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Simplices with Given 2-Face Areas 

p. FRANKL AND H. MAEHARA 

Let V be a point set in a Euclidean space. We prove that if lVI ;;;, 5 and all triangles, each 
spanned by a triple of V, have the same area > 0 then V forms the vertex set of a regular 
simplex. Further, if lVI is large and the triangles have r;;;, 2 different areas then the number of 
different distances between the pairs of V is at most 2r3(2r + 1 ). 

1. INTRODUCTION 

Every graph G can be represented in a Euclidean space as a unit distance graph; that 
is, there is an embedding { v: v E V(G)} c Rn of V(G) such that uv E E(G) iff 
iu- vi= 1, see, e.g., [1, 2). 

As a similar kind of representation for a 3-uniform hypergraph H (shortly, a 
3-graph), we may consider an embbeding { v: v E V(H)} c Rn such that uvw E E(H) iff 
the area of the triangle uvw is equal to 1. We call such an embedding a unit-area 
representation of H. Then the first problem we meet would be whether every 3~graph 
admits a unit-area representation. 

Let V be a point set in a Euclidean space. For each integer k;;;;. 2, the color of a 
k-subset of V means the (k -!)-dimensional volume of the convex hull of that 
k-subset. Then it will be proved that if lVI;;;;. 5 and <D is monochromatic with positive 
color then (D is also monochromatic, and hence V forms the vertex set of a regular 
simplex. (The symbol (D denotes the collection of all k-subsets of V.) From this it 
follows easily that the 3-graph obtained from the complete 3-graph on n ;;;;. 6 vertices by 
removing one hyper-edge admits no unit-area representation. It will also be proved 
that among the 3-graphs on n vertices, the proportion of those 3-graphs that admit 
unit-area representation tends to 0 as n~oo. Further, we will prove that if lVI is 
sufficiently large and (D has r;;;;. 2 colors, then (D has at most 2r3(2r + 1) colors. 

2. THE INTERSECTION OF CYLINDERS 

The following lemma is fundamental in this paper. 

LEMMA. Let ABC be a triangle in 3-space. Let QA be the cylinder with axis BC and 
passing through A. Define Q8 and Qc similarly. Then QA n Q8 n Qc consists of either 
three points or five points, three of them are on the plane ABC, and the other two (if 
they exist) are symmetric with respect to the plane ABC. 

PROOF. Introduce a co-ordinate system in the following way. The origin is at the 
point A, the x-axis is parallel to the line BC, and the z-axis is perpendicular to the 
plane ABC. We may suppose that the line BC cuts they-axis at y = -1, as in Figure 1. 
It is then easy to see that the three points X, Y and Z indicated in Figure 1 are 
common to QA, Q8 and Qc. Now, the cylinder QA is described by the equation 
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FIGURE 1. 

Let d be the length of the edge BC. Then since (AC)sin C = 1, and since AC/sin B = 
BC/sinA, it follows that 

d = (sinA)/(sin B sin C). 

Since the cylinder Qc is obtained from the cylinder y2 + z 2 = d2 sin2 B by a rotation 
around the z-axis by the angle LB, the equation of Qc is 

( -x sin B + y cos B)2 + z2 = d2 sin2 B. 

Similarly, the equation of Q8 is 

(x sin C + y cos C)2 + z 2 = d 2 sin2 C. 

Now, eliminating x and z from (1), (2), (3), we obtain the equation 

ay4 + by3 + cy2 = 0, 
where 

a= (sin2 A- sin2 B- sin2 C)2
- 4 sin2 B sin2 C, 

b = 4(sin2 C- sin2 B)2
- 4 sin2 A(sin2 B + sin2 C), 

c = 4(sin2 C- sin2 B)2
- 4 sin4 A. 

(2) 

(3) 

(4) 

(It is not difficult to see that a =I= 0.) Since the three points X, Y and Z are common to 
the three cylinders, the solutions of (4) are y = 0 (double root), y = -2 and 
y = -c/(2a) (=a). 

For y = 0 and -2, we have z = 0, and the corresponding points of QA n Q8 n Qc are 
the three points X, Y and Z indicated in Figure 1. It is clear that there are no other 
points of QA n Q8 n Qc on the plane ABC. Hence any possible other point (x, y, z) of 
QA n Q8 n Qc satisfies z =I= 0 andy= a, and hence it must lie on a pair of generators 
of QA which are symmetric with respect to the x-y plane. That is, those points of 
QA n Q8 n Qc which are not on the plane ABC must lie on a symmetric pair of 
generators of QA with respect to the plane ABC. Hence those points must lie on a 
symmetric pair of generators of Q8 , and on that of Qc as well. Therefore, 
QA n Q8 n Qc either has two more points that are symmetric with respect to the plane 
ABC, or has no point except X, Y, Z. D 

Let V be a point set in a Euclidean space. For each integer k > 1, let c:(t)- R 
denote the coloring; that is, c is the map which assigns to each k-subset of V the 
(k -I)-dimensional volume of the convex hull spanned by the k-subset. Thus the color 
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of Vt V2 ••• Vk E (D is c( Vt V2 .•• Vk)· If V consists Of n + 1;;:. 3 points and (~) is 
monochromatic, then we simply say that Vis monochromatic. Thus, (the vertex set of) 
a triangle is monochromatic if it is an equilateral triangle, and (the vertex set of) a 
tetrahedron is monochromatic if its four faces have the same area. 

CoROLLARY. Let ABCD and A'B'C'D' be two monochromatic tetrahedra in Rn. If 
the triangles ABC and A'B'C' are congruent, then the tetrahedra ABCD and A'B'C'D' 
are congruent. 

PRooF. We may suppose that the two tetrahedra are contained in a same 3-space, 
i.e. we may assume n = 3. Let QA, Q8 and Qc be the cylinders as in the above lemma. 
Then since ABC, BCD, CDA and DAB have the same area, the point D must be 
common to all QA, Q8 and Qc. Since ABC is congruent to A'B'C', we can put A'B'C' 
on ABC. Then D' is also common to all QA, Q8 and Qc. Since D and D' are not on 
the plane ABC, it follows either that D = D' or that D and D' are symmetric points 
with respect to the plane ABC, by the above lemma. Therefore, ABCD is congruent to 
A'B'C'D' D 

3. POINT SETS WITH MONOCHROMATIC TRIPLES 

THEOREM 1. Let V be a set in a Euclidean space. If lVI;;:. 5 and (j) is 
monochromatic with positive color, then en is also monochromatic, i.e. v forms the 
vertex set of a regular simplex. 

PROOF. Since (j) has positive color, V is not collinear. Furthermore, any four 
points span a tetrahedron. Indeed, if A, B, C and D lie on a plane then it is impossible 
to take another point P so that 

c(PAB) = c(PBC) = c(PCD) = c(PAD) = c(PBD) = c(PAC), 

which contradicts the assumption that V contains at least five points. Thus any four 
points of V span a monochromatic tetrahedron. Now, consider five points A, B, C, D 
and E of V. Then by the above corollary, ABCD is congruent to ABCE. Hence 

c(AD) = c(AE), c(BD) = c(BE), c(CD) = c(CE). 

Since the choice and order of A, B, C, D and E were arbitrary, we conclude that any 
two 'edges' from a fixed point have the same color, which implies that all edges have 
the same color, and hence ( n is monochromatic. D 

REMARK 1. In the above theorem, the assumption n;;:. 5 is necessary, because the 
set of four vertices of a parallelogram is monochromatic. 

REMARK 2. For every n;;:. 3, there is a set v of n + 1 points in Rn for which cr> is 
monochromatic with positive color, but V does not span a regular simplex. Indeed, let 
V be the set of the following n + 1 points in Rn: 

P0 = ( -1, 0, ... , 0), 

pl = (1, 0, ... ' 0), 

p2 = (0, 1, 0, ... ' 0), 

p3 = (0, 0, 1, 0, ... ' 0), 

Pn = (0, ... 1 0, 1). 
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Then every four points of V\{P0 } span a regular simplex of side length Vi, which has 
volume 1/3. Similarly, every four points of V\{P1} span a regular simplex of side 
length Vi. And, for any P;, ~ (j > i > 1), P0 , PI> P; and~ span a simplex congruent to 
P0P1P2P3 , the volume of which is also 1/3. 

As mentioned in Remark 1, there is an affinely dependent four-point set which is 
monochromatic with positive color. This is not the case for sets with an odd number of 
points. 

THEOREM 2. Let V be a point set in a Euclidean space and suppose that n = lVI is 
odd~ 3. If Vis monochromatic with positive color, then Vis affinely independent (i.e. 
V spans n - 1 dimensions). 

PROOF. Let c be the common color of all (n -1)-subsets of V. Suppose that Vis 
contained in Rn-2

, and let 

V; = (v;t, ... , V;(n-2)), i = 1, ... , n. 

Let D; be the determinant of the (n -1) x (n- 1) matrix obtained from then x (n -1) 
matrix 

( 

1, Vu, .. · , Vt(n-2)) 

1, V21> ... , v2(n-2) 

1, Vnl> • • • , Vn(n-2) 

by deleting the ith row. Then c = IDJ(n- 2)!1. Now, since 

( 

1, 1, Vu, · · · , Vt(n-2)) n 

O=det : = L (-1)i+ 1D;, 
i-1 

1, 1, Vnl> • • • , Vn(n-2) -

we have 

0= EtK + • • • + EnK, 

where E; = ±1, K = (n- 2)! c > 0. However, since n is odd, this is clearly 
impossible. 0 

4. UNIT-AREA REPRESENTATIONS OF 3-GRAPHS 

THEOREM 3. There exists a 3-graph H which admits no unit-area representation. 

PROOF. Let V = {v;: i = 1, ... , 6}, and let H be the complete 3-graph on V, i.e. 
E(H) = (n. Let H' be the 3-graph obtained from H by removing a hyper-edge, say 
v1 v2v3 • We show that H' admits no unit-area representation. Suppose V = { D;: i = 
1, ... , 6} c Rn is a unit-area representation. Since H'- v1 is a complete 3-graph on 
{ v;: i = 2, ... , 6}, V\{ u1} spans a regular 4-simplex, by Theorem 1. Similarly, since 
H'- {v2} and H'- {v3} are complete 3-graphs, it follows that V\{u2} and V\{u3} 

also span regular simplices. In this case, we must have c(v 1v2v3) = 1, which contradicts 
VtV2V3 f E(H'). 0 

Invoking Warren's Theorem [3] we can prove the following. 
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THEOREM 4. Among all 3-graphs on n vertices, the proportion of those 3-graphs 
which admit unit-area representations tends to 0 as n--+ oo. 

First we recall Warren's theorem. 

THEOREM (Warren [3]). Let p 1(x), ... , PM(x) be real polynomials in N variables, 
each of degree at most D 3: 1. If M 3: N then the number of sign sequences 
( sgn p 1 (x), ... , sgn p M(x)) that consist of terms + 1, -1 does not exceed ( 4eD M I N)N. 

PROOF OF THEOREM 4. Note that if a 3-graph on n vertices admits a unit-area 
representation, then it admits a unit-area representation in Rn-1

• Let H•, s = 1, ... , m 
be those 3-graphs on V = { v;: i = 1, ... , n} that admit unit-area representations, and 
let v• = { v:: i = 1, ... , n} c Rn be a unit-area representation of H•, s = 1, ... , m. 

Now, for each 1 ~ i <j < k ~ n, define a polynomial Piik(x) in N = n2 variables 
X= (xl> ... 'Xn) =(xu, ... 'Xln• ... 'Xnl• ... 'Xnn) by 

Piik(x) = (1/4) det( (xi- X;). (xi- X;) (xi- X;). (xk- x;)), 
(xk- X;) • (Xj- X;) (xk -X;) • (xk- X;) 

where the dot denotes the inner product. Note that Piik(x) is a polynomial of degree 4, 
and letting v• =(vi, ... , v~) E Rnxn, we have 

c(v:v}vti = Piik(v•). 

Let e be the minimum value of 

[(Piik(v•)) -1]2 

for all Piik(v•) =I= 1, s = 1, ... , m, 1 ~ i < j < k ~ n. Then 

[(Piik(v•))- 1f- e/2 < 0 if V;ViVi E E(H8
), 

and 
[(Piik(v•)) -1]2

- e/2 > 0 

Let qiik(x) be the polynomial 

[(Piik(v•)) -1]2
- e/2. 

Then qiik(x), 1 ~ i < j < k ~ n, are (3) polynomials of degree 8 in n2 variables, and the 
sign sequences 

s=1, ... , m 

are all different. Hence by Warren's theorem, we have 

m ~ (4eDM/N)N < (16en/3t2
• 

Since the number of distinct labeled 3-graphs on V is 2m, and by the above inequality 

m/2m--+o 

the statement of the theorem follows. D 

as n--+ oo, 

5. SETS WITH A BouNDED NuMBER OF AREAS 

THEOREM 5. Let V be a point set in a Euclidean space. If (r> has r 3: 2 colors and lVI 
is sufficiently large, then 
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PROOF. First note that the assumption r;?!; 2 implies that Vis not collinear. Suppose 
that lVI is sufficiently large, i.e. lVI is greater than the Ramsey number R~(2r + 
2, ... , 2r + 2). Then there exists a subset U of V such that I VI ;?!; 2r + 2 and (~) is 
monochromatic. In this case the color of (~) is positive. Indeed, if U is on a line L 
then, taking a point v of V which is not on L, we can see that more than r colors 
appear in (uu3{u}). Thus by Theorem 1, (~)is also monochromatic. Let b be the color 
of the pairs in (~). 

Here we note the following facts. 
(1) There are at most two non-congruent triangles with given two sides and area. 
(2) An isosceles triangle is determined by its base and area. 
Now, for ad> 0, let 

W(d) ={wE V: for some uw E U, c(uww) = d}. 

Then we claim the following. 
(3) l{c(uw): u e U, we W(d)}l ~ 2r + 1. 

To see this consider a triangle uwuw, u e U. It has two sides of length band d, and its 
area is one of the r values of c((r)). Hence by (1), c(uw) can take at most 2r different 
values. Therefore, taking the valued into account, we have (3). 

Since lUI > 2r + 1, for any v of V there exist two distinct points uv u2 e U such that 
c(vu1) = c(vu2). Then the triangle vu 1u2 is. isosceles with base b and area one of the r 
values of c((D). Hence by (2), the common value c(vu1) = c(vu2 ) is one of certain r 
values, say d1 , ••• , d,. Thus, for any v of V there exists a point Uv of U such that 

c(Uvv) E {dv ... , d,}. 

Therefore, V = W(d 1) U · · · U W(d,), and hence 

l{c(uv): u e U, v e V}l ~ r(2r + 1). 

Now we can evaluate the number of possible colors of vw, v, we V. Let u be a point 
of U such that c(uv) e {dv ... , d,}, and consider the triangle uvw. Then c(uw) takes 
one of the r(2r + 1) values. Hence, by (1), c(vw) can take at most 

2r X r X r(2r + 1) = 2r3(2r + 1) 

different values. Therefore 

REMARK 3. It would be worthwhile to determine the best possible bound in 
Theorem 5; that is, the maximum number, m(r), of pairwise distances in a 
non-collinear point set with at most r areas. In view of the lemma and Theorem 1 one 
can prove that m(1) = 6. 
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