AN INTERSECTION PROBLEM FOR CODES

P. FRANKL

CNRS, Paris, France

Received 22 June 1988

Let $[s]^n$ denote all sequences $\vec{a} = (a_1, \ldots, a_n)$ of integers with $1 \le x_i \le s$. Consider a subset A of $[s]^n$. It is called (t_1, \ldots, t_s) -intersecting if for any two members $\vec{a}, \vec{b} \in A$ and any $1 \le i \le s$ there are at least t_i positions j, where both \vec{a} and \vec{b} have entry i, that is, $a_j = b_j = i$. The problem of determining max |A| for A being (t_1, \ldots, t_s) -intersecting is considered. In particular, the case $t_1 = t_2 = \cdots = t_s = 1$ is solved completely.

1. Introduction

Let $A = \{a_1, \ldots, a_s\}$ be an alphabet of size s and consider $X = A^n$, the set of all words (x_1, \ldots, x_n) of length n over A, i.e. $x_i \in A$ for all i.

A set $C \subset X$ is called a code. It is called (t_1, \ldots, t_s) -intersecting if for all $1 \le i \le s$ and for any two members of C there are at least t_i coordinate places where both have a_i .

Setting $\vec{t} = (t_1, \ldots, t_s)$ we shall speak of \vec{t} -intersecting codes. To avoid trivialities we suppose that $n \ge t_1 + \cdots + t_s$.

Definition 1.1. Let $m(n, \vec{t})$ denote the maximum size of a \vec{t} -intersecting code in A^n .

For $1 \le i \le s$ set $\vec{t}_i = (0, 0, \dots, 0, t_i, 0, \dots, 0)$. Recently, Winkler [13] has formulated the following conjecture.

Conjecture 1.2.

$$m(n, \vec{t}) = \max_{n_1+\cdots+n_s=n} \prod_{i=1}^s m(n_i, \vec{t}_i).$$

This conjecture would reduce the determination of $m(n, \vec{t})$ to the special case when all but one of the t_i 's are equal to zero.

We shall discuss this special case in Section 2.

Let us mention that in the case s = 2 one can formulate Conjecture 1.2 in terms of families of sets. Namely, define for $\vec{x} \in C$ the set $F(\vec{x}) = \{i: x_i = a_1\}; \ \mathcal{F}(C) = \{F(\vec{x}): \vec{x} \in C\}.$

Then (t_1, t_2) -intersecting means $|F_1 \cap F_2| \ge t_1$ and $|F_1 \cup F_2| \le n - t_2$ for all $F_1, F_2 \in \mathcal{F}(C)$.

0012-365X/90/\$03.50 (C) 1990 - Elsevier Science Publishers B.V. (North-Holland)

P. Frankl

For this special case the conjecture was formulated by Bang et al. [1] and in a more general form by the author [5].

The special case $t_1 = 1$ was conjectured by Katona [11] and settled by the author [6].

In this note we shall prove Conjecture 1.2 in the special case $t_i < s$ for all *i*.

Theorem 1.3. Suppose that $t_i < s$ for $1 \le i \le s$. Then

$$m(n, \vec{t}) = s^{n-t_1-\cdots-t_s}$$
 holds for all $n \ge t_1 + \cdots + t_s$.

The proof of this result will be given in Section 4 after some preparations in Section 3.

2. Convex hulls of \vec{f} -vectors of *t*-intersecting families

Let $\mathscr{F} \subset 2^{[n]}$ be a family of subsets of $[n] = \{1, 2, ..., n\}$, \mathscr{F} is called *t*-intersecting if $|F \cap F'| \ge t$ holds for all $F, F' \in \mathscr{F}$.

Example 2.1. For $0 \le i \le (n-t)/2$ define $\mathcal{B}_i = \{B \subset [n]: |B \cap [t+2i]| \ge t+i\}$.

Clearly, \mathcal{B}_i is *t*-intersecting and Katona [10] proved that among all *t*-intersecting families $\mathcal{B}[(n-t)/2]$ has the largest size.

For $i + t < k \le (n + t)/2$ define also

$$\mathscr{B}_i^k = \{ B \subset B_i : |B| \ge k \} \cup \{ A \subset X : |A| \ge n + t - k \}.$$

For a family, $\mathscr{F} \subset 2^{[n]}$ its *f*-vector $\vec{f}(\mathscr{F}) = (f_0, \ldots, f_n)$ is defined by

 $f_i = |\{F \in \mathcal{F} : |F| = i\}|, \quad 0 \le i \le n.$

Definition 2.2. A set $Z = \{\mathscr{F}_1, \ldots, \mathscr{F}_m\}$ of *t*-intersecting families $\mathscr{F}_i \subset 2^{[n]}$ is called *dominating* if for every *t*-intersecting family $\mathscr{F} \subset 2^{[n]}$ there exist nonnegative reals $\alpha_1, \ldots, \alpha_m$ with $\alpha_1 + \cdots + \alpha_m = 1$, such that $\tilde{f}(\mathscr{F}) \leq \sum \alpha_i \tilde{f}(\mathscr{F}_i)$ holds coordinatewise, that is $f_i(\mathscr{F}) \leq \sum \alpha_i f_i(\mathscr{F}_i)$ for $0 \leq j \leq n$.

Conjecture 2.3 (Cooper [2]). $\{\mathscr{B}_i^k: 0 \le i \le (n-t)/2, t+i \le k \le (n+t)/2\}$ is a dominating set for $1 \le t \le n$.

Let us mention that the case t = 1 was solved by Erdös et al. [3].

Conjecture 2.3 would have several important corollaries, e.g. it would imply that the largest size of a *t*-intersecting family of *k*-element sets is $f_k(\mathcal{B}_i)$ for some $1 \le i \le (n-t)/2$.

Proposition 2.4.

$$m(n, (t, 0, ..., 0)) = \max_{\tilde{f}} \sum_{0 \le j \le n} f_j (s-1)^{n-j}$$
(2.1)

where the maximum is over the f-vectors (f_0, \ldots, f_n) of all t-intersecting families.

136

Proof. Let C be a (t, 0, ..., 0)-intersecting code of maximal size. For $\vec{x} = (x_1, ..., x_n) \in C$ defined $F(\vec{x}) = \{i: x_i = a_1\}$. Then $\mathcal{F}(C) = \{F(\vec{x}): \vec{x} \in C\}$ is t-intersecting and the maximality of C implies that for given $F \in \mathcal{F}(C)$ all $(s-1)^{n-|F|}$ words $\vec{x} \in X$ with $F(\vec{x}) = F$ are in C.

On the other hand, if \mathscr{F} is *t*-intersecting then $C(\mathscr{F}) = \{\vec{x} \in X^n : F(\vec{x}) \in \mathscr{F}\}$ is $(t, 0, \ldots, 0)$ -intersecting of size $\sum_{0 \le j \le n} f_j(\mathscr{F})(s-1)^{n-j}$.

Consequently, the determination of m(n, (t, 0, ..., 0)) is equivalent to determine max $\sum f_j(s-1)^{n-j}$ where the maximum is over all f-vectors $(f_0, ..., f_n)$ of t-intersecting families. \Box

Since by Conjecture 2.3 the \mathcal{B}_i 's form a dominating set and the coefficients $(s-1)^{n-j}$ are nonnegative, we infer

Corollary 2.5. If Conjecture 2.3 is true, then

$$m(n, (t, 0, \ldots, 0)) = \max_{i,k} \sum_{0 \leq j \leq n} f_j(\mathscr{B}_i^k)(s-1)^{n-j}.$$

3. A Kleitman-type result

For $\vec{x} = (x_1, \ldots, x_n) \in A^n$ define $S_i(\vec{x}) = \{j : x_j = a_i\}$. Clearly $[n] = \{1, \ldots, n\} = S_1(\vec{x}) \cup \cdots \cup S_s(\vec{x})$ is a partition.

Call a code $C \subset A^n$ *i-closed* if for $\vec{x}, \vec{y} \in A^n S_i(\vec{x}) \subseteq S_i(\vec{y})$ and $\vec{x} \in C$ imply $\vec{y} \in C$.

Theorem 3.1. Suppose that $C_i \subset A^n$ is *i*-closed for $1 \le i \le s$. Then

$$|C_1 \cap \cdots \cap C_s|/s^n \leq \prod_{1 \leq i \leq s} |C_i|/s^n \quad holds.$$
(3.1)

Proof. For n = 0 each of C_i is empty or consists of the empty word. Thus (3.1) holds. Apply induction on $n, n \ge 1$. For $1 \le i \le s$ let $C_i(j)$ denote the code obtained from the codewords of C_i which have a_j in the last coordinate position by deleting this last position. Using the definition and *i*-closedness we have

$$|C_{i}(1)| + \dots + |C_{i}(s)| = |C_{i}|,$$

$$|C_{i}(i)| \ge |C_{i}(j)| \quad \text{for } i \ne j \quad \text{and} \quad |C_{i}(j)| = |C_{i}(j')| \quad \text{for } i \notin \{j, j'\}. \quad (3.2)$$

Set $p_{i} = |C_{i}(i)|/|C_{i}|, q_{i} = |C_{i}(j)|/|C_{i}|$ for some $j \ne i$. In view of (3.2) we have

$$p_i + (s-1)q_i = 1, \quad q_i \le 1/s \le p_i.$$
 (3.3)

Claim.

$$\sum_{|\leqslant_j|\leqslant_s} q_1 \cdots q_{j-1} p_j q_{j+1} \cdots q_s \leqslant s^{1-s}$$

holds with equality if and only if $q_i = p_i = 1/s$ holds for at least s - 1 values of i = 1, ..., s.

Proof of the Claim. Set $p_i = 1 - (s - 1)q_i$ and consider the partial derivative of the LHS with respect to q_i . It is the sum of s terms, one negative and (s - 1) positive. The negative term is $-(s - 1)q_i \cdots q_s$, while each positive is a similar product, except that the coefficient is one, and one of the q_j 's is replaced by p_j which is - by (3.3) – not less in value. This implies the nonnegativeness of the derivative. It is even strictly positive, unless $q_i = p_i$, i.e. $q_i = 1/s$.

Thus we increase the value of LHS by setting $q_1 = \cdots = q_s = 1/s$ and then its value is s^{1-s} . \Box

Now using $|C_1 \cap \cdots \cap C_s| = \sum_{1 \le j \le s} |C_1(j) \cap \cdots \cap C_s(j)|$, applying the induction hypothesis and using the claim we obtain:

$$|C_1 \cap \dots \cap C_s|/s^n \leq \frac{1}{s} \prod_{i=1}^s |C_i|/s^{n-1} \sum_{j=1}^s q_1 \cdots q_{j-1} p_j q_{j+1} \cdots q_s \leq \prod_{1 \leq i \leq s} |C_i|/s^n.$$

Remark. Note that in the case s = 2 inequality (3.1) was already proved by Kleitman [9].

4. The main result

Let $C \subset A^n$ be a \vec{t} -intersecting code.

Let $\tilde{C} \subset A^{n+1}$ be obtained by adding for all codewords in C in all possible ways a (n + 1)th coordinate. Clearly, $|\tilde{C}| = s |C|$ and \tilde{C} is \tilde{t} -intersecting. This implies:

Proposition 4.1. $m(n, t)/s^n$ is monotone increasing and thus

 $p(\tilde{t}) = \lim_{n \to \infty} m(n, \tilde{t})/s^n$ exists.

Let $\vec{t} = (t_1, \ldots, t_s)$ and set

 $p(t_i) = \lim_{n \to \infty} m(n, (0, 0, \ldots, t_i, \ldots, 0))/s^n.$

Theorem 4.2. $p(\vec{t}) = p(t_1) \cdots p(t_s)$ holds.

Proof. $p(t) \ge p(t_1) \cdots p(t_s)$ follows from

$$m(n, \vec{t}) \ge \prod_{1 \le i \le s} m(n_i, t_i)$$
 for all $n_i \ge t_i$ with $n_1 + \cdots + n_t = n$.

To prove the upper bound we show:

$$m(n, \tilde{t})/s^n \leq \prod_{1 \leq i \leq s} m(n, t_i)/s^n.$$
(4.1)

To prove (4.1) let $C \subset A^n$ be *i*-intersecting. Define the *i*-closed family C_i by

$$C_i = \{ \vec{y} \subset A^n : \exists \vec{x} \in C, \ S_i(\vec{x}) \subseteq S_i(\vec{y}) \}.$$

Then C_i is clearly $(0, \ldots, 0, t_i, 0, \ldots, 0)$ -intersecting. Thus $|C_i| \le m(n, t_i)$ holds. Since $C \subset C_1 \cap \cdots \cap C_s$, an application of Theorem 3.1 yields (4.1). Now $p(\vec{t}) \le p(t_1) \cdots p(t_s)$ follows by taking limits of both sides. \Box

Even if Theorem 4.2 does not prove Winkler's conjecture (Conjecture 1.2), it shows that it is asymptotically correct. Slightly more would follow from Conjecture 2.3.

Proposition 4.3. If $s \ge 3$ and Conjecture 2.3 is true then for $n \ge n_0(\tilde{t})$ Conjecture 1.2 is true.

Proof (sketch). Considering the RHS of (2.1) one sees that the maximum is attained for some $i < q(\vec{t}, s)$, where $q(\vec{t}, s)$ is independent of *n* (here we used $s \ge 3$). This on the other hand implies $m(n + 1, \vec{t}_i) = sm(n, \vec{t}_i)$ for $n \ge 2q(\vec{t}, s) + t_i$. That is, $m(n, \vec{t}_i) = p(t_i)s^n$ holds for $n \ge 2q(\vec{t}, s) + t_i$. From (4.1) we infer

$$m(n, \vec{t}) \leq p(t_1) \cdots p(t_j) s^n$$
, and for $n \geq \sum_{1 \leq i \leq s} (2q(\vec{t}, s) + t_i)$

we can have equality here by the obvious product construction. \Box

Remark. What one needs for the proof is that in the maximum-sized \vec{t}_i -intersecting families the intersection property is assured by a set of bounded size of the coordinates. This might be easier to prove than Conjecture 2.3.

Proposition 4.4. $m(n, (t, 0, \ldots, 0)) = s^{n-t}$ holds if $s \ge t+1$ and $n \ge t$.

Proof. This result was proved by Frankl and Füredi [8] for $t \ge 15$ and Moon [12] gave a sharpening for $s \ge t + 2$. To obtain the result for $2 \le t \le 14$ as well we have to go through the proof of [8] and do some modifications.

In view of $m(n + 1, (t, 0, ..., 0)) \ge sm(n, (t, 0, ..., 0))$ if for some *n* one had $m(n, (t, 0, ..., 0)) \ge s^{n-t}$, then $p((t, 0, ..., 0)) \ge s^{-t}$ would follow. Thus, it is sufficient to show

$$p((t, 0, \dots, 0)) \leq s^{-t}$$
 (4.2)

To prove (4.2) we apply Proposition 2.4. First note that

$$\sum_{j>(1/s+\varepsilon)n}f_j(s-1)^{n-j}\leq \sum_{j>(1/s+\varepsilon)n}\binom{n}{j}(s-1)^{n-j}=o(s^n)$$

holds.

Thus to prove (4.2) we may suppose that $f_j = 0$ unless $j \leq (1/s + \varepsilon)n$.

For j satisfying $(j-t+1)(t+1) \le n$ we may apply the exact form of the Erdős-Ko-Rado theorem (cf. [14]) to deduce

$$f_j \le \binom{n-t}{j-t}.$$
(4.3)

P. Frankl

If $s \ge t + 2$ and $n > n_0(t)$, then (4.3) holds for all j and gives

$$m(n, (t, 0, ..., 0)) < \sum_{j} {\binom{n-t}{j-t}} s^{n-j} + o(s^{n}) = s^{n-t} + o(s^{n})$$

as desired.

But in the case s = t + 1 (4.3) does not necessarily hold for $n/s < j < n/s(1 + \varepsilon)$. In this case we cannot just apply Wilson's result, but we have to use the following inequality, which follows from the actual proof.

$$f_j \leq (1+\delta) \binom{n-t}{j-t}$$
 holds for $j \leq \left(\frac{1}{s} + \varepsilon\right) n$ if $\varepsilon = \varepsilon(\delta)$ (4.4)

is a sufficiently small positive constant.

Using this instead of (4.3) gives in the same way

$$m(n, (t, 0, \ldots, 0)) \leq (1 + \delta + o(1))s^{n-t}$$

for arbitrarily small δ , provided $n > n_0(\delta)$. This implies (4.2). \Box

Remark. Let us mention that we feel it is rather surprising that the exact result (Proposition 4.4) is deduced from an asymptotic result ((4.2)). In a sense this shows the strength of the Erdős-Ko-Rado Theorem. The original proof of [8] needed the condition $t \ge 15$ only because at that time the exact bound $(n \ge (k - t + 1)(t + 1))$ in the Erdős-Ko-Rado Theorem was known only for $t \ge 15$ (see [7]). That result has the advantage of showing that for $(k - t + 1) \ge n/(t + 1)$ but $k < 1.2n/(t + 1)f_k \le f_k(\mathcal{B}_1)$ holds (which is best possible), implying (4.4) in a stronger form. Actually, combining this result and Proposition 2.4 one can show that for $s = t \ge 15$

$$m(n, (t, 0, ..., 0)) = (s^2 + s - 1)s^{n-t-2}$$

holds.

References

- C. Bang, H. Sharp and P. Winkler, On families of finite sets with bounds on unions and intersections, Discrete Math. 45 (1983) 123-126.
- [2] B. Cooper, unpublished manuscript, 1987.
- [3] P.L. Erdős, P. Frankl and G.O.H. Katona, Extremal hypergraph problems and convex hulls, Combinatorica 5 (1985) 11-26.
- [4] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961) 313-320.
- [5] P. Frankl, Extremal set systems, Ph.D. Thesis, Budapest, 1976.
- [6] P. Frankl, The proof of conjecture of G.O.H. Katona, J. Combin. Theory Ser. A 19 (1975) 208-219.
- [7] P. Frankl, The Erdős-Ko-Rado Theorem is true for n = ckt, Coll. Math. Soc. J. Bolyai 18 (1978) 365-375.

140

- [8] P. Frankl and Z. Füredi, The Erdős-Ko-Rado Theorem for integer sequences, SIAM J. Algebraic Discrete Methods 1 (1980) 376-381.
- [9] G.O.H. Katona, Extremal problems for hypergraphs, in "Combinatorics" Vol. II. pp. 13-42 Math. Centre Tracts, Vol. 56 (Amsterdam, 1974).
- [10] Gy. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964) 329-337.
- [11] D.J. Kleitman, Families of non-disjoint subsets, J. Combin. Theory Ser. A 1 (1966) 153-155.
- [12] A. Moon, An analogue of the Erdős-Ko-Rado Theorem for the Hamming schemes, J. Combin. Theory Ser. A 32 (1982) 386-390.
- [13] P. Winkler, personal communication, 1988.
- [14] R.M. Wilson, The exact bound in the Erdős-Ko-Rado Theorem, Combinatorica 4 (1984) 247-257.