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Intersection problems occupy an important place in the theory of finite sets. One 
of the central notions is that of a r-wise r-intersecting family, that is, a collection 
F,, . . . . F,,, of distinct subsets of the n-element set X such that IF,, n . . n F,I 2 t 
holds for all choices of 1 < il < < i, < m. What is the maximal size m = m(n, r, t) 
of a r-wise t-intersecting family? Taking all subsets containing a fixed t-element set 
shows that m(n, r, 1) > 2”-’ holds for all n 3 f  2 0. One of the main results of the 
paper is that m(n,r,r)=2”-’ holds if and only if n<r+t or r<2’-r-l with 
the possible (but unlikely) exception of the case (r, I) = (3,4). Many more best 
possible results are obtained. Another one is the following. Suppose that 4, . . . . C%, 
are cross ?-intersecting (see definition in the paper) and f  $2’-r -2, then 
1911 1’$./ . . . . ]$I Q 2’(“-‘I. 0 1991 Academic Press, Inc. 

1. INTRoDLJcT~~N 

A family 9 of subsets of [n] = (1, 2, . . . . n} is called r-wise t-intersecting 
if IP,n . . . n Fr;I > t holds for all F,, . . . . F, E 9. Such families were widely 
investigated we refer the interested reader to the surveys [Fl, Fti]. 

Let m(n, r, t) denote the maximum of 151 over all 9 c 2cn1, 9 r-wise 
t-intersecting. If 9 is maximal then necessarily Fc G c [n] and FE 9 
imply GE 9, a family with this property is.called a co-complex or filter. 
Recall that ‘3 is a complex or ideal if H c G E Y implies HE Y, 

Note that m(n, r, t) = 0 for t > n and we usually assume n 3 t, r 3 2. Even 
for t ,< n < t + r trivially m(n, r, t) = 2”-’ holds. 

For 0 < i 6 (n - t)/r define the families 

~=~(n,r,t)=(Ac[n]:IAn[t+ri]l~t+(r-1)i). 

It is easy to see that 4 is r-wise c-intersecting, Id01 = 2”-‘. The basic 
open problem is the following. 

Conjecture 1.1 [F2]. 

m(n, r, t) = max{ IdI : 0 < i < (n - t)/r}. (1.1) 

* This work was done while the author visited AT&T Bell Laboratories, Murray Hill, NJ. 
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In [F2], (1.1) was proved for t < 2’. r/150. For r = 2 it follows from a 
classical result of Katona [K]. Actually, m(n, 2, t) = JZZ~+ r),2J holds. 

In [Fl] it was shown that 

m(n,r, t)=2”-’ holds for r > t. (1.2) 

This result is applied there to give a very short proof of the following 
important result of Brace and Daykin, which was also discovered by 
Kleitman [P]. 

THEOREM 1.2 [BD]. Suppose that F c 2[“] is r-wise l-intersecting, 
I > 3, and satisfies n9 = 0. Then 191 < I&,(n, I, 1)1 with equality holding 
if and only if 9 is isomorphic to dI(n, r, 1). 

Let us note that IdO(n, r, t)l 2 Is8,(n, r, t)l holds according as 

2’-r-lzt. 

We have the following: 

Conjecture 1.3. Suppose that d c 2[“’ is r-wise t-intersecting with 
InBl ct. Suppose further that t <2’-r- 1. Then 191 < IdI(n, r, t)l and 
equality holds if and only if 9 is isomorphic to dI(n, r, t). 

In this paper we prove this conjecture for all but six choices of (r, t), 
Let us mention the trivial inequalities 

m(n, r, t) > 2m(n - 1, r, t), 

m(n, r, 1) > m(n - 1, r, t - 1). 

Let a(r) be the unique positive root of (xr- 2x+ 1)/(x- 1). 
It is easy to see that 

(1.3) 

(1.4) 

I+ 2 -<cf(r)<-+- 1 1 1 2’+’ 2 2’ holds for r > 3. (1.5) 

THEOREM 1.4. 

m(n, r, t) < 2m(n - 1, r, t - 1) a(r) holds for n 2 1, tal. (1.6) 

Inequality (1.6) complements (1.4) in a certain way. 

COROLLARY 1.5. 

m(n + s, r, t + s) < 2scr(r)s m(n, r, t). (1.7) 
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Looking at the dual family 9’ = ([n] -F: FE S> of a r-wise 
t-intersecting family 9, we see that any r of its members have union of size 
at most n - t. We call this property dually r-wise t-intersecting. For t = 1, 1 
is omitted. For iE [n] define 

9(i)= {F- {i}: iEFE9}. 

Similarly, F(i) = {FE 9 : i $ F}. We use also the notation [i, j] for 
{i, i+ 1, . . . . j}. The minimum degree 6(Y) is defined by d(8) = mini IS(i 

Note that the dual family of &r(n, I, 1) is dually r-wise intersecting and 
has minimum degree 2”-‘- ‘. 

Conjecture 1.6 (Daykin CD]). If 3 is dually r-wise intersecting and 
U g= [n] then 6(6)<2”-‘-’ holds for ra 3. 

In [DF] this conjecture was proved for r B 25 (for some partial results 
see [D, BSW]). 

THEOREM 1.7. Conjecture 1.6 holds for all r 2 5. 

This leaves two cases, r = 3 and 4 open. Especially the case r = 3 seems 
to need new methods. 

Making new conjectures is easier. 

Conjecture 1.8. If 9 is dually r-wise t-intersecting then d(9) < 2”-‘-’ 
holds for t < 2’ - 2r. 

Note that-if true-Conjecture 1.8 is best possible, namely &,(n, r, t)’ = 
( [n] -A: A E &,(n, r, t)} has minimum degree 2”-‘-’ while 6(s&,(n, r, t)‘) = 
(t + 2r) 2”-‘-“. 

For convenience set &$((n, r, t)=d(n, r, I)‘. 
The paper is organized as follows. 
Section 2 introduces shifting, the most useful operation on intersecting 

families. Except for some simple results in that section the paper is self- 
contained. 

Apart from the very short proof of Theorem 1.4, Section 3 contains a 
short proof of the Brace-Daykin Theorem and of Theorem 3.4, which 
shows, how the function m(n, r, t) is related to Conjecture 1.3. 

Theorem 3.1 is included here because part of it is needed for the short 
proof of Theorem 1.2. 

Section 4 develops the necessary tools and gives the somewhat lengthy 
proof of Theorem 1.7 for r 2 7. The cases r = 5 and 6 rely on some stronger 
results and are proved only in Section 8. 

582b/53/2-4 
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The main result of Section 5 is Theorem 5.5 which together with 
Theorem 5.8 establishes 

m(n,r,t)=2”-’ if and only if t<2’--r-1 or n<t+r 

(with the possible exception of the case (t, r) = (4, 3)). 
In Section 6 the validity of Conjecture 1.1 is established for t < 

2’-2(2’-2 - 2)/(r - 1) which is considerable improvement on earlier 
results. Theorem 6.4 establishes Conjecture 1.3 for r > 5. 

Section 7 is probably the highlight of the paper. Several best possible 
results are obtained in a unified way for cross-intersecting families 
F 1, . . . . 9,. We should stress that the idea of estimating IFi; ... IF,;1 instead 
of min, 161 goes back to Moon [M]. 

Since min, 141 < ( IFi I . . . IF,;1 )1’r, the results provide a full proof of some 
conjectures of [DF], which the author believed to be beyond reach. 
Proposition 7.7, which gives very good bounds on the value of the positive 
roots of the polynomials xr - 2x + 1, plays a surprisingly important role in 
the proofs. Theorems 1.2 and 3.1 and parts of Theorem 5.5 are consequen- 
ces of the results of this section. Results for cross-intersecting families are 
not simply interesting in themselves but they are also very useful. This was 
already demonstrated in the proof (for r > 7) of Theorem 1.7. The results of 
Section 7 appear to be indispensable for r = 5,6. These cases are presented 
in Section 8. 

Section 9 contains extensions of Theorem 1.7 for cross-intersecting 
families and proves Conjecture 1.8 in a wide range. We could further 
extend this range but preferred to have a proof of the present result only, 
because it is much shorter. 

In Section 10 some possible extensions of Theorem 1.2 are discussed. 

2. PRELIMINARIES 

Let us call the families Fltl, . . . . S$ c 2[“’ r-cross t-intersecting if 
(F,n ... n F,I > t holds for all F1 E Fltl, . . . . F, E 9,. 

The operation S,--called (i, j)-shift-was essentially defined by Erdiis, 
Ko, and Rado [EKR]. 

where 

S&F)= {S,(F): FEN}, 

F’= (F- {j})u {i} if i$F, jeF, F’$9 

otherwise. 
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LEMMA 2.1 [Fl]. If %, . . . . S$ are r-cross t-intersecting then so are 

&j(m), ..., S,(e) as well. 

Iterating S, for all 1 < i < j < n will provide us eventually with families 
Y 1, . . . . C$ which are r-cross t-intersecting, satisfy IyI = 141 for 1 < I< r, 
moreover 

S,(3) = 4 .forall 1 <i<j<n and 1 <Z<r. (2.1) 

Families satisfying (2.1) are called shifted. The next proposition is very 
easy to prove (cf. [Fl]). 

PROPOSITION 2.2. Y c 2[“] is shifted if and only if for all GE $9, i $ G, 
jeG, and 1 <i<j<n one has ((G- {j})u {i})ea. 

The following proposition exhibits an important property of shifted 
r-cross t-intersecting families. 

PROPOSITION 2.3 [Fl]. Suppose that 4, . . . . C$‘,C~~“~ are shifted and 
r-cross t-intersecting. Let Gj E ‘Z$, 1 <j< r. Then there exists 0 < i < (n - t)/r 
such that 

IG,n [t+ir]l + ... +IG,n[t+ir]lar(t+i(r-1)). (2.2) 

Inequality (2.2) was used to prove the following-recall the definition of 
u(r) from Section 1. 

THEOREM 2.4 [Fl]. Ifg,, . . . . Fr~2[“] are r-cross t-intersecting then 

l&l IF21 ... 124 < (2”cQr)‘)‘. 

The following is an easy consequence of shiftedness. 

PROPOSITION 2.5 [Fl]. IfF1, . . . . S$ are r-cross t-intersecting and shifted 
then gl(i), . . . . e(i) are r-cross (t + r - 1 )-intersecting. 

COROLLARY 2.6. 

m(n,r,t)<m(n-l,r,t-l)+m(n-l,r,t+r-1). (2.3) 

Proof: Let 9 c 2r”] be shifted, r-wise t-intersecting with I$[ = m(n, r, t). 
Note IQ/ = IY(l)l + IS(i)]. 

Since a( 1) is r-wise (t - 1 )-intersecting and by Proposition 2.5 (applied 
with 4 = ... = gr = 9) ‘S(i) is r-wise (t + r - 1)-intersecting we have 
m(n,r,t)=~~(l)/+~~(i)~~m(n-1,r,t-1)+m(n-1,r,r+t-1). 1 

We will often use the following easy result. 
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PROPOSITION 2.1 [FZ]. If 9 is r-wise t-intersecting and for some 
l<i< j<n one has S,(Y)g&$(r, t) then gg&,(r, t) holds too. 

Note the fact, that if 9 is shifted then the dual family Fc= 
([n] -F: FE F} is shifted in the opposite direction, i.e., Sji(Fc) = 9’ for 
all 1 <i< j<n. 

We will need the following inequality concerning the numbers cI(r), the 
roots in (f, 1) of x’-2x+ 1. 

PROPOSITION 2.8. 

a(r) 
2’-‘+1 <z-2’-’ holds for r > 5. (2.4) 

Proof: Define b = l/(2’-’ + 1). We can rewrite (2.4) as 

2a(r) < 2’. 

Since 2a(r) is the only root off(y) = (y/2)’ - y + 1 between 1 and 2, it 
will be sufficient to show that f(2’) < 0 holds, because f (1) = 2-’ > 0. 
Equivalently, we have to show that (2’) - 1 > 2br--r. By 2’= ecn2jb > 
1 + b In 2 > 1 + 0.69b and 2” < 25/17 < 1.23, it is enough to show that 
0.69/(2’-’ + 1) > 1.23/2’, which is true for r 2 5. 1 

3. THE Fkoo~ OF THEOREM 1.4 AMD SOME APPLICATIONS 

Proof of Theorem 1.4. Apply induction on n. The case n = 1 is trivial. 
Suppose the statement has been proved for n - 1 and use (2.3) and (1.3) 

m(n,r,t)<m(n-l,r,t-l)+m(n-l,r,r+t-1) 

<m(n-l,r,t-l)+m(n-l-r,r,t-1)2’a(r)’ 

<m(n-l,r,t-l)(l+a(r)‘)=2m(n-l,r,t-l)a(r). [ 

THEOREM 3.1. Suppose that 9 c 2[“’ is 3-wise t-intersecting, then 

IFl<2”-’ holds for t = 1, 2, 3. (3.1) 

Moreover, if In 91 <t then (3.2), (3.3), and (3.4) hold. Finally, for t =4 
we have (3.5). 

191<5.2"-4 if t=l (3.2) 

IBI<5(&1)2”-5<0.7732-2 if t=2 (3.3) 

~9~<10(3-JJ)2”-6<0.9552-3 if t=3 (3.4) 

191 < 5(& 2) 2”-4 < 1.181 . 2”-4 if t=4. (3.5) 
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Remark. Note that (3.2) is the important special case r = 3 of 
Theorem 1.2. Also, (3.3) and (3.4) improve earlier bounds of [Fl, F33. 

Proof: First note that a(3) = (fi - 1)/2. We apply induction on n and 
prove all statements simultaneously. Let first t = 1. If (I 9 # 0 we have 
nothing to prove. Otherwise ([n] - ii>) E 9 for all i, can be supposed. 
This property is unaltered by shifting, thus (by Lemma 2.1) we may assume 
that 9 is shifted. Consider 9(l) and S(i) (on [2, n]). Since [2, n] ~9, 
9(l) is 2-wise l-intersecting and thus /9(1)1 6 (l/2) 2”-’ = 2”-2. 

Also, F(i) is 3-wise 3-intersecting (cf. Proposition 2.5). Thus, by 
(3.1 Fusing the induction hypothesis-19( i)I < 2”-4. Consequently, 

as desired. 
In case of equality, F(i) = (Gc [2, n]: [2,4] c G} follows from (3.4). 

Since 9( i ) c 9 and 9 is shifted, 9 = &i(n, 3, 1) must hold. 
For the case t > 1 and for later use we need a lemma. 

PROPOSITION 3.2. Suppose that 9 c 2[“] is a co-complex. Then for all 
1 <i<j<n we have Ifi 91= Ifi S,(F)l. If9 is shifted then In F(l)1 < 
max{O, In Fl- 1). 

Proof. If 9 is a co-complex, then In ‘91 is just n minus the number of 
(n - 1 )-element sets in 9. This quantity obviously does not change by 
shifting. To prove the second assertion we may suppose that A = n 9( 1) 
is not empty. We claim that 1 E F for all FE 9. Suppose the contrary. Since 
9 is a co-complex, [2, n] E 9 follows. Choose an element aE A. Then 
[n] - {u} must be in 9 by Proposition 2.2. However, this contradicts a E F 
for all 1 E FE 9. Thus 191= IS(l)1 and n 9 = {1} u A follow. 1 

Suppose next that t = 2. If 10 91= 2, we have nothing to prove. 
Thus let Ifi 91 < 2. By Proposition 3.2, we may assume that 9 is shifted 

and consider 9( 1) and 9( i ). 
By Proposition 3.2, F( 1) is 3-wise l-intersecting with n 9( 1) = 0. Thus 

lY(l)l<5 *2”-5. 
Also 9(i) is 3-wise 4-intersecting (by Proposition 2.5). Using (3.5) gives 

19(i)l <S($-2)2”+ 

Now (3.3) follows from IFI= IF(l)1 + IF(i 
The case t = 3 is very similar. Therefore we shall be somewhat sketchy. 

If In 912 3 then we have nothing to prove. 
If I l-J Fl < 2, then we may assume that 9 is shifted. By Proposition 3.2 
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we may apply (3.3) to the 3-wise 2-intersecting family %6(l) and (3.5) with 
Corollary 1.5 to the 3-wise 5-intersecting family %(I). This yields 

~%~<5(&1)2”-6+5(,/-2)(&1)2”-6=10(3-$)2”-6. 

Finally, let t = 4. If n % # 0, then I%1 < 2” ~ 4 follows from the 
preceding cases. Thus we may assume that n % = 0, % is shifted. We can 
apply (3.4) to the 3-wise 3-intersecting family %(1) and (3.5) together with 
Corollary 1.5 to the 3-wise 6-intersecting family %(i). This gives 

I%lQ10(3-fi)2fl-7+5(fi-2)($-1)22”-7=5(+2)2”-4 

as desired. 1 

Now we want to give a short proof of Theorem 1.2. 

LEMMA 3.3. Ifm(n, r, t) = 2*-I then m(n, r + 1, t + 1) =2+-i holdrjk 
n > t + 1, r 2 3 with dO(n, r + 1, t + 1) the unique optimal family. 

Proof: Let % c 2t”’ be (r + 1 )-wise (t + 1 )-intersecting. If 9 is r-wise 
(t + 2)-intersecting then by the assumption and Corollary 1.5 we have 

I%1 <2”-‘a(r)2<2”-’ i+$ 
( > 

‘<2”-‘-l. 

Otherwise there exist F,, . . . . F, E 9 with IF, n . . . n FJ = t + 1. Thus 
this (t + l)-element set is contained in all members of %. This 
yields I%1 < 2”-‘-I with equality holding if and only if % z 
Lpl’(n,r+l,t+l). 1 

Proof of Theorem 1.2. Apply induction on r. The case r = 3 is (3.2). By 
Proposition 3.2 we may suppose that 9 is shifted. Now %( 1) is (r - l)- 
wise intersecting and n %( 1) = 0. Thus-by induction-I%( 1)l < 
(r+ 1) 2”-I-*. 

As %( i ) is r-wise r-intersecting by Proposition 2.5, (3.1) and repeated 
applications of Lemma 3.3 imply I%(i)1 <2”-‘-I. 

Thus 191 = I%(l)1 + I%(i)1 <(r +2) 2”-‘-l as desired. In case of 
equality we have l%(i)1 = 2+-l, consequently, 

%(i)=(Gc[2,n]:[2,r+l]cG}. 

Using shiftedness, % = dl(n, r, 1) follows. 1 

THEOREM 3.4. Suppose that m(n, r, t +r- 1)=2”-‘-‘+I with do as the 
only optimal family. Then Conjecture 1.3 holds for r, t. 
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Proof. Apply induction on t. The case t = 1 is Theorem 1.2. Consider 
n % = A. Suppose first 1~ IAl < t. Choose i E A and consider %(i) which 
satisfies the assumptions with t replaced by t - 1. We infer 

)%I = I%(i)1 6 (r + t) 2”- 1--rp’+ l < Idl(n, r, t)l. 

If n % = 0, then we may suppose that % is shifted. 
Now %( 1) satisfies the assumptions with t replaced by t - 1. Thus 

l%(l)1 <I&r@-1, r, t- l)\ <(r+2)2”-‘-I. 

By Proposition 2.5, %(i) is (r + t - l)-intersecting. Thus I%(i)1 <2”-‘-‘, 
yielding 

[%I = l%(l)1 + I%(i)1 < (r + t + 1) 2”-‘-‘= Idl(n, r, t)l. 

In case of equality, %(i) = (‘G c [2, n] : [2, r + t] c G}. By shiftedness 
% = JX!~(~, r, t) follows. 1 

4. THE MINIMUM DEGREE OF DUALLY r-WISE INTERSECTING FAMILIES 

In this section we shall use Theorem 5.2, which is proved in the next 
section. Let 9 c 2r”l be a dually r-wise intersecting family with u 9 = [n] 
throughout this whole section. For 2 <s < r define 

t(s)=min{t:3G,,...,G,eY,IG,u ..*uG,I=n-t}. 

Thus t(s) is the maximal integer t for which $9 is dually s-wise 
t-intersecting. We can assume without loss of generality that t(r) = 1 and 
that F c G E 9 implies FE Q, i.e., Y is a complex. 

Call a subset A c [n] a hole if IA n G( < 1 for all GE ‘3’. 

PROPOSITION 4.1. If A, B are holes, iEA n B then IS(i)1 <2”-IAuBf. 

Proof: If ~EGE’~, then Gn(A-Ii})=@ and Gn(B-{i})=@. 
Thus 9(i)c2t”‘-(A”B). 1 

PROPOSITION 4.2. For 2 <s < r one has t(s) > r-s+ 1. Moreover, if 
equality holds for some s, then there exists a hole of size r-s + 1. 

Proof Choose G,, . . . . G,EQ to satisfy IG,u ... uG,I =n-t(s) and 
consider A=[n]-(G,u ... uG,). Then AgH,u ... uH,-, must hold 
for all H,, . . . . H,-,~9. Since U%=[n], [Alar-s+l, and in case of 
equality I H n Al < 1 for all HE 9, i.e., A is a hole. 1 
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FROP~SITION 4.3. Suppose that CX(~)‘-~+’ 2’+’ < 1 and there is a hole of 
size k + 1. Then the minimum degree 6(g) satisfies 

ProoJ: By symmetry let [k + l] be a hole. Consider the families 
d( 11, ..-, d(k) c 2C”1-Ck+ ‘1. If th ese families are dually k-cross (r - k + l)- 
intersecting then by Theorem 2.4 and the assumption on a(k) 

mm I.&(i)1 <([d(l)1 . ..(~(k)l)1ik~2”-k-‘a(k)‘-k+’ <2”-‘-l, 

as desired. Otherwise we can choose H,E 9(i), i= 1, ,,., k such that 
IH, v ... u H,J = n -r - 1, i.e., [(H, u (1)) u ... u (Hk u {k})l = 
n - (r - k + 1). Let B be the complement of this last set. By Proposition 4.2, 
B is a hole Bn [k+l] = {k+ l}. From Proposition4.1, 19(k+ 1)1< 
2” -r- i follows. 1 

PROPOSITION 4.4. cr(k) Ii ’ 2’ < 1 holds in each of the following cases. 

(i) k=3, I=2 

(ii) k=4, 1<7 

(iii) k > 5, 1~ 2k. 

ProoJ Parts (i) and (ii) can be checked by direct computation. To 
prove (iii) consider the following sequence of equalities 

PROPOSITION 4.5. If there is no hole of size t(s) + 1 for some‘ 3 <s < r 
then t(s - d) 2 t(s) + 2d holds for 1~ d < s - 2. 

ProoJ: Since any subset of a hole is a hole itself, it is sufficient to con- 
sider the d = 1 case. Let B be a set of size t(s - 1) whose complement is the 
union of s- 1 sets in 9. Since iJ ‘9 = [n], IBI > t(s). If IB( = t(s) + 1 then 
by definition of t(s), IG n BI < 1 must hold for all GE 9; i.e., B is a hole. 
This would contradict our assumptions. Thus t(s - 1) = I BI > t(s) + 2. 1 

Proof of Theorem 1.7 for r > 10. If Q has a hole of size Lrf2] then 
s(9) < 2”-‘-’ follows from Propositions 4.3 and 4.4. 

Let b be the size of the largest hole. We may assume that 1 <b c Lr/2 J 
holds. 

Since t(r) > 1, t(r - b + 1) > b must hold. Thus we may apply Proposi- 
tion 4.5 with s = r - b + 1. Consequently, 

t(4)>b+2(r-b-3)=2r-b-6. (4.1) 
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For r = 10 and 11 using Theorem 5.2 we obtain 

)q <m(n,4,10)=2”-‘0 (4.2) 

1q < m(n, 4, 12) = 2”- ‘%(4)2 < 2”- ll. (4.3) 

In general, going from r to r + 2 the minimum value of t(4) goes up by 
3: from 2r - Lr/2 J - 5 to 2(r + 2) - L(r + 2)/2 J - 5. This results in a change 
in the upper bound of 191 by a factor of a(4)’ < l/4. This proves in view 
of (4.2) and (4.3), 

1931 < m(n, 4,2r - Lr/2 J - 5) < 2”-‘. 

Since 9 is a complex, IS(i)1 < (l/2) (9(<2+-’ follows. m 

Note that the above proof goes through unchanged for r = 9 if 9 has no 
hole of size 4. This will be our starting point in the following. 

Proof of Theorem 1.7 for r = 9, 8, 7 in the Case of Existence of a Hole 
of Size 4. We may assume that [4] is a hole in Q. If g(l), g(2), g(3) are 
dually 3-cross r-intersecting on [S, n] then by Theorem 2.4 we obtain 

S(S)<(jS(l)l 1%(2)1 l~(3)1)1/3<22”-4a(3)‘<2n-r-1. 

Since a(3)6<2-4, for r = 7 we obtain 6($?)<2”-‘-’ even if g(l), g(2), 
g(3) are dually 3-cross (r - 1 )-intersecting. 

Let HiE%(i), i= 1,2, 3, be sets such set T=lJ,,i6j Hiu {i> has 
maximal size. 

By the above considerations and the fact that % is dually r-wise 
intersecting, n - r + 2 > I TI > n - r, where the second inequality is strict 
for r = 7. 

Note that by Proposition 4.3 we may assume 

there is no hole of size 5. (4.4) 

If (T( = n - r + 2 then [n] - T is a hole, contradicting (4.4). 
Suppose next I TI = n - r + 1 and consider B = [n] - T. By (4.4), B is not 

a hole. Consequently, there exists some G4 E 3 with IB n G41 = 2. Since Q 
is dually r-wise intersecting, the (r - 3)-element set B, = B - G, is a hole. 
For r = 8, 9 this contradicts (4.4). Thus let r = 7. 

If possible, we choose G, in a way that is does not contain (4). If it is 
not possible then B- (4) is a hole of size r -2 = 5, contradicting (4.4). 
Thus we may assume 4 E B,. 

Consider g(4) c 2+(r4’ “Bo), If g(4) is 2-wise l-intersecting, then 
IS(4)I <(l/2) 2+‘= 2”-8 and we are done. Otherwise there exist 
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Hi, Hz E g(4) such that H, u H, = [n] - ([4] u B,). Thus r(2) < 6. By 
Proposition 4.2 there is a hole of size 6, contradicting (4.4). 

The final case is IBI = r, r = 8 or 9. Again, we choose G4 E B with 4 $ Gq, 
) G, n BI = 2 and define B, = B - G,. If this was impossible, then B - { 4) is 
a hole of size r - 1, contradicting (4.4). Defining B, in a similar way and 
using (4.4) we obtain a hole B, of size r - 4, containing (4). For r = 9, this 
contradicts (4.4). 

Thus let r = 8. By the maximal choice of T and 1 TI = r, we have t(3) = 8. 
This implies that g(4) is a dually 3-wise 2-intersecting family on 
[n] - ([4] u B,). By (3.1) we conclude g(4) < 2”-7-2 = 2”-9. i 

Proof of Theorem 1.7 for r = 8, If There Is No Hole of Size 4. Let b be 
the size of the largest hole, 1 <b < 3. Using Proposition 4.5, we infer that 
t(4)ab+2(8-b-3)=10-b. 

For 16 b<2 using Theorem 5.2 gives 191<2”-* and thus 6(6)~2”-~. 
The only remaining case is b = 3. Let [3] be a hole. If Q(l), g(2), 

g(3) are dually 3-cross 9-intersecting then Theorem 2.4 gives 6(s) < 
2”-3ct(3)9<2n-9. 

Otherwise we can find Hi E ‘S(i), 1~ i < 3, with union of size n - 11. Con- 
sequently Hi u {i}, i = 1,2, 3, which are in 9, have union of size n - 8. 
However, using Proposition 4.5, t(3) 2 3 + 2 .3 = 9, a contradiction. 1 

Finally we come to the technically most difficult case, r = 7. In view of 
the above cases we may assume that there is no hole of size 4. 

Proof of Theorem 1.7 for r = 7, No Hole of Size 4. We shall concentrate 
on t(4). If t(4) 27, then by Theorem 5.2 we have 6(Y)< (l/2) I$1 < 
2n-7-’ = 2n-8, as desired. 

On the other hand, by Proposition 4.2, t(4) > 5. This leaves 2 cases. 

(a) t(4)=5.SupposethatG,,...,G,~9withG,u...uG,=[6,n]. 
Consider the family 2 = {G n [S] : G E a}. Since X must be dually 
3-intersecting, IHI < 2 for all HE Z. Moreover, Z contains no two 
disjoint 2-element sets. 

If some iE [S] is not contained in any 2-element member of Y, then 
B(i) t 2r6’“l and 9(i) must be dually 3-wise 3-intersecting (because 
Proposition 4.5 implies t(3) 2 7). Thus IS( < 2n--5-3 = 2”-8 by (3.1). 

Thus all i E [S] are contained in some 2-element members of 2. 
It follows that {HE % : JHI = 2) is a star, i.e., for some jo [S], 

are the 2-element members. Now [5] - {j} is a hole 
p;i ii ‘, C,5ddt;$!$on 

(b)’ t(4)=6. Choose G,, . . . . G,E% with G,u ..a uG4=T, ITI= 
n - 6. Say T= [7, n]. 

Again by Proposition 4.5 we have t(3) 2 8. 
We claim that (Gn [6]l <2 for all GE%. 
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Indeed, the contrary implies that, [6] - G, is a 3-element set, say [3], 
which is a hole. By t(3) = 8 the families 9(l), Y(2), 93) are dually 3-cross 
8-intersecting on [4, n]. Using Theorem 2.4 

fi(W<(l%l 141 141)“3<2”-3 Yj---- ( > 
G-1 8<2”-8 

follows. 
Consequently, 2 = {G n [6] : G E 9} is a family consisting of the empty 

set, (i}, 1~ i < 6, and some 2-element sets. Define 

xx= {HE%: IHI =2}. 

By the above argument, there is no hole of size 3. Consequently, every 
BE ( $I) contains some member of X. 

On the other hand X contains no 3 pairwise disjoint sets (B is dually 
7-wise intersecting). 

Viewing X as a graph on [6], the first condition and the simplest case 
of Ramsey’s theorem imply that X contains a triangle. Applying the condi- 
tion once more gives an edge, disjoint to the triangle. The remaining vertex 
cannot be joined by the second condition to any of the vertices of the 
triangle. Using the first condition shows that it must be joined to both 
endpoints of the edge which was disjoint to the triangle. Consequently, X 
is the disjoint union of two triangles, say X = ([:I) u ( c4;63). 

Now we are close to the final contradiction, only we have to make some 
calculations using Theorem 2.4. 

Set W(A)= {G-A: GEg, Gn [6] =A} c2[‘Tn3. 
For A,, A,, A,, A,c [6] the families 9?(Ai), i= 1,2, 3,4, are dually 

4-cross IA,u ... u A,[-intersecting because of t(4) = 6. By Theorem 2.4 we 
have 

Ic@(A,)I ... l.6%(A4)l < (2n-6a(4)‘A1” ‘.. “A4’)4. (4.5) 

If for some l-element set {i} c [6] one has I%?( {i})l < (l/3) 2”-* then 
using Ik@(A)I < [9#(A’)I for A c A’, 
assume that 

p?( {i})l > 42”-8 

Using (4.5) with three l-element 
taking into consideration (4.6) gives 

Ig(A)I < (2”-%(4)‘)” 

I%(i)1 ~2”~’ follows. Thus we may 

for all ie [6]. (4.6) 

and one disjoint 2-element sets and 

13 

= 2”a(4)*’ .27 < 2”-‘128 . (4.7) 
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Using (4.5) with Ai= {i>, we may assume by symmetry that 

IW((l})l <2”-6a(4)4<0.35.2”-s. (4.8) 

Combining (4.7) and (4.8) gives finally 

IY(l)l= lW{1},1+ I.@({4 2))l+ l-@J({l, 3})l<0.43.2”-8. 1 

5. THE ERD&--K+RAw CASE 

As we mentioned before, among the families ~$(n, I, t), dO(n, I, t) is 
largest for t < 2’- r - 1 while for t = 2’- I - 1, l~&(n, r, t)l = I&,(n, r, t)l 
holds (for n > r + 1) and these are the largest. 

Consider the following statement which, except for the uniqueness, 
would follow from Conjecture 1.1. 

m(n, r, t) = 2”-’ for all t < 2’-r - 1 with s9,(n, r, t) as the 
only optimal family except for r = 2’ - r - 1, where &r(n, r, t) 
is the only other optimal family. (5.1) 

PROPOSITION 5.1. Suppose that (5.1) hol& for some r 3 5. Then it holds 
for r + 1 as well. 

Proof: Suppose first that I = 2’+ ’ - r - 2. Let .9 c 2[“’ be (r + 1 )-wise 
t-intersecting, 191 maximal. Consequently, FE 9, Fc H c [n] imply 
HE 46. We may suppose that 9 is shifted. 

If 9 is r-wise (t + 2)-intersecting, then using the validity of (5.1) for r, 
Corollary 1.5, and Proposition 2.8, we infer 

prl ~2”-(2’-r-l)C1(r)2’+1<2”-(2’+‘-,-2). 

Thus we may assume that 9 is not r-wise (t + 2)-intersecting. Looking at 
the dual family 9 = {[n] -F: FE 9}, it is dually (r + I)-wise t-intersecting 
but not dually r-wise (t + 2)-intersecting. Therefore there exist G, , . . . . G, E Y 
with G1 u ... uG,= [t+2,n]. 

Consequently, 

IGn[t+l]l<l holds for all G E 9. (5.2) 

If G n [t] = 0 for all GE Q, then 9 c dO(r + 1, t). Suppose that this is not 
the case. 

Using shiftedness, (t> E Y follows. By shiftedness, (j> E Y for all 
t-c j<n. (This implies n>t+r+l.) 



MULTIPLY-INTERSECTING FAMILIES 209 

Define the families C!&, 4, . . . . 4 by 

$={G~Y:Gn[t]=0}c2~‘+‘~“‘, 

~={G-(i}:Gn[t]=(i};GE~}c2C’+2,“1, l<i<t. 

Obviously, 

191 = py + ... + 1q holds. (5.3) 

IfIGn[t+r+1]~~1forallG~~,then~t~~(n,r+1,t)followsand 
we are done. Thus we may assume that G, + I = { t + r, t + r + 1 } E 3. 

We prove two inequalities. 

I$[ <y-r-2, l<i<t. (5.5) 

To prove (5.4) just note that S$, is dually r-wise intersecting and u c?& = 
[t + 1, n]. Thus (5.4) follows from Theorem 1.2. 

To prove (5.5) it is enough to show that C$. is dually r-wise (r + l)-inter- 
setting (and apply (5.1),). 

Otherwise by shiftedness there exist Hi, . . . . H, E 4 with H, u . . . u H, = 
[t+r+2,n]. 

Again by shiftedness, Gi = Hi u { t + i - 1 } is in 3. Together with G, + I = 
{t+r,t+r+l} thisgivesG,u . ..uG.+,=[t,n],acontradiction. 

Now (5.4) and (5.5) give in view of (5.3), 

as desired. 
If S=2’+i - r - 2 - t is positive, then define 

~={[n+l,n+s]uF:FE~}c2C”+S’. 

Then @ is (r + 1 )-wise t + s = 2’+r - r - 2-intersecting. Thus either 
pq= I$zI <2”-’ or LF z ~&(n, r + 1, t) follows (the case S@ 2 
dl(n, r + 1,2’+i - r - 2) is impossible because of n 9 # 0). 1 

In view of Proposition 5.1 it would be sufficient to show (5.1) for r = 3, 
4, and 5. However, we did not succeed in doing so. We will prove it for 
r = 5, using the following partial result for r = 4. 

THEOREM 5.2. If .F is 4-wise t-intersecting with t < 10, then 191 < 2”-’ 
with equality holding if and o&y if 9 g s&(n, 4, t). 
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Proof: As in the case of Proposition 5.1, it is sufficient to deal with the 
case t = 10. Let p c 2[“’ be a shifted 4-wise lo-intersecting family of 
maximal size. 

In view of (1.6) and Theorem 3.1 we have 

m(n, 3, 13) < 2”-45(fi- 2) (5-e) 

Let Q = {[n] -F: FE S} be the dual family. Then by (5.6) we may 
suppose that there exist G’, G”, G”’ E Q with G’ u G” u G’” = [ 13, n]. 
Consequently, 

IGn [l, 12]1<2 for all G E 9. (5.7) 

We may suppose that 3 $Z 2c”,“1 and thus {lo} E ‘?J by shiftedness. For 
l<i<n and Ac [i] define 

Then a( 10, 0) is dually 3-wise intersecting because of ( lo} E B. By shifted- 
ness {j> E g for all 10 < j < n. Thus by Theorem 1.2 we have 

jS(l0, @)I <5.2”-14. (5.8) 

Since I&*(n, 4, lO)l < l&r(n, 4, 1O)l c l&(n, 4, lO)l, we may assume 
that 9 $Z ~$(n, 4, 10) for i = 1, 2. Consequently, { 13, 14) E Q and 
{ 16,17,18} ~9. 

CLAIM 5.3. %(12, (i}) is dually 3-wise 3-intersecting on [13, n] for 
l<i<lO. 

Proof of Claim. Otherwise there exist H, , HZ, H, E Y( 12, {i} ) with 
H, u H, u H3 = [ 15, n]. By shiftedness, G, = H, u {lo}, Gz = Hz u { 1 l}, 
and Gs = H, u (12) are in B and their union together with { 13, 14) is 
[lo, n], a contradiction. 1 

By Theorem 3.1 we infer 

IY(12, {i})l <2”-15. (5.9) 

CLAIM 5.4. Zf AE( [?I) A n [lo] # 0 then B( 12, A) is dually 3-wise , 
7-intersecting on [ 13, n]. 

Proof of Claim. Otherwise we find H,, H2, H, E a( 12, A) with 
H, u H2 u H, = [ 19, n]. By shiftedness H, u { 10,13}, H, u { 11,141, and 
H,u { 12, 15} are in Y. However, the union of these sets with { 16, 17, 18) 
is [lo, n], a contradiction. 1 
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Using Theorem 3.1 together with Corollary 1.5 we infer 

lg(12, A)[ <2”-195($-2)(& 1)3 

for AE AnClOl#0. (5.10) 

From (5.8), (5.9), and (5.10) we obtain 

191 = lS(lO, 0)l + 1 P(12, (i}>l + c 19(Q A)I 
lCiCl0 A E ( y’) A n [lo] # 0 

~1602~19+1602-19+325(~-2)(,/-1)32”-19 

465 
<&-i? 1 

Now we are ready to prove the main result of this section. 

THEOREM 5.5. Statement (5.1) holds for all r 3 5. 

Proof: In view of Proposition 5.1 it is sufficient to prove (5.1) for r = 5. 
Also, as in the preceding proofs, it is sufficient to consider the case 
t=25-5-1=26. 

Let % be a 5-wise 26-intersecting family of maximal size. If % is 4-wise 
29-intersecting, then by Theorem 5.2 and Corollary 1.5 we have 

I%/ < 2”-‘%(4)‘9 < 2”-26. 

Thus we may assume that the dual family ‘S is not dually 4-wise 
29-intersecting , ?J is shifted and therefore contains 4 sets whose union is 
[29, n]. Thus 

IGn [28]1 G2 for all G E 3. (5.11) 

We may assume that % 4 &(5,26) for i= 0, 1,2 and consequently 
(261, (30,311, and {34,35,36} are in 9. 

As in the proof of Theorem 5.2, we infer 

CLAIM 5.6. (i) 9(26, a) is dually 4-wise intersecting with U 9(26, 0) 
= [27, n] 

(ii) $(28, i) is dually 4-wise 4-intersecting on [29, n] for 1 < i< 26 

(iii) 4(28, A) is dually 4-wise 9-intersecting on [29, n] for all 
A c ([?I) with A n [26] # 0. 
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From (5.11) and Claim 5.6 we obtain applying Theorem 1.2 and 
Theorem 5.2, 

By very much the same proof one can show the following: 

THEOREM 5.7. Suppose that 27 < t < 31. Then m(n, 5, t) = IdI(n, 5, t)l 
with zZI(n, 5, t) as the unique optimal family. 

Remark. For t = 32 one has already 2”-“~(4)~~ > 2”-32, thus the proof 
breaks down in the first step. 

In view of Theorems 3.1, 5.2, and 5.6 the only unsolved cases in the 
Erdiis-Ko-Rado case are (r, t ) = (3,4) and (r, t) = (4,11). We succeeded in 
solving the latter. 

THEOREM 5.8. If LJ= c 2’“’ is 4-wise 1 l-intersecting then 191 s 2”- l1 
with equality holding if and only if 9 r 4 (n, 4, 11) for i = 0 or 1 holds. 

Proof Since this proof is similar to the other proofs in this section, we 
will be somewhat sketchy. We may suppose that 1912 2”- 11, 9 is shifted, 
and 9 $Z d(n, 4, 11) for i = 0, 1, 2, 3. For the dual family, 9 this implies 
that K,= {ll}, K,= {14,15}, K2= (17,18,19}, and K,= (20,21,22,23} 
are all in B. 

If 9 is 3-wise 15-intersecting, then we obtain from Theorem 3.1 and 
Corollary 1.5 that 

191 < 2”-3~(3)12 < 2”- 11, 

Thus the existence of 3 sets with union [ 15, n] follows in Y, implying 

IGn Cl431 <3 for all G E Q. (5.12) 

We distinguish two cases. 

(a) (11, 13, 14) 4%‘. Note that by shiftedness, Go= { 12, 13, 14) is 
the only possible 3-element set satisfying Go = G n [ 141 for some G E 9. 

Set again go= {GEY: Gc [12, n]} ~2~~~~“‘. Then 

by Theorem 1.2. (5.13) 

AlsoforAc[14],An[ll]#@deline 
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CLAIM 5.9. %(14, A) is dualfy 3-wise (4 IAl -2)-intersecting for 
IAl = 1, 2. 

Proof. Let 1 A 1 = 2. Choose Hi, H,, H, E g( 14, A) with maximal union. 
By shiftedness we may assume that H, u H, u Hj = [m, n] for some m. 
Again by shiftedness, H,u (11, 141, H,u (12, 151, and H,u (13, 16) are 
in Y. Together with K2 = { 17, 18, 191 their union is [ll, 191 u [m, n]. 
Since % is dually 4-wise ll-intersecting, m > 21 follows, i.e., $!Z( 14, A) is 
dually 3-wise 6-intersecting. 

The case IAl = 1 is almost the same, except that we use H, u { 11 }, 
H,u{12}, H,u(13}alongwithK,={14,15}. 1 

COROLLARY 5.10. Let A c [ 141 satisfy A n [ 111 # fa. Then 

IS( 14, A)( < 2”- l6 for ]A(=1 (5.14) 

and 

]%(14, A)1 <2”-205(,/?-2)(fi- 1)2 for JAI =2. (5.15) 

Proof: Use Claim 5.9, Theorem 3.1, and Corollary 1.5 and a(3) = 
(J5-w. I 

Since IYI = I%ol + C {1$(14, A)I: A c [14], A n [11] # @} and 
(lLl3,14} $3, using shiftedness we infer from (5.13), (5.14), and (5.15), 

~~~<52-15+11~2”-16+88~2”-20.5($-2)(fi-1)2 

<31 .2”-16<2”-11 , 

as desired. 

(b) { 11, 13, 14) E 9. In this case we can slightly improve Claim 5.9 
for IAl = 1. 

CLAIM 5.11. Let AC [14] satisfy An [ll]#a. Then 9(14, A) is 
dually 3-wise 3-intersecting for I Al = 1 and 3-wise lo-intersecting for IAl = 3. 

Prooj As in the proof of Claim 5.9 choose H,, H2, H, E 9( 14, A) with 
H, u H2 u H3 = [m, n], m as small as possible. 

If IAl = 1, then by shiftedness H, u (12}, H, u { 15}, H, u { 16) are in 9. 
Their union along with { 11, 13, 14) is [ 11, 161 u [m, n]. This yields 
m > 18, as desired. 

The proof for IAl = 3 is the same as that of Claim 5.9, using 
H, u {11,14, 17}, H, u (12, 15,181, H, u {13,16, 19}, and Kj = 
(20, 21, 22, 23). 1 

582b/53/2-5 
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Using Claim 5.11 together with Theorem 3.1 and Corollary 1.5 we infer 

16(14, {i})l<2”-‘7, l<i<ll, (5.16) 

1’9(14,A)I<2”-245(,&2)(&1)6 

for A c [14], AnClllZ0, 1x41 = 3. (5.17) 

From (5.13), (5.15), (5.16), and (5.17) we obtain 

~~~~52-15+112-‘7+88.2”-205(~-2)(,/%1)2 

+3632-245(fi-2)(&1)6<31.42-‘6<2”-11, 

as desired. 1 

6. AN EXTENDED RANGE FOR CONJECTURES 1.1 AND 1.3 

Throughout this section 9 c 2[“] is a shifted, dually r-wise t-intersecting 
complex of maximal size m(n, r, t). Recall from the Introduction the 
definition of the dually r-wise t-intersecting families @((n, r, t) = 
{Bc [n]: IBn [t+ir]l <i}. 

Usually we consider n, r, and t as fixed and write simply ai for gi((n, r, t). 

THEOREM 6.1. Conjecture 1.1 is true for t < 2’-2(2’-2 - 2)/(r - 1). 

Proof: In view of Theorem 5.5 we may suppose that t > 2’ - r and thus 
r2 7. 

Let s be the largest integer such that 9 is dually (r- l)-wise 
s-intersecting and suppose that G,, . . . . G,- 1 E 9 with G, u . . . u G,- i = 
[s + 1, n]. Thus 

IFn [s]l <s-t for all FE 9. (6.1) 

Since 191 = m(n, r, t) > 2”-‘, Theorems 1.4, 5.5, and Proposition 2.8 imply 

s/t < 1 + 1/2’-2, i.e., s-tttp-2. (6.2) 

Combining with (6.1) we obtain 

IFn Ct+bll <b, where b = LQp2J. (6.3) 

For convenience, set also, 

m = max /ail. (6.4) I 

Supposing that 9 $Z &, we must show that 191 cm. 
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Let h be the smallest non-negative integer such that 

IFn [t+h]l <h holds for all FE %. (6.5) 

By % 0 9&, and by (6.3) we have 

l<h<t/2’-=. (6.6) 

The minimality of h implies F, = [t, t + h - 1 ] E %. 
For A c [t + h - 1 ] recall the definition %(t + h - 1, A) = 

(F-A:FE%,Fn[t+h-l]=A}. 

CLAIM 6.2. For A c [t + h- l] the family %(t + h- 1, A) is dually 
(r-l)-wise ((r- 1) IAl + 1)-intersecting for IAl ch and (r-l)h+Zinter- 
setting for IAl = h. 

Proof. (i) IAl < h. Suppose the contrary and choose by shiftedness 
G,, ‘32, . . . . G,_l E %(t + h - 1, A) satisfying [t + h + (r - 1) IAl, n] = 
G, v “. vG,pl. Using shiftedness Fj=Gju[t+h+(j-l)(Al,t+h+ 
j/AI-l]~% hold for ldj<r. Consequently, F,u ... uF,-,=[t,n], a 
contradiction. 

(ii) IAl =h. Since % $Zg,,, H,=[t+(r-l)h,t+rh]~% holds. 
Suppose again for contradiction that there exist G1, . . . . G,- 1 E 
%(t+h-1,A) with G,u ... u G,- , = [t + rh + 1, n]. Using shiftedness 
Hj=Gju[t+(j-l)h,t+jh-l]~% follows. Now H,u ... uH,pl= 
[t, n] gives the desired contradiction. 1 

Now we can easily prove I%[ < 2m. Namely, by Claim 6.2 and 
Theorem 5.5 we have I%(t + h - 1, A)[ < 2”-‘-h-(‘-1)tAt. Consequently, 

t+h 
I%I~ 1 i 

( > 
2”-I-ri-(h-i) < 1 lS#il 2-(h-i)c2m . (6.7) 

O<i<h O<i<h 

To remove the 2 we need the following. 

CLAIM 6.3. 

I%(t+h-l,A)I <2+-h-+-1)1+-1 

holdsfor Ac[t+h-11, IAl<h. (6.8) 

Proof of (6.8). Note that for 0 < i < h - 1 the inequality h < 
Q-2 implies (r - 1) i + r + 1 < 2’-=. Thus (6.8) follows from 
Claim 6.2, Theorem 5.5, and Theorem 3.4 unless %(t + h - 1, A) c 
2C’+h+(‘-1)‘al+1*n1. To obtain (6.8) it is sufficient to show that 
%(t+h-1,A) is dually 2-wise intersecting on [t+h+(r-l)IAI+l,n]. 
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Actually it is even dually (r - 2)-wise (h - J A ( )-intersecting, because 
the contrary would mean the existence of G,, . . . . G,-, E F(t + h - 1, A) 
satisfying G1 v . . . uG,-*= [t+2h+(r-2) jAI,n]. Arguing as in the 
proof of Claim 6.2, it follows that the following sets are in 9. 

Fj=[t+2h+(j-l)IAl,t+2h+jIAl-l]uGj, l<j<r-2, 

F r-i=[t,t+h-l], F,= [t+h, 1+2/z-l]. 

However, F, u . .* u F, = [t, n], a contradiction. 
For IAl = h the inequality (6.8) follows directly from Claim 6.2 and 

Theorem 5.5 using (r - 1) h + 2 < 2’-’ - r, i.e., h < (2’-’ - r - 2)/(r - 1) 
which is true for t < 2’-2(2’-1 - r - 2)/(r - 1). 1 

Now using (6.8) we infer 

pq= 1 I9(t+h-&A)( 
Ac[t+h-l] 

cx 
t+h-1 ( ) 2n-t-ri-(h-i+l) 

OCiCh i 

< c I~il/2h-‘+‘~(1-2-h-‘)m. 1 
OCiSh 

THEOREM 6.4. Conjecture 1.3 is true for r > 5. 

Proof: Let 9 c 2[“] be a dually r-wise t-intersecting shifted complex 
with IU 91 >n- t, 5 g A$(n, r, t). Supposing that 191 > 1911(n, r, t)l 
holds, we have to derive a contradiction. In view of Theorems 3.4 and 5.5 
we may suppose that 

Thus 

2’-2r<t<2’-r-2. (6.9) 

holds. 

lFl/2”-‘>(2’-2r+ 1)/2’ (6.10) 

The proof will go along the lines of that of Theorem 6.1 and therefore we 
will be somewhat sketchy. 

We claim that 9 is not dually (r - l)-wise (t + 3)-intersecting. Indeed, 
the contrary would imply by Theorems 1.4, 5.5, and 5.8 

,cq <2”-‘-3a(r- l)r+3-2’-‘+r. 

Using (6.9) this contradicts (6.10) by direct computation if r = 5 and by 
Proposition 2.8 if r 2 6. 
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By shiftedness IFn [t + 231 < 2 follows for all FE 8. Let again h be the 
minimal integer such that 

IFn [t+h]l <h for all FE 9. (6.11) 

Since h = 0 would imply 9 c 2r’+ ‘,“I, we have h = 1 or 2. 
Claim 6.3 is still valid giving 

191 <2”-‘-2+t.2”-t-‘-1 for h= 1 and (6.12) 

pq <2”-‘-3+(f+ 1).2+--r-2+ ‘: l ( > 
2n-t-zr-1 

for h =2. (6.13) 

Note that 2’+ 2(t + 1) < 4(t + r + 1) holds by (6.9). Thus the RHS of (6.12) 
is less than IW,(n, r, r)l and the sum of the first two terms on the RHS of 
(6.13) is less than I&?,(n, r, t)l/2. Since the third term is less than 
[g&r, r, t)l/2 < IB,(n, r, t)l/2, both for h = 1 and 2 the contradiction 191 < 
I?&(n, r, t)l is obtained. 1 

Remark 6.5. In view of Theorems 3.4, 3.1, 5.2, and 5.8 the only 
unproved cases of Conjecture 1.3 are r = 3, 2 < t < 4, and r = 4, 8 < t < 10. 

7. IMPROVED BOUNDS FOR CROSS INTERSECTING FAMILIES 

First we shall give an improvement of Theorem 2.4 along the lines of 
Theorem 1.4. 

Let us define the quantity b(n, r, t) by b(n, r, t)’ = max{ lg,l ... IF,1 : 
F i, . . . . E c 2[“] are r-cross t-intersecting}. We need a simple lemma. 

PROPOSITION 7.1. Let gI,..., G$!,c 2[“’ be shifted and r-cross t-inter- 
secting. Let 0 < i < r be arbitrary. Then ‘$( i ), . . . . 3. ( i ), $. + 1( 1 ), . . . . 4( 1) are 
r-cross (t + i - 1 )-intersecting on [2, n]. 

Proof. Let H,, . . . . H, be arbitrary sets satisfying Hj~ c?$( i) for 1 <j< i 
and H,~q(l) for i<j<r. Set H,n ... n H,= {a,, . . . . a,>. 

DelineKj=(Hj-{aj})u{l} for l<j<min{i,s} andK,=H,u{l}for 
the remaining values of j. Then Kje 4 implies IK, n ... n KJ 2 t. If s < i, 
then by construction K, n ... n K, = 0, a contradiction. Thus s 2 i and 
consequently, 

IH, n ... n H,I = IK, n ... nK,l+i-lZt+i-1 

follows. 1 

One more definition is needed. 
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DEFINITION 7.2. For 1 6 i < r let b”)(n, r, t) be defined by b(‘)(n, r, t)’ = 
max(19t,l...I~t,l:~,...,~;c2[“] are r-cross t-intersecting and (n 31 < t 
for 1 <j<i}. 

Note that b(‘)(n, r, t) = 0 for t + i > n. Therefore we shall tacitly assume 
that n 2 t + i. 

EXAMPLE 7.3. For 1 < i < r and t > 1 fixed define 

pltl= . . . =55$=(Fc[n]:IFn[t+i]l>t+i-1) 

and 

%+l= . . . =*= {Fc [n]: [t+i]cF). 

These families are r-cross t-intersecting with (I {F: FE 3) = $3 for 
l<j<i. 

The following definition is slightly complicated but it is central for the 
proof of the main results of this section. 

DEFINITION 7.4. Let A4 be an r + 1 by infinity array with general entry 
m(i, t), 0 6 i < r, t > 1. Then A4 is called an admissible array of bounds if 

m(i, t) 2” > b”‘(i + t + S, r, t)’ holds for some pairs (i, t) and, 
in particular for all pairs with t = 1 (S 2 0, arbitrary). (7.1) 

Moreover, 

m(i, t) 2 1 
(‘> 

’ m(i-g,t+g-1) 
o<gci g 

and finally 

holds for each of the remaining pairs (7.2) 

m(i, t) 2-j’ is monotone non-increasing for fixed I as a function of i. (7.3) 

Hopefully, the next theorem will convince the reader that he did not lose 
his time by struggling through this definition. 

THEOREM 7.5. Let M be an admissible array of bounds. Then (7.1), that 
is, 

b”‘(i + t + s, r, t)’ < m(i, t) 2” holds for all pairs (i, t) and all s > 0. 

(7.4) 
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Proof. Let s14, . . . . .!5$2;c2Ci+‘+s1 be r-cross t-intersecting shifted filters 
(co-complexes) satisfying 1 n 61 < t for 1 < j < i and 19, ( . . . IFrt,l = 
b(“(i + t + s, r, t)‘. 

By (7.3) we have m(i, t)2”,<m(i-1, t)2’(S+1)< ..- <m(O, t)2’(S+‘), 
that is, for t and i+ t + s fixed the RHS of (7.4) is a monotone non- 
increasing function of i. Therefore, in proving (7.4) we may assume that 
Ifi 51 2 t for i < j < r. Consequently, shiftedness implies I?( 1)l = 151 for 
id j,<r. 

We apply induction on i + t. The case i + t = 1 means i = 0, t = 1, and it 
is covered by (7.1). For the same reason we may assume that (i, t) is not 
covered by (7.1) and, in particular, t > 2. 

For A c [i] define 

w=(rJ lw)l)(jGrIA w). 

Then 

l&l . ..IRl= c m(A) holds. (7.5) 
A c {i] 

On the other hand Proposition 7.1 and the induction hypothesis imply 

m(A)<m(i-IAl, t+ IAl - 1)2”. (7.6) 

Combining (7.5) and (7.6) and using (7.2) gives IFI1 ... IYrt,l < 
c o~g,i(~)m(i-gg, t+g-1)2”<m(i, t)2”, as desired. 1 

Now we have to exhibit some admissible arrays of bounds. 

DEFINITION 7.6. For a fixed r 2 3 define the array A4 by 

(i+ t+ l)i for i+t<2’-r-2 
(2rmry (2a(r))r(f-2’+2r+1) 2-‘(r-i) for i+ t>2’-r- 1. 

Our next task will be to show that A4 is admissible. We need some 
preparation. 

PROPOSITION 7.7. 

Ll/cl(r)‘j = 2’- r - 1 holds for r 2 3. (7.7) 

Proof: Equation (7.7) can be checked directly for r = 3. Suppose r 2 4 
and recall that a(r) is the only root in (l/2, 1) of x’ - 2x + 1. That is, l/a(r) 
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isthe0nlyrootin(1,2)off(y)=1-2y’~~+y’.Sincef(l)=O,f(2)=1it 
will be sufficient to show that 

f((2’-r-l)“‘)<O<f((2’-r)“‘) holds. 

This inequality is equivalent to the inequalities 

2’(2’-r- 1)‘-1>(2’-r)’ 

and 

2’(2’-r)‘-l< (2’- r+ 1)‘. 

The second one is a consequence of the inequality between arithmetic and 
geometric means. 

The first can be rewritten as 

However, using Bernoulli’s inequality and r 3 4 we deduce 

as desired. 1 

PROPOSITION 7.8. (i + t)‘- ’ 2’ > (i + t + 1)’ holds for 1~ i< r if i + t < 
2’-r- 1. 

Proof: The desired inequality can be rewritten as 

For i+ t fixed the LHS is a decreasing function of i, therefore we may 
assume that i = r. Taking rth roots and setting y = (i + t)“’ we can rewrite 
the original inequality as 

2y’-‘> y’+ 1, that is, 

y’-2y’-‘+ 1 <o, which holds for 

1 < Y < lb(r), thus the statement follows from the 

previous proposition. 1 

CLAIM 7.9. The array h4 satisfies the monotonicity condition (7.3). 
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Proof: We have to show that 2’m(i- 1, t)>m(i, t). 
For i + t < 2’- r - 2 this is immediate from Proposition 7.8. For i + t = 

2’ - r - 1 by Propositions 7.7 and 7.8 we have the chain of inequalities 

(2r-r-1)i-12r=(2’-r-l)‘-12r/(2’-r-l)r-’ 

> (2’ - r)r tl(r)r(r-ii) 

= m(i, 2’ - r - 1 - t), 

as desired. 
Finally, for i + t 3 2’ - r clearly m(i - 1, t) 2’ = m(i, t) holds. m 

We also need the following simple fact. 

PROPOSITION 7.10. Let 4, . . . . S,, c 2’ be h-cross l-intersecting. Then 
l%ll . ..I’&1 ~2~(‘~‘-‘) holds. 

Proof: For 1 < i < i < h the families ‘$ and 4 are 2-cross l-intersecting. 
Thus 4 and 3; = { Y - G: G E 4) are disjoint families. This yields 

I%J + pg < 21Y’, l<i<j<h. (7.8) 

Since i#j were arbitrary, it follows that the arithmetic mean of 141, 
1~ i < h, is at most 2’ ‘I - ‘. Their geometric mean cannot be larger. 1 

Now we are ready to prove the main result. 

THEOREM 7.11. The array A4 is admissible for all r 2 3. 

ProojI We apply induction on n. The case n = 1 is trivially true. For 
(i, t) = (0, 1) the validity of (7.1) follows from Proposition 7.10 for all r. 
Now we prove by induction on i + t that (7.1) holds for t = 1 and all r 2 3 
and (7.2) is satisfied for all t 2 2, r > 3. 

Let first t = 1 and let p,, . . . . Fr c 2[“] be r-cross l-intersecting shifted 
co-complexes with n $ = @ if and only if 1 < j < i. 

We proceed exactly as in the proof of Theorem 7.5. However, in equality 
(7.5) we can’t estimate directly the term m(0), because the families 
%61(l), ***, S$( 1) need not be r-cross intersecting. 

However, these families have the following property. 

Taking all families except q(l), 1 6 j < i, these families are 
(r - 1 )-cross intersecting. (7.9) 

Indeed, otherwise 1 E n 8 would follow. 
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Now we prove that for (i, I) # (2,3) the property (7.9) implies the 
following upperbound. 

m(0)= n 13(1)1 <(i+ l)i24”-i-l). 
lSj<r 

(7.10) 

Using induction on n, Theorem 7.5 implies 

m(A) < (i+ l)i- IAl 2dn-i- 1). 

Now using this inequality and (7.10) from (7.5) it follows that 
nl<j<r I$[ <2”“-‘-“C o<g<i(i)(i+ 1)i-g=2’(“-i-1)(i+2)i, as desired. 

PROPOSITION 7.12. Let 9,) . . . . gr:c2y such that nq=0 for l<j<i 
and taking all families except 3, 1~ j< i, these families are (r - l)-cross 
intersecting. Assume also that Theorem 7.11 is proved for n = 1 YI. Then 
I~~I~~~~~~~~(i+1)i2’(1Y~-i)hoZdSforr~3, i>l,and(r,i)#(3,2). 

Unfortunately, we did not find a unified proof for this and therefore we 
postpone the somewhat lengthy argument together with the proof of 
validity of (7.1) for (i, r, t) = (2, 3, 1) until after the end of the proof of 
Theorem 7.11. 

Thus we will show first that (7.2) holds for all (i, t) with t > 2. 

(a) i+t<2’-r-1. The RHS of (7.2) becomes C,,,,,(i) 
(i+ t)i-g = (i+ t + l)i, that is, (7.2) holds with equality unless i + t = 
2’- r - 1. In this case the inequality is strict because (2’- r)i < 
(2’- r)’ a(r)‘@-‘) holds in view of (7.7). 

(b) i+t>2’-r. Note that now m(i-j,t-l+j)=m(i,t)(2a(r))-’ 
a(r)V holds for 0 < j < i. Thus equality follows for i = r and strict inequality 
for O<icr because of &,cg4i(~)a(r)‘(i-g)=(1+a(r)‘)i=(2a(r))i< 

(Wr))‘. I 

Proof of Proposition 7.12. Let us introduce the notation xi= ~~~/2’y1-i. 
Using the induction assumption and Proposition 7.10 we infer 

j;xj<(i+l)” forallAc[r]satisfyingIAn[i]/=i-l,IAl>2, 

and (MI, i) # (2,2). (7.11) 

In most cases one can deduce (7.10), that is, 

Xl . ..x.<(i+l)’ from (7.11). (7.12) 
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However, we have to distinguish a few cases. 

(i) i = r. Take the product of (7.11) over all A E (JI’,). 

(ii) i=r-123. Taking the product of (7.11) over all AE(‘;I:‘) 
leads to xi...~,-~<r(‘-~). Similarly, using A=A’u{r) over all 
A’E([:::]) leads to (x~...x,_~)~-~x~-~~~(~~‘)(‘-~~. The product of 
these inequalities gives (x, . . . x,)~- ’ < (r’- ‘)‘- ‘, which is equivalent to 
(7.12). 

(iii) i= 1. Consider A = [r-l] to obtain x1 “.x,-, < 1. Noting 
x, < 2’= 2, (7.12) follows. 

(iv) i> 3, r-ia2. Take the product of (7.11) over all 
A c [r] IA n [ill = i- 1, first with (Al = i, then with IAl = r - 1. We obtain 
after taking appropriate powers 

(Xl -.-xi) (i-IN--i) (xi+, ...x,)i<(i+ l)(i--l)i(r--i) 

txi . . . Xi) 
(i-l)((i-l)(r-i)-i) (xi+l ,..x,)i((i-l)(r-i)-i) 

<(i+ l)(i-l)i((i--I)(r-i)-i) 

The product of these inequalities is (x1 . . .x,)‘(‘- ‘)+-l) < 
(i+ 1) i2(i- l)(r-i- 1) , yielding (7.12). 

(v) i= 2, r 2 4. Suppose by symmetry that x1 <x2. If x1 < 3 then 
using this and (7.11) applied with A = [2, r] gives x1x2 . . .x, < 3 .3 = 32, as 
desired. 

Suppose next x1 > 3. Using (7.8) gives now xi + xi< 4 for i= 1,2 and 
j = 3, . . . . r. Consequently, xix3 < 3, x2x4 < 3, and xj< 1 for 5 <j< r. 
Taking products (7.12) follows. 1 

Finally, we have to prove (7.1) for the case r = 3, i = 2. 

PROPOSITION 7.13. Suppose that Theorem 7.11 holds for n - 1. Then 

bc2)(n, 3, l)3 = 4223’” - 3). (7.13) 

Proof: Let 9,) Pz, 4 c 2[“’ be 3-cross intersecting shifted co-com- 
plexes with n F1 = 0 = n 4 but n 4 # 0. 

Using the notation of the proof of Theorem 7.5, 

m(A)<3 followsforA={i},i=1,2,andm([2])~1also. (7.14) 

Thus m(a)<9 would imply IF11 141 141 .2-3’“-3)< 16, as desired. 
Consequently, we may assume that 

l&(1)1 /4(1)1 14(1)1 >9.23(“-3). 
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We claim that this implies 1F3(1)1 > 2”-3. Indeed, otherwise setting 
xi= 1S$(1)1/2”-3 and using (7.8) gives 

x,+x,<4 

x,+x,<4 and thus 

x1x*x3 < x3(4-x3)2 6 9 follows for xj < 1. 

If x3 > 1 then, x1x2x3 < x,(4 - x3)2 implies only 

8 24 
x1x2x3< j 3’ 0 (7.15) 

However, lg3(1)l >2”-3 implies lr) 4(1)1 ~2. 
Consequently, Pr( i ), Tt( i ), 4( 1) are 3-cross 2-intersecting with 

In 4( 1)j < 1. In view of the induction assumption (7.4) applied with r = 3, 
t = 2, i = 1 we obtain the improved upper bound m( [2]) < l/2. 

Combining this with (7.14) and (7.15) gives IFi1 141 141 d 
23(“-33)(1/2 + 6 + 256/27) < 15.99 . 23(n-33), completing the proof of 
(7.13). 1 

COROLLARY 7.14. b(n, r, t) = 2”-’ holds for t < 2’- r - 2. Moreover, the 
only optimalfamilies are F,= ... =A?$= {Fc [n]: TcF}, where TE([:‘). 

ProoJ: The upper bound follows directly from Theorems 7.5 and 7.11. 
The uniqueness is a consequence of b,(n, r, t) < b,(n, r, t) for the corre- 
sponding values of the parameters. 1 

8. THE CASES r = 5 AND 6 OF CONJECTURE 1.6 

We use the notation of Section 4. 
Suppose that 9 c 2[“] is a dually r-wise intersecting complex, 6(F) > 

2”-‘- ‘. We have to derive a contradiction. 

LEMMA 8.1. Suppose that there is a hole of size 3. Then t(3) < 4 for r = 6 
andt(3)<2for r=5. 

Proof: Let [3] be the hole. Then F(l), F(2), and F(3) are 3-cross 
t(3)-intersecting on [4, n]. If t(3) > 5 then Corollary 7.14 implies 

min lS$(l)l < 2”-‘%~(3)~ < 2n-7, 
lGiG3 

contradicting 6(F) > 2”-’ for r = 6. 
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Similarly, for t(3) > 3 we have 

min l*(l)1 < 2n-6, 
l<i<3 

contradiction if r = 5. 1 
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LEMMA 8.2. 

4<t(3)<5 if r=5 

and 

6<t(3)<7 if r = 6. 

Proof: Since S(9) < 19//2, 191 2 2”-‘. This and Corollary 7.14 imply 
the upper bounds. 

To prove the lower bounds, recall t(3) > r - 2 for all dually r-intersecting 
families with 6(Y) >O. Since t(3) = r- 2 implies the existence of a hole 
of size r -2, we get a contradiction for r = 5. For r = 6 we have a hole 
(say [4]) of size four if t(3) =4. Then 9(l), F(2), F(3) are 3-cross 
3-intersecting on [S, n]. This would yield again min, Gis3 IF(i)1 < 2”-‘. 

The only remaining case is r = 6 and t(3) = 5. However, in view of 
Propositions 4.2 and 4.5 this would imply the existence of a hole of size 3, 
contradicting Lemma 8.1. 1 

Let us deal with the remaining four cases one by one. 

(a) r = 6, t(3) = 6. Suppose that F, u F2 u Fj = [7, n] and consider 
Y =91 t63. Since no hole of size 3 exists 9 contains no sets of size 3 or 
more. 

Define, as before, 9(6, A)= (F-A: FEN, Fn [6] =A} ~2[‘~~]. If 
1.9(6, { i})l c 2”-‘/6 holds for some 1~ i < 6 then we infer 

IFG(i)l = l9(6, {i>)l + 1 19(6, (4 j})l < 6 l9(6, (i}l < 2”-‘. 
i#js C61 

Otherwise, using Theorems 7.5 and 7.11 for the 3-cross 4-intersecting 
families 9(6, {i}), 9(6, (j}), and 9(6, {k, I}), where {i, j, k, 1) E ([:I) 
gives 

l9(6 {k l})l ~(2"-10.5.(~~~/(2'-',6~*<2"-'0 

for all 2-element sets {k, r} c [6]. 
On the other hand the families 9(6, {i}), 1 <i< 3, are 3-cross 

3-intersecting. By Corollary 7.14 and by symmetry we may assume that 
IS(6, {l},l <2”-9. 
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In view of the preceding inequality, IF(l)1 ~2”~ + 5 .2”-i”<2”-‘, a 
contradiction follows. 

(b) r=6, t(3)=7. Suppose that F, u F2u F,= [8, n] and deline 
9 = 91 r7,. The families Y(i)1 C8,n,, i= 1,2, 3, are dually 3-cross 
3-intersecting. By Corollary 7.14 and symmetry we may assume that 
I~‘(l)l[S,n,l GY’O. 

Now IF( 1)l > 2”-’ implies that the degree I%( 1)l of 1 in 9 is at least 9. 
Consequently there are some 3-element sets in Y. By symmetry suppose 
[3]~%. Now ~t’=cFl,~,,, is dually intersecting and has no hole of size 3. 
The only possibility is that JP contains exactly three 2-element sets which 
form a triangle. Let i be the fourth element of [4, 73. Then 9(i) is a dually 
3-wise 4-intersecting family on [3] u [S, n]. Consequently, IF(i)1 < 
2+‘a(3) < 2”-’ by Corollary 4.10. 

In the remaining two cases r = 5. Let us suppose that F, u F2 u F3 = 
[t(3) + 1, n] and define 9 = 91 c1(3j3. 

Set also g(*)= {GEM: IGI =2}. 

(c) r = 5, t(3) = 5. If 3 contains some 3-element set then let i, j be 
the remaining two elements of [S]. Now 5(i), F(i), F(j) are dually 
3-cross 5-intersecting on [n] - {i, j}. By Corollary 4.10, 

min(lP(i)l, l~(j)l}~2”-5a(3)2<2”-6 

follows. 
Thus IGI < 2 for all GE 8. 
For Bc [S] delinef(B)= ){FE~: Fn [S] =B}I, alsof(i)=f({i}). 
By Corollary 7.10 we have the inequality 

f(B,) f(B2) f(B,) < (2”-8cr(3)‘B’“B2”B3’-3)3. (8.1) 

If for some in [5] we hadf(i)<2”-6/5, thenf(B)<f(i) for DEB would 
imply 

IF(i)1 =f(i)+ 1 f({i,j})<5f(i)<2”-6, 
jE(C51-{iI) 

a contradiction. 
Applying (8.1) with IB,l = (B21 = 1 and JB,I = 2 and IB, u B,u B31 =4 

gives 

f(B,)<25 .2”-‘2a(3)3<2”-g . (8.2) 

Using (8.1) with B,, B,, and B, distinct l-element sets ensures the 
existence of i E [S] with f(i) < 2”-*. 
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Combined with (8.2) this gives 

IF(i)1 <2”-8+4.2”-9<2”-6 

the final contradiction. 

(d) r=5, t(3)=4. Since 9~2~~’ is dually 2-wise l-intersecting, and 
since there is no hole of size 3 (by Lemma 8.1), we may suppose that 
gw = ( [;I) 

Using the same notation as in (c) we obtain 

f(i) f(B) j-(4) < (2n-‘)3 43)3”“‘- l) 

for @#Bc C31, l<i<3, i$B. (8.3) 

Recall lsC(4)l = f(4) > 2”-6. Also, iff(i) < 2”-6/3, then IS(i)1 < 3f(i) < 
2”-6 would follow. Thus (8.3) implies 

f(B)<3.2”-9~(3)3<3-2n-10 for all BE 131 
( > 2 . 

Now applying (8.3) with 1BJ = 1 shows the existence of Jo [3] with 
f(j) < 2”-7-1’2 < 2”-‘. This in turn gives 

IS(j)1 <2”-7+6.2”-10<2”-6, 

the contradiction concluding the whole proof. 1 

9. BOUNDS ON TI-IE MINIMUM DEGREE IN CROSS-INTERSECTING FAMILIES 

Throughout this section Pi, . . . . sr c 2t”] are fixed, dually r-cross 
t-intersecting complexes. We shall denote by 6 the minimum of their mini- 
mum degrees: 

DEFINITION 9.1. For 2 <s <r let t(s) be the maximum integer such 
that g ,,, . . . . &s are dually s-cross t(s)-intersecting for all choices of 
1 < i, < . . . < i, < t-. 

Recall the definition of a hole from Section 4. For A c [n] define 

H(A) = (j: A is a hole in 5}, h(A)= IfmN. 

In most cases we can assume without loss of generality that H(A) = 
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[h(A)], and we shall often use this assumption without referring to it-for 
notational convenience. Also, we often suppose that A = [IA I]. 

PROPOSITION 9.2. Suppose that s > 2 and A c [n] satisfy IAl 2 s, 
h(A) > s. Then 

6<b(n-IAJ,s, t(s)- IAl +s). (9.1) 

Proof. Suppose that [s] c A and [s] c H(A). Consider E(i) c 2[“leA, 
1 < i < s. Then these families are dually s-cross (t(s) - I Al + $)-intersecting 
on [n] -A. By definition, 

,t<, l%(i)1 Gb(n- IAl, s, t(s)- 1~1 +s)~, 
. . 

yielding (9.1). 1 

~oPosITIoN 9.3. If 6 >O then i(s) 2 t(s+ 1) + 1 holds for 2 ,<s< Y. 
Moreover, in case of equality there is a t(s)-element set A, satisfying 
h(A)>r-s. 

ProoJ: Suppose that Fi E e and II;, u . . . u F,I = n - t(s). Set A = 
Cnl - VI u . . . u F,), Choose FE (ss+ r u . .. u gr;) with IF n Al as 
large as possible. Then t(s + 1) < t(s) - IF n AJ holds. By 6 > 1 we 
have Fn A # @. Moreover, ) Fn Al = 1 means that A is a hole in 
9 s+l, -..2 E. I 

The main result of this section establishes Conjecture 1.8 in a wide range 
of cases in the more general setting of dually r-cross t-intersecting families. 

THEOREM 9.4. 6 < 2”-‘-’ hola5 in each of the following cases: 
(i) t<2r(‘-P/*l-r- [(r - p)/21- 1 where p is the largest integer 

satisfying 2p - 2 c r 

(ii) t=l, r>7. 

Proof. Arguing indirectly we assume 

6>2”-‘-‘. (9.2) 

CLAIM 9.5. Let d > s > 2 be integers with 2” - s - 2 > r + t - d then there 
is no d-set D with h(D) 2 s. 

Proof of the Claim. Suppose for contradiction that H( Cd]) =J [s]. By 
Proposition 9.3 the families z(i), 1~ i < s, are dually s-cross (t + r - d)- 
intersecting on [d+ 1, n]. From Corollary 7.14 we infer nIlGiGs l%(i)1 < 
2’(“- r- ‘), contradicting (9.2). 1 
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CLAIM 9.6. Suppose that b(n, s, q) d 2”-r-r+1 then t(s) <q. 

Proof. Otherwise we may suppose that IFi 1 Q 2”-‘-I+ ’ and since F1 is 
a complex, @sl) < (l/2) IF11 < 2”-‘-’ follows. This contradicts (9.2). i 

Clearly we may assume that t(r) = t holds. Let P be the largest integer 
satisfying 

t(r - p) = t + p. (9.3) 

This implies the existence of a (t + p)-element set D with h(D) 2 p. Thus 
Claim 9.5 implies that 

2P-22r holds. (9.4) 

Using the definition of p and Proposition 9.3 we infer 

t(r-p-b)2t+p+2b for l<b<r-p-2. (9.5) 

Consequently, for b = r(r - p - 1)/2] we have t(r - p - b) 2 t + r - 1. 
If 2’-p-b-(r-p-b)-2>t+r-1, then using Claim9.6 and 
Corollary 7.14 we get a contradiction. Consequently, 

2r+p)/21-r(r-p)/21-2<t+r-1 holds. (9.6) 

This is impossible in case (i), thus for that case the proof is finished. 
Since the cases t = 1, r 2 10 are covered by (i), we may suppose that 

t = 1, 7<r<9 for the rest of the proof. 
In view of (9.3)-(9.5) we have t(4) 2 4 for r = 7, t(r) > 6 for r = 8, and 

t(r) 2 8 for r = 9. 
On the other hand applying Claim 9.6 for s = 4 gives t(4) < r - 1 in all 

three cases. 
These considerations restrict the value of (r, t(r)) to the following 6 

possibilities which we now examine. First we get rid of half of the cases. 
Suppose that in (9.3). the value of p is 3, the maximum permitted by 

(9.4). That is, t(r - 3) = 4. 
Then, we may assume that [3] c H( [4]) and thus Fi(l), $&(2), s(3) 

are 3-cross (t( 3) - 1 )-intersecting on [S, n]. Now p < 3 implies t(3) > 6 for 
r = 7, t(3) > 8 for r = 8, and t(3) 2 10 for r = 9. These assumptions lead to 
the respective contradictions 

min I%(i)1 < 2”-‘~(3)~ < 2”-8 (r=7) 
l<i<3 

min I%(i)1 < 2”-‘~r(3)~ < 2”-9 
IGiG 

(r=8) 

min I*(i)1 <2”-7a(3)6c2”-11<2”-‘o 
lGiC3 

(r=9). 

582b/53/2-6 
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This proves t(r - 3) > 5 for all cases, yielding t(4) > 7 for r = 8 and t(4) 2 9 
for r = 9. This last inequality contradicts t(4) < 8 for r = 9, and concludes 
the proof for that case. For the case r = 8 only one case remains (t(4) = 7, 
t(5) = 5). From now on r = 7 or 8. Note that t(3) > t(4) + 2 holds. 

Recall the definition of q( b, B): 

9$(b, B)= {F-B: FE%, Fn [b] = B) c 2Cb+‘.n’. 

CLAIM 9.7. Let da 1 be an integer, je [b]. If 

then there is some D with je D E (;:I,) satisfying S$(b, D) # 0. 

Proof: Suppose the contrary. Then we have 

a contradiction. u 

Let 3 < s < r - 3 and suppose that F, E Fr;, . . . . S$ + i E S$ + i satisfy 

F,u ... ~I;,+~=[t(r-s)+l,n]. 

Then *(t(4), Ai), 1 < i < S, are dually 5-cross (t(s) - t(r - s) + 
/A, u .‘. u A,-,I)-intersecting. We shall refer to this as the standard 
assumption for s. 

We distinguish three cases 

(a) r = 8, t(4) = 7 or r = 7, t(r) = 5, t(3) > 8. In this case the standard 
assumption for s = r - 4 and Claim 9.7 applied with d= 2, b = t(4) imply 

lWt(4), {j))l > 2”-‘- ‘/t(4) for all 1 < i < r - 4, lGjGt(4). 

(9.7) 

Now using the standard assumption for r = 8 with a 2-element set and 
disjoint singletons gives 

IS5(7, A)1 < (2”- ‘2)4/(2”-g/7)3 = 73 -2+*l c71 for all iand all AE 2 
( > 

. 

(9.8) 

By the standard assumption for s = 3 and by symmetry we may assume 
that 

l&(7. { l})l G 2”- ll. (9.9) 
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Combining (9.8) and (9.9) gives 

F1(1)<2”-11+6.73.2”-21<0.8.2”-9, 

a contradiction. 
Similarly, in the case r = 7, t(4) = 5, t(3) > 8 we obtain 

lq(5, A)[ < (2”-*~(3)~)~/(2~--8/5)*< 2”-*/12. 

Combining with, say, 

l&(5, { l})[ < 2”-*~(3)~ < 2”-‘/4, l&(1)1 <2”-* 

follows. 

(b) r = 7, t(3)>7, t(4) = t(3)-2. Choose, by symmetry, Fie$, 
5 < i < 7, such that 

Now %(t(3), {i}), i= 1, 2, 3, are dually 3-cross 3-intersecting. By 
symmetry we may assume 

l&(r(3), {l})l <2”-“3)-3. (9.10) 

Using t(4)=t(3)-2, it follows that IFn[t(3)]1<2 for all FEDS. 
Consequently, 

l%(l)1 <2”-3t(3)/2”3’. 

The RHS is monotone decreasing in t(3) and for t(3) = 8 its value is 
2”-*. Thus we may assume that t(3)=7 and that 

for all 1 < i < 4, l<j<7. (9.11) 

This assumption, as before, implies 

1@(7, A)[ < (2”-‘“a(3))3/(2”-8/7)2 < 2”-*/5. 

If we can find a 4-element set (ji , j,, j,, j,} c [7] such that 

1937, (ji}>l 2 2n-*/5 for l<i<4 

then for every A E ([:I) at least 2-elements out of jl, . . . . j, are outside A. 
Considering %(7, A) with the corresponding 2 families 6.(7, { ji,}) gives 

1$(7, A)\ < (2”-‘“a(3))3/(2”-8/5)2 < 2”-*/lo. 
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In analogy with (9.10) we may suppose that 

L%,(7, {jl>,l <2+‘O. 

Combining these inequalities gives 

If we can find distinct ii, i, and distinct j, , j, with I@, (7, { j,} )I > 2”- */3 
forI=1,2thenwithi,E([4]-{il,iz})andj,E([7]-(j,,j,})weobtain 

lq3(7, {j,})l <(2n-10)3/(2n-8/3)2<2n-8/7, 

contradicting (9.11). 
To conclude the proof in this case we will find such ii, i,, jr, j,. Assume 

the contrary. 
Suppose without loss of generality that &(7, (6, 7)) # Qr. If 

le(7, {5})1 < 2”-*/3, then it follows that for some 1 < j 6 4, 
@(7, {j, 5}) # @ holds. By symmetry we may assume that 
%(7, (4951) z a 

Now IFn [3]1 < 1 follows from the dually 7-cross l-intersecting 
property for i = 1,2. 

We may assume that ls2(7, {l})l ~2”-~/3. Thus, g2(7, (1, b})#@ 
holds for at least 3 choices of b E [Z, 71. 

Now Pi(7, (2, c}) = a follows for all c ~2, CE [7], because otherwise 
[7] is covered by the union of 4 sets, one each from 4, . . . . Fd. 

This means lFr(7, {2})1 = 14(7,2)1 > 2n--8, leading,to 

p&(7, {3})1 p&(7, {4})1 < (2”-93/2”--8= (2”-“)2. 

Consequently 

I?(79 {j))l<2”-8/8 holds for j = 3 or 4, 

in contradiction with (9.11). 

(c) t(4) = 6, I = 7. In view of the preceding case we may assume that 
t(3) 2 9. However, this contradicts Claim 9.6. 1 

10. FAMILIES CONTAINING ALL SMALL SETS 

For a positive integer s, a family 9 c 2[“] is called s-complete if 
( Cn’) c 9. s 
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With this terminology the Brace-Daykin Theorem (Theorem 1.2) deter- 
mines the maximum size of dually r-wise intersecting l-complete families. 

In this context it is natural to make the following. 

DEFINITION 10.1. For n > rs + t let m(n, r, t, s) denote max ISI where 
the maximum is over all s-complete, dually r-wise t-intersecting 9 c 2[“‘. 

For n < rs + t no such family exists and even for n = rs + t, trivially, 
m(n, r, t, s) = CiGs (:) holds, because no such 9 can contain sets of size 
exceeding s. 

Let us give two examples. 

EXAMPLE 10.2. %Y,(n, r, t) for I > s. 

EXAMPLE 10.3. Let s<q< (n-s- t)/2 and set 

~&z, t,s)= {Gc [n]: IGn [2q+s+t]l Cs} 

u{Gc[t+l,n]:IGn[t+1,2q+s+t]l<q}. 

Note that +$(n, t, s) is dually 3-wise r-intersecting and that for fixed t and 
s and q = q(n) + 00 one has 

lim I$9q(n, t, s)l 2-” = 2-‘- ’ holds. (10.1) 
n-tm 

This shows that the function p(r, t, s) = lim, _ m m(n, r, t, s) 2-” has a 
positive lower bound for r = 3, t fixed, independent of s. For r 2 4 the 
situation is different. 

PROPOSITION 10.4. For r 3 4 and t fixed one has 

lim p(r, t, s) = 0. 
s-cc 

ProoJ: Just observe the fact that every s-complete dually r-wise 
t-intersecting family (is dually (r - 1 )-wise (s + t)-intersecting. Conse- 
quently, p(r, t, s) < c((r - l)‘+‘. 1 

Note that s-completeness is invariant under shifting and therefore we 
may assume throughout the proofs in this section that 9 is a complex 
satisfying S,,(Y) = 9 for all 1 < i < j < n; i.e., F is shifted to the right. 

PROWSITION 10.5. The following inequalities hold. 

m(n, r, t, s) < m(n, r - 1, t + Is, s) for 1 <l<r-2. (10.2) 

m(n,r,t,s)~m(n-1,r-1,t+s-1,s)+m(n-1,r,t+r-1,s-1). 

(10.3) 
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Note that gS(n, r, t) = .%9&z, r - I, t + IS) holds for 16 1~ r - 2. Using this 
fact, Theorem 6.1, and (10.2) one can prove that in many cases 
m(n, r, t, s) = lBS(n, r, t)l holds. This motivates the following. 

Conjecture 10.6. mb, r, t, s) = max,.,,(,-,)/, L%;(n, r, t)l holds for 
r 2 4. 

For r = 3 we believe that either Example 10.2 or Example 10.3 is best 
possible. 

Conjecture 10.7. 

m(n, 3, t, s) = max 
{ 

max M& t, s)l, max I%;(4 t, 3)l . 
sCq<(n-3-t)/2 s<l<(n - 1)/3 1 

Note that, for s fixed and t > t,(s), e.g., t >s2’ both conjectures would 
follow from Conjecture 1.1. 
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