AN INTERSECTION PROBLEM FOR CODES

P. FRANKL
CNRS, Paris, France

Received 22 June 1988
Let $[s]^{n}$ denote all sequences $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ of intcgers with $1 \leqslant x_{i} \leqslant s$. Consider a subset A of $[s]^{n}$. It is called $\left(t_{1}, \ldots, t_{s}\right)$-intersecting if for any two members $\vec{a}, \vec{b} \in A$ and any $1 \leqslant i \leqslant s$ there are at least t_{i} positions j, where both \vec{a} and \vec{b} have entry i, that is, $a_{j}=b_{j}=i$. The problem of determining max $|A|$ for A being $\left(t_{1}, \ldots, t_{s}\right)$-intersecting is considered. In particular, the case $t_{1}=t_{2}=\cdots=t_{s}=1$ is solved completely.

1. Introduction

Let $A=\left\{a_{1}, \ldots, a_{s}\right\}$ be an alphabet of size s and consider $X=A^{n}$, the set of all words $\left(x_{1}, \ldots, x_{n}\right)$ of length n over A, i.e. $x_{i} \in A$ for all i.

A set $C \subset X$ is called a code. It is called $\left(t_{1}, \ldots, t_{s}\right)$-intersecting if for all $1 \leqslant i \leqslant s$ and for any two members of C there are at least t_{i} coordinate places where both have a_{i}.

Setting $\vec{t}=\left(t_{1}, \ldots, t_{s}\right)$ we shall speak of \vec{t}-intersecting codes. To avoid trivialities we suppose that $n \geqslant t_{1}+\cdots+t_{s}$.

Definition 1.1. Let $m(n, \vec{t})$ denote the maximum size of a \vec{t}-intersecting code in A^{n}.

For $1 \leqslant i \leqslant s$ set $\vec{t}_{i}=\left(0,0, \ldots, 0, t_{i}, 0, \ldots, 0\right)$. Recently, Winkler [13] has formulated the following conjecture.

Conjecture 1.2.

$$
m(n, \vec{t})=\max _{n_{1}+\cdots+n_{s}=n} \prod_{i=1}^{s} m\left(n_{i}, \vec{t}_{i}\right) .
$$

This conjecture would reduce the determination of $m(n, \vec{t})$ to the special case when all but one of the t_{i} 's are equal to zero.

We shall discuss this special case in Section 2.
Let us mention that in the case $s=2$ one can formulate Conjecture 1.2 in terms of families of sets. Namely, define for $\vec{x} \in C$ the set $F(\vec{x})=\left\{i: x_{i}=a_{1}\right\} ; \mathscr{F}(C)=$ $\{F(\vec{x}): \vec{x} \in C\}$.

Then (t_{1}, t_{2})-intersecting means $\left|F_{1} \cap F_{2}\right| \geqslant t_{1}$ and $\left|F_{1} \cup F_{2}\right| \leqslant n-t_{2}$ for all $F_{1}, F_{2} \in \mathscr{F}(C)$.

0012-365X/90/\$03.50 © 1990 — Elsevier Science Publishers B.V. (North-Holland)

For this special case the conjecture was formulated by Bang et al. [1] and in a more general form by the author [5].
The special case $t_{1}=1$ was conjectured by Katona [11] and settled by the author [6].
In this note we shall prove Conjecture 1.2 in the special case $t_{i}<s$ for all i.
Theorem 1.3. Suppose that $t_{i}<s$ for $1 \leqslant i \leqslant s$. Then

$$
m(n, \vec{t})=s^{n \cdot t_{1}-\cdots-t_{s}} \quad \text { holds for all } n \geqslant t_{1}+\cdots+t_{s} .
$$

The proof of this result will be given in Section 4 after some preparations in Section 3.

2. Convex hulls of \vec{f}-vectors of \boldsymbol{t}-intersecting families

Let $\mathscr{F} \subset 2^{[n]}$ be a family of subsets of $[n]=\{1,2, \ldots, n\}, \mathscr{F}$ is called t-intersecting if $\left|F \cap F^{\prime}\right| \geqslant t$ holds for all $F, F^{\prime} \in \mathscr{F}$.

Example 2.1. For $0 \leqslant i \leqslant(n-t) / 2$ define $\mathscr{B}_{i}=\{B \subset[n]:|B \cap[t+2 i]| \geqslant t+i\}$.
Clearly, \mathscr{B}_{i} is t-intersecting and Katona [10] proved that among all t intersecting families $\mathscr{B}\lfloor(n-t) / 2\rfloor$ has the largest size.

For $i+t<k \leqslant(n+t) / 2$ define also

$$
\mathscr{B}_{i}^{k}=\left\{B \subset B_{i}:|B| \geqslant k\right\} \cup\{A \subset X:|A| \geqslant n+t-k\} .
$$

For a family, $\mathscr{F} \subset 2^{[n]}$ its f-vector $\vec{f}(\mathscr{F})=\left(f_{0}, \ldots, f_{n}\right)$ is defined by

$$
f_{i}=|\{F \in \mathscr{F}:|F|=i\}|, \quad 0 \leqslant i \leqslant n .
$$

Definition 2.2. A set $Z=\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{m}\right\}$ of t-intersecting families $\mathscr{F}_{i} \subset 2^{[n]}$ is called dominating if for every t-intersecting family $\mathscr{F} \subset 2^{[n]}$ there exist nonnegative reals $\alpha_{1}, \ldots, \alpha_{m}$ with $\alpha_{1}+\cdots+\alpha_{m}=1$, such that $\vec{f}(\mathscr{F}) \leqslant \sum \alpha_{i} \vec{f}\left(\mathscr{F}_{i}\right)$ holds coordinatewise, that is $f_{j}(\mathscr{F}) \leqslant \Sigma \alpha_{i} f_{j}\left(\mathscr{F}_{i}\right)$ for $0 \leqslant j \leqslant n$.

Conjecture 2.3 (Cooper [2]). $\left\{\mathscr{B}_{i}^{k}: 0 \leqslant i \leqslant(n-t) / 2, t+i<k \leqslant(n+t) / 2\right\}$ is a dominating set for $1 \leqslant t \leqslant n$.

Let us mention that the case $t=1$ was solved by Erdös et al. [3].
Conjecture 2.3 would have several important corollaries, e.g. it would imply that the largest size of a t-intersecting family of k-element sets is $f_{k}\left(\mathscr{B}_{i}\right)$ for some $1 \leqslant i \leqslant(n-t) / 2$.

Proposition 2.4.

$$
\begin{equation*}
m(n,(t, 0, \ldots, 0))=\max _{\bar{f}} \sum_{0 \leqslant j \leqslant n} f_{j}(s-1)^{n-j} \tag{2.1}
\end{equation*}
$$

where the maximum is over the f-vectors $\left(f_{0}, \ldots, f_{n}\right)$ of all t-intersecting families.

Proof. Let C be a $(t, 0, \ldots, 0)$-intersecting code of maximal size. For $\vec{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in C$ defined $F(\vec{x})=\left\{i: x_{i}=a_{1}\right\}$. Then $\mathscr{F}(C)=\{F(\vec{x}): \vec{x} \in C\}$ is t intersecting and the maximality of C implies that for given $F \in \mathscr{F}(C)$ all $(s-1)^{n-|F|}$ words $\vec{x} \in X$ with $F(\vec{x})=F$ are in C.

On the other hand, if \mathscr{F} is t-intersecting then $C(\mathscr{F})=\left\{\vec{x} \in X^{n}: F(\vec{x}) \in \mathscr{F}\right\}$ is $(t, 0, \ldots, 0)$-intersecting of size $\sum_{0 \leqslant j \leqslant n} f_{j}(\mathscr{F})(s-1)^{n j}$.

Consequently, the determination of $m(n,(t, 0, \ldots, 0))$ is equivalent to deter$\operatorname{mine} \max \sum f_{j}(s-1)^{n-j}$ where the maximum is over all f-vectors $\left(f_{0}, \ldots, f_{n}\right)$ of t-intersecting families.

Since by Conjecture 2.3 the \mathscr{B}_{i} 's form a dominating set and the coefficients $(s-1)^{n-j}$ are nonnegative, we infer

Corollary 2.5. If Conjecture 2.3 is true, then

$$
m(n,(t, 0, \ldots, 0))=\max _{i, k} \sum_{0 \leqslant j \leqslant n} f_{i}\left(\mathscr{P}_{i}^{k}\right)(s-1)^{n-j}
$$

3. A Kleitman-type result

For $\quad \vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in A^{n} \quad$ define $\quad S_{i}(\vec{x})=\left\{j: x_{j}=a_{i}\right\} . \quad$ Clearly $\quad[n]=$ $\{1, \ldots, n\}=S_{1}(\vec{x}) \cup \cdots \cup S_{s}(\vec{x})$ is a partition.

Call a code $C \subset A^{n} i$-closed if for $\vec{x}, \vec{y} \in A^{n} S_{i}(\vec{x}) \subseteq S_{i}(\vec{y})$ and $\vec{x} \in C$ imply $\vec{y} \in C$.
Theorem 3.1. Suppose that $C_{i} \subset A^{n}$ is i-closed for $1 \leqslant i \leqslant s$. Then

$$
\begin{equation*}
\left|C_{1} \cap \cdots \cap C_{s}\right| / s^{n} \leqslant \prod_{1 \leqslant i \leqslant s}\left|C_{i}\right| / s^{n} \quad \text { holds } \tag{3.1}
\end{equation*}
$$

Proof. For $n=0$ each of C_{i} is empty or consists of the empty word. Thus (3.1) holds. Apply induction on $n, n \geqslant 1$. For $1 \leqslant i \leqslant s$ let $C_{i}(j)$ denote the code obtained from the codewords of C_{i} which have a_{j} in the last coordinate position by deleting this last position. Using the definition and i-closedness we have

$$
\begin{align*}
& \left|C_{i}(1)\right|+\cdots+\left|C_{i}(s)\right|=\left|C_{i}\right|, \\
& \left|C_{i}(i)\right| \geqslant\left|C_{i}(j)\right| \text { for } i \neq j \text { and }\left|C_{i}(j)\right|=\left|C_{i}\left(j^{\prime}\right)\right| \text { for } i \notin\left\{j, j^{\prime}\right\} . \tag{3.2}
\end{align*}
$$

Set $p_{i}=\left|C_{i}(i)\right| /\left|C_{i}\right|, q_{i}=\left|C_{i}(j)\right| /\left|C_{i}\right|$ for some $j \neq i$. In view of (3.2) we have

$$
\begin{equation*}
p_{i}+(s-1) q_{i}=1, \quad q_{i} \leqslant 1 / s \leqslant p_{i} . \tag{3.3}
\end{equation*}
$$

Claim.

$$
\sum_{1 \leqslant j \leqslant s} q_{1} \cdots \cdots q_{j-1} p_{i} q_{j+1} \cdots \cdots q_{s} \leqslant s^{1-s}
$$

holds with equality if and only if $q_{i}=p_{i}=1 / s$ holds for at least $s-1$ values of $i=1, \ldots, s$.

Proof of the Claim. Set $p_{i}=1-(s-1) q_{i}$ and consider the partial derivative of the LHS with respect to q_{i}. It is the sum of s terms, one negative and $(s-1)$ positive. The negative term is $-(s-1) q_{i} \cdots q_{s}$, while each positive is a similar product, except that the coefficient is one, and one of the q_{j} 's is replaced by p_{j} which is - by (3.3) - not less in value. This implies the nonnegativeness of the derivative. It is even strictly positive, unless $q_{i}=p_{i}$, i.e. $q_{i}=1 / s$.

Thus we increase the value of LHS by setting $q_{1}=\cdots=q_{s}=1 / s$ and then its value is s^{1-s}.

Now using $\left|C_{1} \cap \cdots \cap C_{s}\right|=\sum_{1 \leqslant j \leqslant s}\left|C_{1}(j) \cap \cdots \cap C_{s}(j)\right|$, applying the induction hypothesis and using the claim we obtain:

$$
\left|C_{1} \cap \cdots \cap C_{s}\right| / s^{n} \leqslant \frac{1}{s} \prod_{i=1}^{s}\left|C_{i}\right| / s^{n-1} \sum_{j=1}^{s} q_{1} \cdots q_{j-1} p_{j} q_{j+1} \cdots \cdots q_{s} \leqslant \prod_{1 \leqslant i \leqslant s}\left|C_{i}\right| / s^{n}
$$

Remark. Note that in the case $s=2$ inequality (3.1) was already proved by Kleitman [9].

4. The main result

Let $C \subset A^{n}$ be a \vec{t}-intersecting code.
Let $\tilde{C} \subset A^{n+1}$ be obtained by adding for all codewords in C in all possible ways a $(n+1)$ th coordinate. Clearly, $|\tilde{C}|=s|C|$ and \tilde{C} is \vec{t}-intersecting. This implies:

Proposition 4.1. $m(n, \vec{t}) / s^{n}$ is monotone increasing and thus

$$
p(\vec{t})=\lim _{n \rightarrow \infty} m(n, \vec{t}) / s^{n} \quad \text { exists. }
$$

Let $\vec{t}=\left(t_{1}, \ldots, t_{s}\right)$ and set

$$
p\left(t_{i}\right)=\lim _{n \rightarrow \infty} m\left(n,\left(0,0, \ldots, t_{i}, \ldots, 0\right)\right) / s^{n}
$$

Theorem 4.2. $p(\vec{t})=p\left(t_{1}\right) \cdots p\left(t_{s}\right)$ holds.
Proof. $p(t) \geqslant p\left(t_{1}\right) \cdots \cdots p\left(t_{s}\right)$ follows from

$$
m(n, \vec{t}) \geqslant \prod_{1 \leqslant i \leqslant s} m\left(n_{i}, t_{i}\right) \quad \text { for all } n_{i} \geqslant t_{i} \quad \text { with } n_{1}+\cdots+n_{t}=n .
$$

To prove the upper bound we show:

$$
\begin{equation*}
m(n, \vec{t}) / s^{n} \leqslant \prod_{1 \leqslant i \leqslant s} m\left(n, t_{i}\right) / s^{n} \tag{4.1}
\end{equation*}
$$

To prove (4.1) let $C \subset A^{n}$ be \vec{t}-intersecting. Define the i-closed family C_{i} by

$$
C_{i}=\left\{\vec{y} \subset A^{n}: \exists \vec{x} \in C, S_{i}(\vec{x}) \subseteq S_{i}(\vec{y})\right\} .
$$

Then C_{i} is clearly $\left(0, \ldots, 0, t_{i}, 0, \ldots, 0\right)$-intersecting. Thus $\left|C_{i}\right| \leqslant m\left(n, t_{i}\right)$ holds.
Since $C \subset C_{1} \cap \cdots \cap C_{s}$, an application of Theorem 3.1 yields (4.1).
Now $p(\vec{t}) \leqslant p\left(t_{1}\right) \cdots p\left(t_{s}\right)$ follows by taking limits of both sides.
Even if Theorem 4.2 does not prove Winkler's conjecture (Conjecture 1.2), it shows that it is asymptotically correct. Slightly more would follow from Conjecture 2.3.

Proposition 4.3. If $s \geqslant 3$ and Conjecture 2.3 is true then for $n \geqslant n_{0}(\vec{t})$ Conjecture 1.2 is true.

Proof (sketch). Considering the RHS of (2.1) one sees that the maximum is attained for some $i<q(\vec{t}, s)$, where $q(\vec{t}, s)$ is independent of n (here we used $s \geqslant 3$). This on the other hand implies $m\left(n+1, \vec{t}_{i}\right)=s m\left(n, \vec{t}_{i}\right)$ for $n \geqslant 2 q(\vec{t}, s)+$ t_{i}. That is, $m\left(n, \vec{t}_{i}\right)=p\left(t_{i}\right) s^{n}$ holds for $n \geqslant 2 q(\vec{t}, s)+t_{i}$. From (4.1) we infer

$$
m(n, \vec{t}) \leqslant p\left(t_{1}\right) \cdots p\left(t_{j}\right) s^{n}, \quad \text { and for } n \geqslant \sum_{1 \leqslant i \leqslant s}\left(2 q(\vec{t}, s)+t_{i}\right)
$$

we can have equality here by the obvious product construction.
Remark. What one needs for the proof is that in the maximum-sized \vec{t}_{i} intersecting families the intersection property is assured by a set of bounded size of the coordinates. This might be easier to prove than Conjecture 2.3.

Proposition 4.4. $m(n,(t, 0, \ldots, 0))=s^{n-t}$ holds if $s \geqslant t+1$ and $n \geqslant t$.
Proof. This result was proved by Frankl and Füredi [8] for $t \geqslant 15$ and Moon [12] gave a sharpening for $s \geqslant t+2$. To obtain the result for $2 \leqslant t \leqslant 14$ as well we have to go through the proof of $[8]$ and do some modifications.

In view of $m(n+1,(t, 0, \ldots, 0)) \geqslant \sin (n,(t, 0, \ldots, 0))$ if for some n one had $m(n,(t, 0, \ldots, 0))>s^{n-t}$, then $p((t, 0, \ldots, 0))>s^{-t}$ would follow. Thus, it is sufficient to show

$$
\begin{equation*}
p((t, 0, \ldots, 0)) \leqslant s^{-t} \tag{4.2}
\end{equation*}
$$

To prove (4.2) we apply Proposition 2.4. First note that

$$
\sum_{j>(1 / s \mid e) n} f_{j}(s-1)^{n-j} \leqslant \sum_{j>(1 / s+c) n}\binom{n}{j}(s-1)^{n-j}=o\left(s^{n}\right)
$$

holds.
Thus to prove (4.2) we may suppose that $f_{j}=0$ unless $j \leqslant(1 / s+\varepsilon) n$.
For j satisfying $(j-t+1)(t+1) \leqslant n$ we may apply the exact form of the Erdős-Ko-Rado theorem (cf. [14]) to deduce

$$
\begin{equation*}
f_{j} \leqslant\binom{ n-t}{j-t} . \tag{4.3}
\end{equation*}
$$

If $s \geqslant t+2$ and $n>n_{0}(t)$, then (4.3) holds for all j and gives

$$
m(n,(t, 0, \ldots, 0))<\sum_{j}\binom{n-t}{j-t} s^{n-j}+o\left(s^{n}\right)=s^{n-t}+o\left(s^{n}\right)
$$

as desired.
But in the case $s=t+1$ (4.3) does not necessarily hold for $n / s<j<n / s(1+\varepsilon)$. In this case we cannot just apply Wilson's result, but we have to use the following inequality, which follows from the actual proof.

$$
\begin{equation*}
f_{j} \leqslant(1+\delta)\binom{n-t}{j-t} \quad \text { holds for } j \leqslant\left(\frac{1}{s}+\varepsilon\right) n \quad \text { if } \varepsilon=\varepsilon(\delta) \tag{4.4}
\end{equation*}
$$

is a sufficiently small positive constant.
Using this instead of (4.3) gives in the same way

$$
m(n,(t, 0, \ldots, 0)) \leqslant(1+\delta+o(1)) s^{n-t}
$$

for arbitrarily small δ, provided $n>n_{0}(\delta)$. This implies (4.2).

Remark. Let us mention that we feel it is rather surprising that the exact result (Proposition 4.4) is deduced from an asymptotic result ((4.2)). In a sense this shows the strength of the Erdős-Ko-Rado Theorem. The original proof of [8] needed the condition $t \geqslant 15$ only because at that time the exact bound $(n \geqslant(k-t+1)(t+1))$ in the Erdős-Ko-Rado Theorem was known only for $t \geqslant 15$ (see [7]). That result has the advantage of showing that for $(k-t+1)>$ $n /(t+1)$ but $k<1.2 n /(t+1) f_{k} \leqslant f_{k}\left(\mathscr{B}_{1}\right)$ holds (which is best possible), implying (4.4) in a stronger form. Actually, combining this result and Proposition 2.4 one can show that for $s=t \geqslant 15$

$$
m(n,(t, 0, \ldots, 0))=\left(s^{2}+s-1\right) s^{n-t-2}
$$

holds.

References

[1] C. Bang, H. Sharp and P. Winkler, On families of finite sets with bounds on unions and intersections, Discrete Math. 45 (1983) 123-126.
[2] B. Cooper, unpublished manuscript, 1987.
[3] P.L. Erdós, P. Frankl and G.O.H. Katona, Extremal hypergraph problems and convex hulls, Combinatorica 5 (1985) 11-26.
[4] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961) 313-320.
[5] P. Frankl, Extremal set systems, Ph.D. Thesis, Budapest, 1976.
[6] P. Frankl, The proof of conjecture of G.O.H. Katona, J. Combin. Theory Ser. A 19 (1975) 208-219.
[7] P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, Coll. Math. Soc. J. Bolyai 18 (1978) 365-375.
[8] P. Frankl and Z. Füredi, The Erdős-Ko-Rado Theorem for integer sequences, SIAM J. Algebraic Discrete Methods 1 (1980) 376-381.
[9] G.O.H. Katona, Extremal problems for hypergraphs, in "Combinatorics" Vol. II. pp. 13-42 Math. Centre Tracts, Vol. 56 (Amsterdam, 1974).
[10] Gy. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964) 329-337.
[11] D.J. Kleitman, Families of non-disjoint subsets, J. Combin. Theory Ser. A 1 (1966) 153-155.
[12] A. Moon, An analogue of the Erdós-Ko-Rado Theorem for the Hamming schemes, J. Combin. Theory Ser. A 32 (1982) 386-390.
[13] P. Winkler, personal communication, 1988.
[14] R.M. Wilson, The exact bound in the Erdős-Ko-Rado Theorem, Combinatorica 4 (1984) 247-257.

