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A short proof of the following result of Kleitman is given: the total number of sets contained

in some member of an antichain of size (;) over the n-set is at least () +:- -+ (%) for
0<k <3}n. An equally short proof of Harper’s isoperimetric theorem is provided as well.

1. Introduction

Let [n)={1,2,...,n} be an n-clement set. A family % 2"l is called an
antichain if F, F'e %, Fc F' imply F=F'. A family € is called a complex if
#e€ and EcFe € implies E€ €. There is a 1-1 correspondence between
nonempty antichains and complexes. Namely if € is a complex then define the
family of maximal sets in € by

H(€)={Aec€:3Bc ¢, B+A,AcB).
Clearly, $(€) is an antichain and
€={Cc[n]:3A € 4(€), CcA}.
We call $(6) = € — (%) the interior of €. Recall that |%| is called the size of

%. The main result of this note is the following.

Theorem 1.1. Suppose that € = 2!") is a complex of size at least (§) + - - - + (3) +
(x31) for some 1<k +1<x<n. Then

|.¢(‘€)|2(;) ;. --+(kfl)+(z) holds. 1)

For a family & c 2\ define its boundary o(%) by
0(F) = {E c[n]:|EAF| <1 for some F € ¥},

where A denotes the symmetric difference.
The strongest version of the isoperimetric theorem of Harper can be stated as
follows (cf. [6, 9] on [4]).
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Harper’s Theorem. Suppose that ¥ < 2!"),

= ()t )+ () (5

wheren=a,>--->a,=s=1. Then

"’(?)?(:)J'"'+(2)+(1:f1)+"'+(s‘f1)'

In Section 3 we give a short proof of this result.
Let us state now the result mentioned in the abstract.

Kleitman’s Theorem ([10]). Suppose that € < 21"} is a complex with |4(%)| = (),
O0<k<1in. Then

16| = (g) P (’;) holds. @)

Before deriving this result from Theorem 1.1 let us mention that the original
proof was incomplete. A full version, due to A.M. Odlyzko appears in [S]. The
theorem was extended to multisets by Clements [1] who proves best possible
inequalities even if |4(€)| is not of the form (}).

Suppose for contradiction that

61=(5)+---+ (%) +(, ) hotds with i <k and x<n.
0 i i+1

Then (1) gives

I4(8)] < (':) * (i i1) - (f) = (i . 1) = (:)

a contradiction. (We used the inequality

(7)== ()= 0)-(3)-0)

which is true by n >2(i + 1), n >x and the monotonicity of (%) for y =1i.)

2. Proof of the Theorem 1.1

Let us introduce the notation
0%={G:3Fe ¥, GcF, |F-G|=1)}.

Note that if & is a complex then $(F) = 6% holds.
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Let us recall the definition of the shifting operator S; for i <i<j=<n, which
goes back to Erdds-Ko-Rado [2].

Si(F) = {S;(F):F € F}
where

F'=(F-{j})U{i} ifi¢F,jeF,F'¢%F
F otherwise.

5,7 ={

The following simple but important proposition goes back to Katona [7] (see

also [3], where it was used to give a short proof of the Kruskal-Katona
Theorem).

Proposition 2.1. 3(S;(¥)) = S;0F holds forall 1<i<j=<n.

This proposition shows that in proving the theorem we may replace €
repeatedly by S;(€). Doing so repeatedly for {i,j}={1,2},..., {1, n} will
leave us with a family & satisfying |%|=|%|, |0F|=<|9%€| and $;{F)=F for
2<j<n.

Define F(1)={F—{1}:1e Fe ¥} and F(1)={F e F:1¢ %).

Claim 2.2.

(@) 187 =1FQ)| +39F ()|
(i) 9F(1) < #().

Proof of Claim. First we prove (ii). If G € 3%(1) then for some 1<j=<n and
j¢ G we have GU{j}e%. Since 1¢G and §,(F)=%, (GU{1})eF ie.
G € #(1) follows.

Now (i) follows from |8%|=|0F(1)| +|F(1)U 3%(1)| which is valid for all
families . 0O

Now we are ready to prove Theorem 1.1 by induction on n. We distinguish two
cases

O =)o (GI ()

By the induction hypothesis [3F(1)|=("5")+ - -+ (222) +(£Z1). Thus the
statement follows from Claim (i).

@ <) G100
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Now
(i >(n—l)+“.+(n—1)+(x—1\.
IFOI>{"g ARVESY,
We want to apply the induction hypothesis to F(1) =2>-"}. There is a slight

technical difficulty, namely x — 1 <k + 1 might happen. However, in that case we
can replace x by k + 2 and the following argument remains valid.

= n—1 n—1 (x - 1)
|ag(1)|>( 0 )+ +(k—1)+ k)
which contradicts Claim (ii). O

Just as in [3], the same proof would work to give the following best possible
result. Suppose

n n Q1 a as
.g;=( )+-'.+( )+( )+( )+...+( )
11 0 k k+1 k s
for some integers 1 <s<aq,<-:--<ag,, <n. Then

712 (0) (6 2y)+ () (2)
|8Jf|>(0+ o)t U )+ 2y

Note the relation with the Kruskal-Katona Theorem [8, 11].

The exact form permits to give an exact answer to the problem given in
1<m <(|a/2)), minimize |€|, where € is a complex with |4(€)|=m, i.e. € is
generated by an antichain of size m. This problem was solved by Clements [1].

3. The size of the exterior of co-complexes and Harper’s theorem
Recall that % < 21 is called a co-complex if {[n] — F:F € %} is a complex.
Theorem 3.1. Let ¥ = 2!") be a co-complex,

n n X
#1=(7)+--+( 1)+ () k=x=n,
I#1={, k1) T\g) fesxsn

x real. Then

Iagl?(nfl)-iu”+(2)+(ki1)' (3.1)

Proof. The proof is very similar to that of Theorem 1.1, therefore we shall be
somewhat sketchy.

In view of Proposition 2.1 we may assume that & is shifted. Apply induction on
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n, the case n =1 being trivial. We distinguish two cases again.

@ gz )+ (" )+ (CI))

By the uiduction hypothesis we have

agi=(,23) -+ (¢ 21)+(:22)

and (3.1) follows from Claim 2.2(i).

o won<(I) e () ()
Now

w1 (7)) + ()

and thus by the induction hypothesis

- n-—1 n——l\ (x—l)'
o= (" ")+ -+ (" N+ (7 ) follows.

Since [2, n] € (¥(1) — 8%(1)), Ciairn 2.2(ii) gives the contradiction
n—1 n-—1 n-—1 x—1
|g(1)>(n—l)+(n—-2)+‘“+( k )+(k—1)' =

The same proof gives the following, more exact version.

Theorem 3.2. Let ¥ = 2!"! be a co-complex,

'9"=(Z)+"'+(k11)+(7f)+(a£__11)+'"+(‘Z’)'

n=a.>a,_>--->a,=s=1. Then

Ia%?(nfl)J,...+(Z)+(k‘j‘1)+...+(s‘fl). O

Recall the definition of the pushing-up operation 7;, 1 <i=<n.
T(%) ={T(F):F € ¥}, where

F'=FU{i} ifi¢F, F'¢%F
F otherwise.

7(F)={
The following lemma is easy to prove.

Prop-ition 3.3 [4]. oT(%) c T;(0%) for all F < 21"\,
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Applying T,, ..., T, consecutively to a family produces a co-complex of the
same size whose boundary is not larger. Noting that 0% = {[n]} U 3% holds for a
co-complex %, Harper’s theorem follows from Theorem 3.2.
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