbitrary multiple of w = 8¢(k+ 1)(;)"1 and set

. _ I(k+1)
(20) n—l<s+———§————>.
Consequently, (k + 1)(Z) divides
(21) n—ls= ﬂ.’“;_l).

Hence, I, s, k, and n satisfy the assumptions of Lemma 3.5 and we find a family
of partitions

A= {AD = ANKD) = (AP, AV, APy 1< i< (2)}.

From now on we will refer to the set-up (I)-(V) stated before Lemma 3.5.
Now, consider the subfamily of partitions, { A1), A@2) . AG4+1)} C A (associ-
ated witth\'(il), KU2) - KGa+1)y and corresponding vectors (see Lemma 3.5)
oA vA(ZZ),...,vd_H = A% Lemma 35 yields that V =

{v1.v9,...,v441} is a simplex. Furthermore, in the notation of Lemma 3.5,

'Ul = 1)2 =

An n—Is )
22 —_— = =
(22) l l(k+1)r  8(k+1)-t
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holds and An/! is independent of [ and n. This implies, by Remark 3.8, that the
simplex 17 is independent of I and n. Moreover, (11) and (21) yield
n-—ls v

2. 2 LU} — 2'i~"i’ < —_
(23) A% 0) = )l < 435y =

for every 1 < ¢, < d+ 1. Notice that the upper bound in (23) is independent
of n. Combining (19) and (23) we obtain (17).

Now we are going to show that V" is a-hyper Ramsey. This means that for every
sufficiently large n we need to show the existence of a set H(n) satistying (i)-(iii)
of Definition 3.1. We first show the existence of H(n) for every n satisfying (20)
with [ an arbitrary multiple of w.

H(n) = {"A‘ Ae (IO,[IF].I]...II;>}

of n-dimensional vectors. Again using the notation of Lemia 3.5, by (21} we

Consider the family

infer

(24) ||pA||2—§k:1»“3' ST P LR
“jzl’z Tl T k41 T8

for every v € H(n) and therefore #(n) C S(1/1+ v¥/8,n). This verifies (i) of

Definition 3.1 for ¢Z = 1 which we assmmed above. If g7 # 1 the same calculation
yields

(25) H(n) C S(6Z\/1+9/8,n).

Since {v4: A € (10.11[7.1.]..,“.)} contains V = {vy,v2,..., 0441} we have (1) <

0% 1/1+ /8. Clearly (25) is equivalent to
H(n) C S(Vo(V)2+ a.n) with a = (0%)%(1 +9/8) — (V)™

Therefore, the property (i) of Definition 3.1 is verfied for every o%.
On the other hand,
[H(n)| < (k+1)"

and thus (ii) holds as well. Finally, we will verify property (iii) of Definition 3.1.
For A mentioned ahove consider ¢ = () guaranteed by Theorem 2.2 and let
K C H(n) be such that |} > (1 — )"|H(n)| (i.e., K satisfies condition (iii)
of Theorem 2.2, where we use the natural correspondence between vA and A
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for vA € K). Let M = A(AUD AU2) | Ala+)) he an array (as defined
in (2)) corresponding to the simplex V. Note that due to (9), condition (i) of
Theorem 2.2 is satisfied, while (i1} holds trivially. Consequently, one can apply
Theorem 2.2 to find a congruent copy of 17 in K and therefore property (iii) of
Definition 3.1 is verified.

There is, however, as mentioned earlier, one more issue we need to clarify. By
Definition 3.1, one needs to guarantee the existence of the family H(n) for all
n sufficiently large. Unfortunately, the construction above applies only for some
choices of n. Given ¥ = p/q recall that s and k were defined by Lemma 2.3 with
17 = 1¥/16. Due to the choice of I which must be a multiple of w = 8¢(k + 1)(2)_1.
say | = iw, we infer that » is of the form [(s+0V(k+1)/8) = iw(s+0(k+1)/8) =iD
for D = w(s + d(k +1)/8). Observe also that the values of n for which the set
H(n) satisfies Definition 3.1 form an infinite arithmetic progression {iD}2,. It
remains to verify Definition 3.1 for all n sufficiently large. This will follow from
the fact helow.

Fact 3.10:  Let ¢, a, and ¢ be fixed and let {i{D}:2, be an infinite arithmetic
progression. Let V" be a finite set such that for every ¢ > 1 there exists a sct
H(iD) C RIP satisfying (i)-(iii) of Definition 3.1. Then V" is a-hyper Ramsey.

Proof of Fact 3.10: Fix some £ < ¢ and choose iq sufficiently large such that
(26) (1-¢)P <(1-5t+nP

for all i > iy. Set mgy = ioD. In order to prove that V" is a-hyper Ramsey
consider m > myg such that iD < m < (i + 1)D for i > iy. We set H{m) =
H(iD) C S(\/m iD)y C S \/m m). Since ¢ is fixed, property
(ii) of Definition 3.1 holds. Moreover, property (iii) of Definition 3.1 (with &
instead of ¢) follows from (26). |

We apply Fact 3.10 with D = w(s + ¥(k + 1)/8) and this finishes the proof of
Lemma 3.9. |

3.4. ALMOST REGULAR SIMPLICES ARE a-HYPER RAMSEY SETS. In this sec-
tion we apply a result from [FR90] to show that almost regular simplices are
a-hyper Ramsey. At first we define almost regular (i.e., (s, 3)-regular) simplices.

Definition 3.11: Let 1 > p > 0 and 3 > 0 be given reals. A simplex T =
{ti.ta, ... tag1 } is called (p, B3)-regular if, for every 1 < i< j <d+1,

B — i) < d*(tint;) < B+ p).
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The following lemma was proved in [FR90] (cf. Lemma 3.1 in [FR90}).

LEMMA 3.12: For every integer d > 1 there exists areal 1 > = pu(d+1) >0
such that, for every (u, 3)-regular simplex T = {t1,ta,...,tq41}, there exists a
(d”zH) -dimensional box (i.e., the vertex set of a rectangular parallelepiped) P such
that there exists a subset T' C P congruent to T'.

Due to the fact that any two vertices of T/ (from the lemma above) are not
more than 8(1 + p) apart, we can assume without loss of generality that each
edge of the box is not longer than 5(1 + u). Therefore, without loss of generality
we only consider boxes P with circumradius

o(P) < %\/(dgl)ﬂ2(1+”)z - M <d;—1)'

Since, due to Definition 3.11, u < 1, we infer that

d+1

o <) (*

) < B(d+1).
Combining this observation with Lemma 3.12 and Theorem 3.2 we derive the
following:

LEMMA 3.13: For every integer d > 1 there exists p = p(d + 1) > 0 such that
every (u, B)-regular simplex T = {t1,ts,...,tq41} with circumradius o(T) = oT
is a-hyper Ramsey for every a > 8%(d + 1)2 — (oT)2.

4. Proof of the main result

In this section we prove the main result, Theorem 1.6, by proving the stronger
statement, Theorem 3.3. We first outline the idea of the proof.

Given a simplex X and « > 0, we construct a “smaller” simplex Z and a
regular simplex Z such that X C Z % Z. Then we find an oY -hyper Ramsey
simplex V which is “d-close” to Z (see Lemma 3.9). Furthermore, we define a
simplex T such that V T contains a subset X’ congruent to X. Since V is very
close to Z, T will be very close to Z, and the right choice of constants will ensure
that T is almost regular. Therefore, we will derive, by Lemma 3.13, that T is o -
hyper Ramsey for some appropriate a’. Finally, the product result, Lemma 3.4,
will yield that X is (¢ + aT)-hyper Ramsey with " + al < . Since o > 0
was arbitrary, X is hyper Ramsey.
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Proof of Theorem 3.3: Let X = {x1,%2,...,2441} be a simplexand 1 > a >0
be given. Without loss of generality assume that o(X) = 1 and set

mij = dz(xi,xj).

As X is an affine independent set, we infer from Schoenberg’s theorem, Theo-
rem 2.1, that there exists a real ¥ > 0 such that the left-hand side of (1) is always
less than —v. Let

(27) 0<ﬁ<mm{w1nfv2wilﬁ}

be a sufficiently small real number (one additional upper bound on 3 will be
stated later, after Remark 4.1). Then the matrix M’ = (m;J)f‘;il with mj; =
my; — f is of strictly negative type (by our choice of 3 in (27)) and thus, again
by Theorem 2.1, there exists a simplex Z = {z1,22,..., %441} C R¢ such that for

1<i<j<d+1,

(28) d2(5,i, :’]) = Tn;] = Tn'ij — /3

Remark 4.1: The regular simplex Z mentioned in the outline of the proof is the
unique simplex with distance 3 between every two vertices. Due to the fact that
we make no use of Z, we don't explicitly mention it in the proof.

Moreover, assume we earlier choose 3 to be small enough such that
(29) 0(2) = 0" <1+a/8.
Let g = pu(d + 1) be given by Lemma 3.13. Fix a small positive real 9 by
(30) 9 = min {o, S}

and apply Lemma 3.9 for Z and ¥. Consequently, we obtain an o' -hyper Ramsey
simplex V = {v1,vs,...,vg4+1} with

¥ = ()21 +9/8) — (0¥)?
satisfying
(31) d*(zi,25) — 0 < (v, v5) < A% (ziv25) + 9

for all 1 < i< j <d+ 1, where ¢¥ equals the circumradius of V.
Finally, let T = {t{,t2,...,tq41} be the (last auxiliary) simplex defined by

(32) dz(t-g, t;) = My — dz(u,-, vj)
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with circumradius o(T) = ¢7. The simplex T is (u, 3)-regular by our choice of ¥
in (30). Indeed, by (28) and (31),

B—0 < a3t t;) < B+

and hence
A1 = p) < dP(tinty) < A1+ p)

holds.
Thus, we may apply Lemma 3.13 and infer that T is a7 -hyper Ramsey for

al = (d+1)? - (o)

Now, Lemma 3.4 implies that V «T is (a* +aT)-hyper Ramsey. Consequently,
there exists an integer m$ *7 and sets H'*T (m) for m > m}*T such that

H*T(m) C S(\/ (0¥)* +a¥ + (e7)? 4 o, m)

(33)
_ 5(\/(92)2(1 +0/8) + B(d+1)%,m).

By (27), (29) and (30) we infer
(92)2(1 + U?) + 32 d+1)2 < (1+ 3)3 +%<1+a

which implies that

HY*T(m) C S(VI+a,m+1).

On the other hand., it is easy to see that V * T contains a subset X' congruent
to X. In fact, setting X' = {& = v; x£;: 1 =1,2,...,d + 1} yields by (32) that

AP (@), 2) = d® (v, vg) + (i 1) = may = AP, ;)

which implies that X’ C V" x T is congruent to X. Combining this with (33) we
infer that X is a-hyper Ramsey. Since o > 0 was chosen arbitrarily, X is hyper
Ranisey. ]
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