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Abstract 

Frankl, P., On cross-intersecting families, Discrete Mathematics 108 (1992) 291-295. 

Let n 3 t z 1 be integers. Let 9, YI be families of subsets of the n-element set X. They are 

called cross t-intersecting if IF n GI 2 t holds for all F E 9 and G E 3. If 9 = CfI then 9 is called 

t-intersecting. Let m(n, t) denote the maximum possible cardinality of a r-intersecting family. 

Our main result says that if 9, 3 are cross s-intersecting with (31 c ISI ~m(n, t), 1 GS, then 

1% + 13) s m(n, 1) + m(n, 2s - t) holds and this is best possible. 

1. Introduction 

Let X be an n-element set. A family 9 of subsets of X, i.e., 9 c 2x is called 

t-intersecting if (F fI F’I 3 t holds for all F, F’ E 9. 
For n + t even define 

s(n, t) = {F c X: IF( 2 (n + t)/2}. 

Fix an element x E X and for n + t odd define 

s(n, t) = {F cX: JF fl (X - {x}l 2 (n - 1+ t)/2}. 

Clearly, S(n, t) is f-intersecting. Recall the following classical result. 

Katona Theorem [l]. Zf 9 c 2x is t-intersecting, then )9( 6 19(n, t)l holds. 
Moreover, for t 3 2 equality holds only if 3 = 9(n, t). 

For a family 9c 2x and an integer s 2 1 define a,(S) = {G c X: 3F E 
9, IF A GI s s}, where F A G = (F - G) U (G - F) is the symmetric difference of 

F and G. 

Another classical result is the isoperimetric theorem of Harper which we state 

here in a slightly weaker, but more convenient form. For a short proof see [2]. 
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Isoperimetric Theorem (Harper [4]). Let 5 c 2x satisfy 191 = (g) + EYE’=,+, (7) 

where 1 c b c n is an integer and b C x s n is a real number. Then 

(1) 

The families 9, %C 2x are called cross t-intersecting if (F C-I Cl 2 t holds for all 

F E 9 and G E 9. Such families often occur in inductive proofs and it is important 

to have good bounds on their sizes. The first such result was obtained by 

Ahlswede and Katona, who used the isoperimetric theorem to prove the 

following. 

Theorem 1. Suppose that 9, % c 2x are cross t-intersecting. Then min{ 191, I %I} G 

Is(n, t)l. Moreover for t 2 2 equality holds if and only if 9= %= s(n, t). 

Improving earlier results of Rod1 and the author [3], Matsumoto and 

Tokushige [6] proved the following stronger result. 

Theorem 2. Suppose that 9, %C 2x are cross t-intersecting. Then (i) or (ii) holds: 

(9 IWIY s IWn, t)12, 
(ii) n + t is odd and j!9lI%J c 19(n, t - l)lIs(n, t + 1)l. 

Estimating 19) + [%I turns out to be almost trivial. Namely, if 9 and % are 

cross t-intersecting, then {X - F: F E S} fl %= 0 must hold, implying 19) + 1591~ 

2”. On the other hand taking 191 = 2x and % = 0 shows that this bound is best 

possible. 

However, recently Sali [7] found the following interesting result. 

Theorem 3. Suppose that 9, %c 2x are cross s-intersecting. Moreover, both 9 

and 9 are t-interesting, 1 d t c s s n. Then 

19) + 15916 I9(n, t)l + 19(n, 2s - t)l. (2) 

In view of the Katona Theorem the following result, which is the main result of 

the present paper, is stronger. 

Theorem 4. Suppose that 1 s t =G s s n and 9, 9~ 2x are cross s-intersecting 

families satisfying 131 s (91 c I %(n, t) I. Then 

(%I+ I%[ < 19(n, t)l + I%(n, 2s - t)l. (3) 

Our proof, which is based on the isoperimetric theorem, is different and shorter 

than Sali’s argument. 
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2. Proof of Theorem 4 Let us start with an easy inequality. 

Lemma 1. Suppose that 1 =S t <s s n. Then 

Is(n, t)l + 19(n, 2s - t)j 3 19(n, n + 1)l + (2+2, 2s -t - 1)l 

holds, with equality if and only ifs = t + 1 and n + t is odd. 

(4) 

Proof. Suppose first that n + t is odd, n + t = 2a + 1. From the definition it is 

clear that the RHS of (4) is 

Similarly, the LHS can be written as 

Thus (4) is equivalent to 

which holds because of s 2 t + 1 and a s n/2. Moreover, the inequality is strict 

unless s = t + 1. 

Suppose next that n + t = 2a. By very similar computation (4) turns out to be 

equivalent to 

(:I:)>( n-1 a+s-t-l ) 
which is true because of a > n/2 and s 2 t + 1. 0 

In view of Lemma 1, when proving Theorem 4 we may assume that 

I9(n, t + 1) < (91 c Is(n, t)l holds. 

Proof of Theorem 4. Set a = [(n + t)/2]. Then we may assume that 

holds for some real number a s x c n. 

Let us observe that a,_,9 fl {X - G: G E 92} = 0. Indeed, otherwise for some 

Fe9 one has (FA(X-G)(<s, yielding IFfIGI<J(X-G)nGJ+s=s, a 

contradiction. 

We distinguish two cases. 
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Case (a): IZ + t = 2~. 

From (1) we infer 

consequently 

1%’ s “&g,,, (1) - (u -: + 1) = ,,+,,c,,,,,_ (I) - (u -: + 11. 
Equivalently, 

Since 191 = j%(n, t)l - (“; ‘) + (t), we have to prove that 

or equivalently 

The RHS is negative unless x 3 2a - s + 1, so we may assume that this inequality 

holds. Then, however 

Mz-:+1) 

=L-z+J 

(x - a + 1)(x - a + 2) . . . (x - a + s - 1) _ 1 

(u-~++)~~~u 1 

which is an increasing function of x, proving (5). It follows also, that the 

inequality is strict unless x = II, i.e., 9 = s(n, t) holds. 

Case(b): n+t=2u+l. 
In this case x < n - 1 holds by assumption and the same argument gives 

Now the desired inequality becomes 

which holds again by monotonicity, in view of x G II - 1. The inequality is strict 

again unless n = II - 1. This concludes the proof. 0 
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Remark. One can prove that equality holds in (3) only if 9 = s(n, t), ‘S= 

%((n,2s-t)orif .F=S(n,t+l), %=9(n,2.s-t-l), s=t+l andn+tisodd. 
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