COMMUNICATION

A LOWER BOUND ON THE SIZE OF A COMPLEX GENERATED BY AN ANTICHAIN

P. FRANKL
CNRS, Paris and AT\&T Bell Laboratories, Murray Hill, New Jersey 07974, USA

Received 3 October 1988

Communicated by R.L. Graham
A short proof of the following result of Kleitman is given: the total number of sets contained in some member of an antichain of size $\binom{n}{k}$ over the n-set is at least $\binom{n}{0}+\cdots+\binom{n}{k}$ for $0 \leqslant k \leqslant \frac{1}{2} n$. An equally short proof of Harper's isoperimetric theorem is provided as well.

1. Introduction

Let $[n]=\{1,2, \ldots, n\}$ be an n-element set. A family $\mathscr{F} \subset 2^{[n]}$ is called an antichain if $F, F^{\prime} \in \mathscr{F}, F \subset F^{\prime}$ imply $F=F^{\prime}$. A family \mathscr{C} is called a complex if $\emptyset \in \mathscr{C}$ and $E \subset F \in \mathscr{C}$ implies $E \in \mathscr{C}$. There is a $1-1$ correspondence between nonempty antichains and complexes. Namely if \mathscr{C} is a complex then define the family of maximal sets in \mathscr{C} by

$$
\mathscr{A}(\mathscr{C})=\{A \in \mathscr{C}: \nexists B \in \mathscr{C}, B \neq A, A \subset B\} .
$$

Clearly, $\mathscr{A}(\mathscr{C})$ is an antichain and

$$
\mathscr{C}=\{C \subset[n]: \exists A \in \mathscr{A}(\mathscr{C}), C \subset A\} .
$$

We call $\mathscr{F}(\mathscr{C})=\mathscr{C}-\mathscr{A}(\mathscr{C})$ the interior of \mathscr{C}. Recall that $|\mathscr{F}|$ is called the size of \mathscr{F}. The main result of this note is the following.

Theorem 1.1. Suppose that $\mathscr{C} \subset 2^{[n]}$ is a complex of size at least $\binom{n}{0}+\cdots+\binom{n}{k}+$ $\left(k^{x}+1\right)$ for some $1 \leqslant k+1 \leqslant x \leqslant n$. Then

$$
\begin{equation*}
|\mathscr{F}(\mathscr{C})| \geqslant\binom{ n}{0}+\cdots+\binom{n}{k-1}+\binom{x}{k} \text { holds. } \tag{1}
\end{equation*}
$$

For a family $\mathscr{F} \subset 2^{[r]}$ define its boundary $\sigma(\mathscr{F})$ by

$$
\sigma(\mathscr{F})=\{E \subset[n]:|E \Delta F| \leqslant 1 \text { for some } F \in \mathscr{F}\},
$$

where Δ denotes the symmetric difference.
The strongest version of the isoperimetric theorem of Harper can be stated as follows (cf. [6, 9] on [4]).

Harper's Theorem. Suppose that $\mathscr{F} \subset 2^{[n]}$,

$$
|\mathscr{F}|=\binom{n}{n}+\cdots+\binom{n}{k+1}+\binom{a_{k}}{k}+\cdots+\binom{a_{s}}{s},
$$

where $n \geqslant a_{k}>\cdots>a_{s} \geqslant s \geqslant 1$. Then

$$
\left\lvert\, \sigma(\mathscr{F}) \geqslant\binom{ n}{n}+\cdots+\binom{n}{k}+\binom{a_{k}}{k-1}+\cdots+\binom{a_{s}}{s-1} .\right.
$$

In Section 3 we give a short proof of this result.
Let us state now the result mentioned in the abstract.
Kleitman's Theorem ([10]). Suppose that $\mathscr{C} \subset 2^{[n]}$ is a complex with $|\mathscr{A}(\mathscr{C})| \geqslant\binom{ n}{k}$, $0 \leqslant k \leqslant \frac{1}{2} n$. Then

$$
\begin{equation*}
|\mathscr{C}| \geqslant\binom{ n}{0}+\cdots+\binom{n}{k} \text { holds. } \tag{2}
\end{equation*}
$$

Before deriving this result from Theorem 1.1 let us mention that the original proof was incomplete. A full version, due to A.M. Odlyzko appears in [5]. The theorem was extended to multisets by Clements [1] who proves best possible inequalities even if $|\mathscr{A}(\mathscr{C})|$ is not of the form $\binom{n}{k}$.
Suppose for contradiction that

$$
|\mathscr{C}|=\binom{n}{0}+\cdots+\binom{n}{i}+\binom{x}{i+1} \text { holds with } i<k \text { and } x<n .
$$

Then (1) gives

$$
|\mathscr{A}(\mathscr{C})| \leqslant\binom{ n}{i}+\binom{x}{i+1}-\binom{x}{i}<\binom{n}{i+1} \leqslant\binom{ n}{k},
$$

a contradiction. (We used the inequality

$$
\binom{n}{i+1}-\binom{n}{i}=\frac{n-2 i-1}{i+1}\binom{n}{i}>\frac{x-2 i-1}{i+1}\binom{x}{i}=\binom{x}{i+1}-\binom{x}{i}
$$

which is true by $n>2(i+1), n>x$ and the monotonicity of $\binom{y}{i}$ for $y \geqslant i$.)

2. Proof of the Theorem 1.1

Let us introduce the notation

$$
\partial \mathscr{F}=\{G: \exists F \in \mathscr{F}, G \subset F,|F-G|=1\} .
$$

Note that if \mathscr{F} is a complex then $\mathscr{F}(\mathscr{F})=\partial \mathscr{F}$ holds.

Let us recall the definition of the shifting operator $S_{i j}$ for $i \leqslant i<j \leqslant n$, which goes back to Erdós-Ko-Rado [2].

$$
S_{i j}(\mathscr{F})=\left\{S_{i j}(F): F \in \mathscr{F}\right\}
$$

where

$$
S_{i j}(F)= \begin{cases}F^{\prime}=(F-\{j\}) \cup\{i\} & \text { if } i \notin F, j \in F, F^{\prime} \nsubseteq \mathscr{F} \\ F & \text { otherwise. }\end{cases}
$$

The following simple but important proposition goes back to Katona [7] (see also [3], where it was used to give a short proof of the Kruskal-Katona Theorem).

Proposition 2.1. $\partial\left(S_{i j}(\mathscr{F})\right) \subset S_{i j} \partial \mathscr{F}$ holds for all $1 \leqslant i<j \leqslant n$.
This proposition shows that in proving the theorem we may replace \mathscr{C} repeatedly by $S_{i j}(\mathscr{C})$. Doing so repeatedly for $\{i, j\}=\{1,2\}, \ldots,\{1, n\}$ will leave us with a family \mathscr{F} satisfying $|\mathscr{F}|=|\mathscr{C}|,|\partial \mathscr{F}| \leqslant|\partial \mathscr{C}|$ and $S_{1 j}(\mathscr{F})=\mathscr{F}$ for $2 \leqslant j \leqslant n$.

Define $\mathscr{F}(1)=\{F-\{1\}: 1 \in F \in \mathscr{F}\}$ and $\mathscr{F}(\overline{1})=\{F \in \mathscr{F}: 1 \notin \mathscr{F}\}$.

Claim 2.2.

(i) $|\partial \mathscr{F}|=|\mathscr{F}(1)|+|\partial \mathscr{F}(1)|$
(ii) $\partial \mathscr{F}(\overline{1}) \subset \mathscr{F}(1)$.

Proof of Claim. First we prove (ii). If $G \in \partial \mathscr{F}(\overline{1})$ then for some $1<j \leqslant n$ and $j \notin G$ we have $G \cup\{j\} \in \mathscr{F}$. Since $1 \notin G$ and $S_{1 j}(\mathscr{F})=\mathscr{F}, \quad(G \cup\{1\}) \in \mathscr{F}$, i.e. $G \in \mathscr{F}(1)$ follows.

Now (i) follows from $|\partial \mathscr{F}|=|\partial \mathscr{F}(1)|+|\mathscr{F}(1) \cup \partial \mathscr{F}(\overline{1})|$ which is valid for all families \mathscr{F}.

Now we are ready to prove Theorem 1.1 by induction on n. We distinguish two cases
(a) $\quad|\mathscr{F}(1)| \geqslant\binom{ n-1}{0}+\cdots+\binom{n-1}{k-1}+\binom{x-1}{k}$.

By the induction hypothesis $|\partial \mathscr{F}(1)| \geqslant\left(n^{n-1}\right)+\cdots+\binom{n-1}{k-2}+\binom{x-1}{k-1}$. Thus the statement follows from Claim (i).
(b) $\quad|\mathscr{F}(1)|<\binom{n-1}{0}+\cdots+\binom{n-1}{k-1}+\binom{x-1}{k}$.

Now

$$
|\mathscr{F}(\overline{1})|>\binom{n-1}{0}+\cdots+\binom{n-1}{k}+\binom{x-1}{k+1} .
$$

We want to apply the induction hypothesis to $\mathscr{F}(\overline{1}) \subset 2^{\{2, \ldots, n\}}$. There is a slight technical difficulty, namely $x-1<k+1$ might happen. However, in that case we can replace \boldsymbol{x} by $k+2$ and the following argument remains valid.

$$
|\partial \mathscr{F}(\overline{1})| \geqslant\binom{ n-1}{0}+\cdots+\binom{n-1}{k-1}+\binom{x-1}{k}
$$

which contradicts Claim (ii).
Just as in [3], the same proof would work to give the following best possible result. Suppose

$$
|\mathscr{F}|=\binom{n}{0}+\cdots+\binom{n}{k}+\binom{a_{k+1}}{k+1}+\binom{a_{k}}{k}+\cdots+\binom{a_{s}}{s}
$$

for some integers $1 \leqslant s \leqslant a_{s}<\cdots<a_{k+1}<n$. Then

$$
|\partial \mathscr{F}| \geqslant\binom{ n}{0}+\cdots+\binom{n}{k-1}+\binom{a_{k+1}}{k}+\cdots+\binom{a_{s}}{s-1} .
$$

Note the relation with the Kruskal-Katona Theorem [8, 11].
The exact form permits to give an exact answer to the problem given in $1 \leqslant m \leqslant\binom{ n}{\left[n^{n} 12\right.}$, minimize $|\mathscr{C}|$, where \mathscr{C} is a complex with $|\mathscr{A}(\mathscr{C})|=m$, i.e. \mathscr{C} is generated by an antichain of size \boldsymbol{m}. This problem was solved by Clements [1].

3. The size of the exterior of co-complexes and Harper's theorem

Recall that $\mathscr{F} \subset 2^{[n]}$ is called a co-complex if $\{[n]-F: F \in \mathscr{F}\}$ is a complex.
Theorem 3.1. Let $\mathscr{F} \subset 2^{[n]}$ be a co-complex,

$$
|\mathscr{F}| \geqslant\binom{ n}{n}+\cdots+\binom{n}{k+1}+\binom{x}{k}, \quad k \leqslant x \leqslant n,
$$

x real. Then

$$
\begin{equation*}
|\partial \mathscr{F}| \geqslant\binom{ n}{n-1}+\cdots+\binom{n}{k}+\binom{x}{k-1} . \tag{3.1}
\end{equation*}
$$

Proof. The proof is very similar to that of Theorem 1.1, therefore we shall be somewhat sketchy.

In view of Proposition 2.1 we may assume that \mathscr{F} is shifted. Apply induction on
n, the case $\boldsymbol{n}=1$ being trivial. We distinguish two cases again.
(a) $|\mathscr{F}(1)| \geqslant\binom{ n-1}{n-1}+\cdots+\binom{n-1}{k}+\binom{x-1}{k-1}$.

By the induction hypothesis we have

$$
|\partial \mathscr{F}(1)| \geqslant\binom{ n-1}{n-2}+\cdots+\binom{n-1}{k-1}+\binom{x-1}{k-2}
$$

and (3.1) follows from Claim 2.2(i).
(b) $\quad|\mathscr{F}(1)|<\binom{n-1}{n-1}+\cdots+\binom{n-1}{k}+\binom{x-1}{k-1}$.

Now

$$
|\mathscr{F}(\overline{1})|>\binom{n-1}{n-1}+\cdots+\binom{n-1}{k+1}+\binom{x-1}{k}
$$

and thus by the induction hypothesis

$$
|\partial \mathscr{F}(\overline{1})| \geqslant\binom{ n-1}{n-2}+\cdots+\binom{n-1}{k}+\binom{x-1}{k-1} \text { follows. }
$$

Since $[2, n] \in(\mathscr{F}(1)-\partial \mathscr{F}(\overline{1}))$, Claiin $2.2(i i)$ gives the contradiction

$$
\left\lvert\, \mathscr{F}(1) \geqslant\binom{ n-1}{n-1}+\binom{n-1}{n-2}+\cdots+\binom{n-1}{k}+\binom{x-1}{k-1} .\right.
$$

The same proof gives the following, more exact version.
Theorem 3.2. Let $\mathscr{F} \subset 2^{[n]}$ be a co-complex,

$$
|\mathscr{F}|=\binom{n}{n}+\cdots+\binom{n}{k+1}+\binom{a_{k}}{k}+\binom{a_{k}-1}{k-1}+\cdots+\binom{a_{s}}{s},
$$

$n \geqslant a_{k}>a_{k-1}>\cdots>a_{s} \geqslant s \geqslant 1$. Then

$$
|\partial \mathscr{F}| \geqslant\binom{ n}{n-1}+\cdots+\binom{n}{k}+\binom{a_{k}}{k-1}+\cdots+\binom{a_{s}}{s-1} .
$$

Recall the definition of the pushing-up operation $T_{i}, 1 \leqslant i \leqslant n$.

$$
\begin{aligned}
& T_{i}(\mathscr{F})=\left\{T_{i}(F): F \in \mathscr{F}\right\}, \text { where } \\
& T_{i}(F)= \begin{cases}F^{\prime}=F \cup\{i\} & \text { if } i \notin F, F^{\prime} \notin \mathscr{F} \\
F & \text { otherwise. }\end{cases}
\end{aligned}
$$

The following lemma is easy to prove.
Propsition 3.3 [4]. $\sigma T_{i}(\mathscr{F}) \subset T_{i}(\sigma \mathscr{F})$ for all $\mathscr{F} \subset 2^{[n]}$.

Applying T_{1}, \ldots, T_{n} consecutively to a family produces a co-complex of the same size whose boundary is not larger. Noting that $\sigma \mathscr{F}=\{[n]\} \cup \partial \mathscr{F}$ holds for a co-complex \mathscr{F}, Harper's theorem follows from Theorem 3.2.

References

[1] G.F. Clements, The minimal number of basic elements in a multiset antichain, J. Combinatorial Th. A 25 (1978) 153-162.
[2] P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961) 313-320.
[3] P. Frankl, A new short proof of the Kruskal-Katona theorem, Discrete Math. 48 (1984) 327-329.
[4] P. Frankl and Z. Füredi, A short proof for a theorem of Harper about Hamming spheres, Discrete Math. 34 (1981) 311-313.
[5] C. Greene and D.J. Kleitman, Proof techniques in the theory of finite sets, in: Gian-Carlo Rota, ed., Studies in combinatorics, MAA Studies in Mathematics 17 (Washington, D.C., 1978) 22-79.
[6] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory 1 (1966) 385-394.
[7] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hung. 15 (1964) 329-337.
[8] G.O.H. Katona, A theorem of finite sets, in Theory of Graphs, Akademiai Kiado, Budapest (1968) 187-207.
[9] G.O.H. Katona, The Hamming-sphere has minimum boundary, Studia Sci. Math. Hungar. 10 (1975) 131-140.
[10] D.J. Kleitman, On subsets containing a famiy of non-commensurable subsets of a finite set, J. Combinatorial Th. 1 (1966) 297-299.
[11] J.B. Kruskal, The number of simplices in a complex, in Math. Optim. Techniques (Univ. California Press, Berkeley, 1963) 251-278.

