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Let [s]" denote all sequences d = (a,, . . ., a,) of integers with 1 <x; <s. Consider a subset
A of [s]* It is called (¢4, . . ., t,)-intersecting if for any two members &, beAandany 1<is<s
there are at least ¢; positions j, where both @ and b have entry i, that is, a; = b; = i. The problem
of determining max |A| for A being (¢, ..., ¢,)-intersecting is considered. In particular, the
case t, =t,=- -+ =t =1 is solved completely.

1. Introduction

Let A= {ay, ..., a,} be an alphabet of size s and consider X = A", the set of
all words (x,, . . ., x,) of length n over A, i.e. x; € A for all i.

A set Cc X is called a code. It is called (¢4, ..., t)-intersecting if for all
1=i=s and for any two members of C there are at least # coordinate places
where both have a;.

Setting 7=(t;,...,%) we shall speak of Z-intersecting codes. To avoid
trivialities we suppose that n=¢; +- - - + .

Definition 1.1. Let m(n, 7) denote the maximum size of a 7-intersecting code in
A"

For 1si<s set ,=(0,0,...,0,¢,0,...,0). Recently, Winkler [13] has
formulated the following conjecture.

Conjecture 1.2.

$

mn,H= max []mn,7).

it ng=n =1

This conjecture would reduce the determination of m(n,7) to the special case
when all but one of the ¢’s are equal to zero.

We shall discuss this special case in Section 2.

Let us mention that in the case s =2 one can formulate Conjecture 1.2 in terms
of families of sets. Namely, define for ¥ € C the set F(X) = {i:x;=a,}; F(C)=
{F(X):X € C}.

Then (¢, t,)-intersecting means |[FFNE|=¢ and |[FUE|<n—t, for all
R, E e #(C).
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For this special case the conjecture was formulated by Bang et al. {1] and in a
more general form by the author [5].

The special case t; =1 was conjectured by Katona [11] and settled by the
author [6].

In this note we shall prove Conjecture 1.2 in the special case ¢, <s for all i.

Theorem 1.3. Suppose that t;<s for 1 <i<s. Then
m(n, ) =s""""""% holds foralln=t,+--- +1,.

The proof of this result will be given in Section 4 after some preparations in
Section 3.

2. Convex hulls of f-vectors of t-intersecting families

Let $c2") be a family of subsets of [n]={1,2,...,n}, ¥ is called
t-intersecting if |F N F'| =t holds for all F, F' ¢ %.

Example 2.1. For 0<i=<(n —1t)/2 define B,={B c[n]: |BN[t+2i]|=¢t+i}.
Clearly, %; is t-intersecting and Katona [10] proved that among all ¢-
intersecting families 8| (n — t)/2} has the largest size.
For i +t <k =(n+1t)/2 define also

BE={BcB;:|B|=k}U{AcX:|A|=n+1t—k).
For a family, & < 21"l its f-vector f(¥)=(f,, . . . , f,) is defined by
fi={Fe%:|Fl=i}|, O0sisn.

Definition 2.2. A set Z={%#,..., %,} of t-intersecting families % 2" is
called dominating if for every t-intersecting family % 2"l there exist nonnega-
tive reals a4, ..., a, with a; +- -+ a,, =1, such that f(%) <Y af (%) holds

coordinatewise, that is f(F) < ¥ ,f(%) for0<j=<n.

Conjecture 2.3 (Cooper [2]). {BF:0<is(n—1)/2, t+i<k<(n+1)/2} is a
dominating set for 1 <t <n.

Let us mention that the case ¢t = 1 was solved by Erdos et al. [3].

Conjecture 2.3 would have several important corollaries, e.g. it would imply
that the largest size of a t-intersecting family of k-element sets is f,.(%;) for some
1=sis(n-1)/2

Proposition 2.4.
m(n, (t,0,...,0)= max > fs—1) 2.1)

0O<j=<n

where the maximum is over the f-vectors (fy, . . . , f,) of all t-intersecting families.
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Proof. Let C be a (1,0, ..., O)-intersecting code of maximal size. For X =
(X1, ..., X%,) €C defined F(X)={i:x;=a,}. Then F(C)={F(¥):xeC} is t-
intersecting and the maximality of C implies that for given Fe F(C) all
(s —1)* "' words X € X with F(¥) = F are in C.

On the other hand, if & is t-intersecting then C(¥)={X¥e X":F(X)e &} is
(¢,0,...,0)-intersecting of size Yoz, fi(F)(s —1)" 7.

Consequently, the determination of m(n, (¢, 0, . . ., 0)) is equivalent to deter-
mine max Y, fi(s — 1)*~/ where the maximum is over all f-vectors (fo, ..., f,) of
t-intersecting families. [

Since by Conjecture 2.3 the %;’s form a dominating set and the coefficients
(s — 1)~/ are nonnegative, we infer

Corollary 2.5. If Conjecture 2.3 is true, then
m(n, (1,0,...,0)=max > f(BHs—-1)""
ik

O=<j=n

3. A Kleitman-type result

For X=(xi,...,x,)€A” define S(X)={j:x;=a;}. Clearly [n]=
{1, ...,n}=5F)U---US(X) is a partition.
Call a code C c A" i-closed if for %, § € A"S;(¥) c S;(¥) and X € C imply y € C.

Theorem 3.1. Suppose that C;c A" is i-closed for 1 <i<s. Then

IC,N---nGl/s"< ] ICI/s"  holds. (3.1)

1si=<s

Proof. For n =0 each of C; is empty or consists of the empty word. Thus (3.1)
holds. Apply induction on n,n=1. For 1<i<s let C,(j) denote the code
obtained from the codewords of C; which have g; in the last coordinate position
by deleting this last position. Using the definition and i-closedness we have

ICDI+ -+ - +]Ci(s) = |Cil,
IC@OI= GG fori#j and |GO) =I|C(j)I forig¢{j,j'}. (3.2)
Set p; = |C:()I/1Cil, q: = |Ci(j)I/ICi| for some j+#i. In view of (3.2) we have

pit(s—1g=1 gq<1l/s<p,. 3.3)
Claim.
12 ql ..... qj—lquj+l ..... qS <s1—s
=<j=<s

holds with equality if and only if q; = p, =1/s holds for at least s —1 values of
i=1,...,s.
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Proof of the Claim. Set p, =1 — (s — 1)q; and consider the partial derivative of
the LHS with respect to g,. It is the sum of s terms, one negative and (s — 1)
positive. The negative term is —(s — 1)g, - - + ¢,, while each positive is a similar
product, except that the coefficient is one, and one of the g,’s is replaced by p;
which is — by (3.3) — not less in value. This implies the nonnegativeness of the
derivative. It is even strictly positive, unless g; = p;, i.e. ¢; = 1/s.

Thus we increase the value of LHS by setting g, =- - - = ¢, = 1/s and then its
value is s'~*. O

Now using [C;N---NC| =X < |Ci(j)N - --NC(j)|, applying the induc-
tion hypothesis and using the claim we obtain:

1 5 5
|IC,N---NCl/s" s; H |Ci|/sn“1 2 qi gi-1Pi9j+1" """ " qs = H |Cil/s".
i=1 j=1

1=si=s
O

Remark. Note that in the case s =2 inequality (3.1) was already proved by
Kleitman [9].

4. The main result

Let C = A” be a I-intersecting code.

Let C = A™*! be obtained by adding for all codewords in C in all possible ways
a (n + 1)th coordinate. Clearly, |C| =s |C| and C is i-intersecting. This implies:
Proposition 4.1. m(n, 7)/s” is monotone increasing and thus

p(®) = lim m(n, T)/s" exists.

Leti=(t;,...,t) and set
p(t;)=lim m(n, (0,0,...,¢4,...,0))/s"

Theorem 4.2. p(i)=p(t;) - - - - - p(t,) holds.

Proof. p(t)=p(t,) - p(t,) follows from

m(n, ) = l_[ m(n;,t) foralln,=t¢ withn,+---+n,=n.

I=iss

To prove the upper bound we show:

m(n, Dis"< [] mn, t)/s" 4.1

1=i<s
To prove (4.1) let C < A” be i-intersecting. Define the i-closed family C; by
C,={ycA”:IA¥ e C, S,(¥) = S:(5)}.
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Then C;is clearly (0,...,0,¢,0, ..., 0)-intersecting. Thus |C;| < m(n, t;) holds.
Since C= C,N - - - N C;, an application of Theorem 3.1 yields (4.1).
Now p(D)<p(t))--- - p(t,) follows by taking limits of both sides. O

Even if Theorem 4.2 does not prove Winkler’s conjecture (Conjecture 1.2), it
shows that it is asymptotically correct. Slightly more would follow from
Conjecture 2.3.

Proposition 4.3. If s =3 and Conjecture 2.3 is true then for n = ny(f) Conjecture
1.2 is true.

Proof (sketch). Considering the RHS of (2.1) one sees that the maximum is
attained for some i <q(7, s), where g(, s) is independent of n (here we used
s =3). This on the other hand implies m(n + 1, %) =sm(n, 7,) for n =2q(i, s) +
t.. That is, m(n, &) = p(t,)s” holds for n = 2q(%, s) + t;. From (4.1) we infer

m(n, D) <p(t))-----p(t)s", andforn= 3 (2q(Fs)+1)

I=si=s

we can have equality here by the obvious product construction. [J

Remark. What one needs for the proof is that in the maximum-sized F-
intersecting families the intersection property is assured by a set of bounded size
of the coordinates. This might be easier to prove than Conjecture 2.3.

Proposition 4.4. m(n, (t,0,...,0))=s""holdsifs=t+1and n=1.

Proof. This result was proved by Frankl and Fiiredi [8] for ¢ = 15 and Moon {12]
gave a sharpening for s = ¢ + 2. To obtain the result for 2 <t <14 as well we have
to go through the proof of [8] and do some modifications.

In view of m(n+1, (¢,0,...,0))=sm(n, (¢, 0, ..., 0)) if for some n one had
mn, (£,0,...,0)>s""", then p((+,0,...,0))>s"" would follow. Thus, it is
sufficient to show

p((4,0,...,0)=<s""' 4.2)
To prove (4.2) we apply Proposition 2.4. First note that

S fe-vs 3 (M- =0
j>(/s+&)n j>(/s+e)n N]
holds.
Thus to prove (4.2) we may suppose that f; = 0 unless j < (1/s + £)n.
For j satisfying (j—¢t+1)(¢t+1)<n we may apply the exact form of the
Erd6s-Ko—Rado theorem (cf. [14]) to deduce

f,s(’;::> (4.3)
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If s =¢+2 and n > ny(t), then (4.3) holds for all j and gives
n—t .
m(n, (¢,0,...,0)<D <j t)s"“’ +o(s")=s5""+0(s")
- -

as desired.

But in the case s = ¢+ 1 (4.3) does not necessarily hold for n/s <j<n/s(1 + ¢).
In this case we cannot just apply Wilson’s result, but we have to use the following
inequality, which follows from the actual proof.

=+ 6)(7::) holds for j < <§+ e)n if £ = €(6) (4.4)

is a sufficiently small positive constant.
Using this instead of (4.3) gives in the same way

m(n, (6,0,..., 0))<(1+8 +o(1))s"

for arbitrarily small d, provided n > ny(d). This implies (4.2). O

Remark. Let us mention that we feel it is rather surprising that the exact result
(Proposition 4.4) is deduced from an asymptotic result ((4.2)). In a sense this
shows the strength of the Erd6s—Ko—Rado Theorem. The original proof of [8]
needed the condition ¢=15 only because at that time the exact bound
(n=(k—-t+1)(t+1)) in the Erddés—Ko-Rado Theorem was known only for
t =15 (see [7]). That result has the advantage of showing that for (k —¢t+1) >
n/(t+1) but k <1.2n/(t + 1)f, <f(%,) holds (which is best possible), implying
(4.4) in a stronger form. Actually, combining this result and Proposition 2.4 one
can show that for s =¢ =15

m(n, (t,0,...,0)=(s*+s—1)s""?
holds.
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