Solution of the Littlewood-Offord problem
in high dimensions

By P. FrankL and Z. FUReDI

Abstract

Consider the 2" partial sums of arbitrary n vectors of length at least one in
d-dimensional Euclidean space. It is shown that as n goes to infinity no closed
ball of diameter A contains more than (|A| + 1 + o(l))(ln;ﬂ) out of these sums
and this is best possible. For A — |A| small an exact formula is given.

1. Introduction

Investigating the number of zeros of random polynomials, Littlewood and
Offord [14] were led to the following problem. Let d > 1 and RY be d-dimen-
sional Euclidean space. Further let V= {v,,...,v,} be a set of n non-neces-
sarily distinct vectors in RY |v,|, the length of v,, is supposed to be at least one,
1 < i < n. Consider LV, the collection of all 2" partial sums

zﬂ: g0, with e, = Oor 1.
i=1
For a positive real A, let
m(V, A) = max{|S N LV|: S is a closed ball of diameter A } .
Now, the famous Littlewood-Offord problem is to determine or estimate
m(n, A) = my(n, A) = max{m(V, A): V.c R? is a set of
n vectors of length at least one}.

In 1945 Erdés [1] determined my(n, A) for d = 1 and arbitrary A. Set
s=|A]+ L

Tueorem 1.1 (Erdés). m(n, A) is the sum of the largest s binomial
coefficients (") with 0 < i < n.

We will outline his proof in Section 4. To see the lower bound part, one can
take v, = v, = -+ = v, = 1. Note that for fixed A and n = oo, m(n, ) =

(18] + 1 + o(D)( ;e }
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There has been a lot of research related to this problem for d > 2. In
particular, Katona [7] and Kleitman [9] showed that my(n, A) = (ln;EI) holds for
A < 1. This was extended by Kleitman [10] to arbitrary d > 2.

Their proofs led to the creation of a new area in extremal set theory, to the
socalled M-part Sperner theorems; see e.g., Firedi [2], Griggs, Odlyzko and
Shearer [5].

These results were used to give upper bounds on my(n, A). To mention a
few, Kleitman [12] showed that my(n, A) is upper-bounded by the sum of the
2| A/ V2 | largest binomial coefficients in n.

Griggs [3] proved

my(n, A) < 22‘-1-2[‘1‘/3-'(1";2})'
Sali [16], [17] improved this bound to

my(n,A) < 2"'&\/3]( lﬂ;zl )

Let us mention also that Griggs et al. [4] proved that for A > n/Vd and for
n > nyd) one has my(n, A) = 2". This shows that for large d and A,
my(n, A)/m(n, A) can be arbitrarily large. Here we prove:

Tueorem 1.2. For fixed d and A,

(L) ma(n, 8) = (18] + 1+ ()| mrey )
whenever n — 0.

One might think that Theorem 1.1 holds for arbitrary d, A and n > ny(d, A).
However, this is not true for d > 2 and (s — 1)? + 1 < A% < 5% s > 2, arbi-
trary.

Example 1.3 ([13]). Let v, = v, = --- = v,_, be unit vectors and v, a
unit vector orthogonal to v,. Take the sphere S of diameter A centered at
(v, + -+ +0,)/2. Suppose that n + s is even. Then

Vs =2 ¥ (“Tl)>ml(n,a).
n—-s/2<isn+s/2 '

Our second result says that if A — |A] is very small then the bound of
Theorem 1.1 is valid.

Tueorem 1.4. Suppose thats — 1 < A <s — 1 + 1/10s% then
my(n, A) = my(n, A) holds forn > ny(d, A).
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We need some geometric preliminaries as well. By a cone C we mean
always a circular closed double cone with vertex at the origin. Thus if the axis of
the cone is a line L and the angle of the cone is a then C consists of the points
of those lines through the origin which have angle at most a/2 with L. A cone is
the union of two halfcones.

Let S, denote the unit sphere centered at the origin. Then S, N C is a
spherical (double) cap of angle a. Let {(d, ) denote the minimum number of
double caps of angle a needed to cover S,. Let us recall the following upper
bound on {(d, «) from [15]: If « < 7/2 then

t(d, a) < d’{sin%)_du.

For two disjoint cones C, D (that is, C N D consists of the origin only),
considering their intersection with the plane P determined by the two axes, we
can define (see Figure 1, next page) the angles a, B as the angles of the two open
cones whose union is P — (C U D). Call min{ a, B} the angle between C and
D. Note that if C has angle y and D has angle 8, then a+ B+ y+ 8=
holds.

2. The main lemmas

By vectors we shall always mean vectors of length at least one in RY. For a
set V of vectors let LV denote the set of all 2/! sums ., &(v)v with &v) =
0 or 1. Recall that

m(V,A) = max |SNZV]|.
g

Of course m(V,A) =m(V— {u} U {—u},A) for any u € V; ie., we
can reverse a vector. Sometimes the Littlewood-Offord problem is reformulated
in the following way:

m(V, A) = max{|S N {Ze(v)v: where e(v) = +1, v € V}|:

S ¢ R? a ball of radius A }.

Because of Kleitman’s theorem we will suppose that A > 1 (ie, s > 2),
d>2

Define also

p(V,A) =m(V,A4)/2V.

Our first proposition says that p(V, A) is monotone decreasing.

ProposiTion 2.0. Let W C V be sets of vectors. Then
(2.0) p(V,A) <p(W,A4)

holds for all A > 0.
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Proof. Let S be an arbitrary ball of diameter A. Then

ISNEZVIs Y ISNn(u+IW) <2V Vim(W,A),
uel(V-W)

yielding
m(V,A) <2V-"¥im(W, 4).
Dividing both sides by 2!V!, we see that (2.0) follows. 0

Lemma 2.1. Let C, D be disjoint cones in R? with respective angles v, 8.
Let a and B be the two angles between the cones (see Figure 1). Let h be a
positive integer, A > 0, real such that

(2.1) hmin{sin—g-.sing] > A.
Suppose further that |C N\ V| = ¢, D N V| = d. Then
(2.2) p(V,A) < h®/Ved

Ficure 1

Proof. Let v,,...,v, and w,,..., w; be the vectors from V, contained in C
and D, respectively. When we apply Proposition 2.0 with W= (v,,...,
., Wy, ..., Wy} C V, it follows that it is sufficient to prove (2.2) for W. Without
loss of generality, we may assume that all vectors are in the same halfcone as
shown in Figure 1. Let S be an arbitrary sphere of diameter A. We denote
(1,2,...,i}) by [i], and the set of all permutations of [i] by S,;. Let us define
the family # by:

F= {(A,B): Ac[c],Bc[d], Lo+ L w e S}.
i€A j€B

Let (7, {) be a random element of S + S,). Consider the rectangle R,
defined by

R={(=([i]).&([j]):1si<ec1<j=<d).



THE LITTLEWOOD-OFFORD PROBLEM 263

Claim 2.2. |R N #| < h%.

Proof. Define I = (i 3j, (m([i)), §([j])) € R N & ); that is, I is the “pro-
jection” on the side of the points in that rectangle. The set J is defined
analogously, with the roles of i and j interchanged. If we prove |I| < h,
|J| < h, then the claim follows. Suppose the contrary and let, e.g., |I| 2 h + 1.
Then we can choose i), i, € I with i, — i; > h. Choose j,, j, € J such that

(»([i]). $([3]) e RN F, ¢ =1,2.

Let u,, u, be the corresponding sum of vectors. Suppose first that j, > j, and

let L be a perpendicular line to the bisector of the angle B. Then both the

vectors v; and w; have projection of length at least sin( 8/2) on L.
Consequently,

U, — Uy = Z Oni + z Wy )
iy<isi, h<ish
has projection of length at least
((iy = &) + (jy = jo))sin(B/2) 2 hsin(B/2) > A,
in contradiction with u,, u, € S.

If j, > j, then we argue in the same way except for the perpendicular to
the bisector of the angle a. O

To conclude the proof of Lemma 2.1 we show that there is a choice of
7 € S, § € §, with

(2.3) IR N F| > |F|Ved2 4.

Let (A, B) € # be arbitrary, |A| = a, |B| = b. Then the probability
p(A,B) of (A, B) € R satisfies

o= (6002 )

Thus, the expected size E(|R N #|) of R N F satisfies
E(RNF) = T plA, B)> |#Vede—,

(A, ByeF

? |

d 1
d ] > SVed2 -4 > Ved2 =",
2

proving (2.3). D

LemMa 2.3. Suppose that W C C is a set of vectors, C is a cone with angle
y and A, A’ are positive reals with A'cos(y/2) > A. Then

(2.4) m(W, A) < m,(|W], &").
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Proof. Suppose without loss of generality that the axis of C is the real line.
Set |W| = r and let x,,..., x, be the projections of the vectors w € W on the
axis. Set y, = x,/cos(y/2). Then |y,| = 1 for i = 1,..., r. By definition

my({x,..., x,},4) = ml([yl"“v v}, &) <mr, &)
holds. On the other hand,
my(W,A) <m({x,,...,x,},4)
is obvious, proving (2.4). O

For our final lemma we need to prove first a geometric proposition. For
vectors v,,..., v, and w define

A(vy,...,0;w) = {0, + - +o, +ew:0<i<r,e=0,1).

ProposiTiON 2.4. Let B and a« be positive reals, B > a, a < /3, and
s 2 2 a positive integer satisfying

sin’B—ﬂE
2.5) 2= 1L A< (1~ oo+ oS
; 5 -

4(s — 1)cos—

2

Let v, vy, ..., v, be vectors of at least unit length in a halfcone C with angle a
and let w, |w| > 1 be a vector having angle at least /2 and at most m — /2
with the axis. Then for every ball S of diameter A,

SN A(v,,...,v,; w)| <25 — 1.

Proof. Denote by A(i) the sum v, + v, + --- +v, (A(0) = 0), and let
B(j) = A(j) + w for 0 < i, j < r. We may suppose that 8 < 7/2. Let S be a
ball with diameter A and suppose on the contrary that it contains at least 2s
vectors from A(v,,...,v,; w). Let I = (i: A(i) € S} and J = {j: B(j) € S}).
Consider a line ¢ through the ceriter of S and parallel to the axis of C. Consider
the projections A’(i) and B’(j) of the points A(i) and B( j) on the line ¢. Now

a

|A(i)A(i")| = |i — i) - cos o

holds. As the right-hand side of (2.5) is smaller than s cos(a/2) we have that |I|
(and |J|) is at most s. So if S contains 2s vectors from A(v,,...,v,, w) then
there exist k and [ such that A(i)€ S, B(j) €S for k<i<k+s— 1,
I < j<1l+ s — 1 Consider a plane P orthogonal to ¢ which cuts a piece from S
with width A — (s — 1)cos(a/2). Denote this piece by H. Then A(k), B(l) € H.
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The diameter of H is

B - a
3

So |A(k)B(l)| <1, implying ! # k. Suppose, say, [ < k and consider the
A(l)B(1)A(k) triangle. We have |A(I)B(l)| > 1, |A(I)A(k)| = 1, and the angle
at A(l) is at least (B — a)/2. Hence the length of the side A(k)B(l) is at least
2sin((B — a)/4), which contradicts (2.6). So S cannot contain 2s elements from
A(vy,..., v,; w). u)

(2.6) 2\/((3— l)eos%)(&- (s - l)oos—g) < sin

LEmMA 2.5. Let a, B, s and A be as in Proposition 2.4. Let W be a set of
vectors contained in a cone C of angle a and let w be a vector having angle at
least B/2 with the axis of the cone. Set r = |W|. Then

(2.7) m(WuU {w}, ) < (25 — 1)(11’;2])'

Proof. We can reverse the directions of the vectors; so we can suppose that
W is contained in a halfcone of C and the angle of W, and the axis of C is at
most /2. Let S be a fixed sphere of diameter A. Let us consider a random
ordering v, v,,..., v, of the elements of W. As in the proof of Lemma 2.1,
there exists an ordering with

S0 A1 5 0)| 2 8 VEW U ()] 1,725)

On the other hand, Proposition 2.4 implies
[S N A(v,,...,v,; w)| < 2s — 1, which proves (2.7) O

3. Proof of Theorems 1.2 and 1.4
Set s = |A] + 1 and choose 0 < a < /2 such that

a
(3.1) scoso >4
Recall the definition of {(d, ) from the introduction and set t = {(d, a/5). Let
Cy,...,C, be cones with angle a/5 which cover R% Suppose by symmetry that
(3.2) IV C,| = |V]/t holds.

Consider the cone C (of angle @) which has the same axis as C,. Define
k= 2t%J(A + 1)/sin(a/10)])*/A.
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If |C N V| = n — k, then Proposition 2.0 and Lemma 2.3 imply

m(V, A)sz"(l l)-(l+o(l))s[l I
as desired.

Suppose next |V — C| > k. Note that if a vector v € V — C is contained in
C,2 <i < t, then C, and C, are disjoint and the angle between them is at least
0.3a. Suppose by symmetry, that

(3.3) (V-C)Nn G| =kyt.

Applying Lemma 2.1 to C, and C, with h = [(A + 1)/sin(a/10)] and using
(3.2) and (3.3) we obtain

(3.4) p(V,A) < h*/Vnk < s/|mn/2

for our choice of h and k, which concludes the proof of Theorem 1.2.

In the case of Theorem 1.4 we first note that (3.4) implies for n > ny(d, A)
that m(V, A) < m(n, A), as desired. Choose a positive but very small (e.g.,
sin(a/2) = 1/2s%). Then we may assume that

|V-C| < k.
Let B be a small angle satisfying cos(8/2) = 1 — (1/2s). Then

(3.5) scosg > A,

Let D be the cone with angle B and the same center as C. If V C D, then
Lemma 2.3 concludes the proof. Thus we may suppose that there is a vector
w € (V- D).

Setting W=V NC, using s—1<A<s—1+1/10s% we see that
Proposition 2.0 and Lemma 2.5 imply

_ n
p(V,4) < p(WU {(w},4) < -21—12-1-0—(12“21]/ " <myn,Aa),
2

which concludes the proof. a

4. The case when the diameter is an integer

We call a family of vectors optimal if my(n, A) = m(V, A). In the case of
s—1<A<s—1+(1/10s%) we obviously have infinitely many optimal
families, because we can perturb slightly the set of vectors V = { n copies of the
same vector of length A4 /(s — 1)}.
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TueoREM 4.1. Suppose A is an integer, n > nyd, A). Then the only
optimal family V consists of n copies of a unit vector.

For the proof of 4.1 we need the following theorem of Erdis. He noticed
the connection of the Littlewood-Offord problem to extremal set theory.

Definitions. 2% denotes the power set of X; %#(cC 2X) denotes a family of
sets and is called a k-Spemer family if it does not contain k + 1 members
Fio...,Fy,, EF suchthat F, ¢ F, ¢ -+ ¢ Fy,,.

TueEOREM 4.2 (Erdés [1] and Sperner [18] for k = 1). Let # be a k-Sperner
family over an n element set X. Then

|#]| < sum of the largest k binomial coefficients (? )

Here equality holds if and only if # consists of all the subsets of X of
sizes [(n — k + 1)/2],...,[(n —k + 1)/2] + (k= 1) or [(n — k + 1)/2],...,
[(n—=k+1)/2] + (k—1) (ie., for n — k odd there exists only one optimal
family; in case n — k is even there are two optimal families).

With a set of vectors V and a ball § we associate a family #= #(V, §) =
{(Ic{L2,...,n}): L ., 0 €S). A consequence of 4.2 and the proof of 1.4 is
the following.

Lemma 4.3. Suppose that n > ny(d, A), V is an optimal family of vectors,
A is an integer, S is a ball of diameter A with |S N LV| = my(d, A). Then there
are a direction w and a small B > 0 (e.g., cos¥(8/2) = 1 — (1/2s)) such that
every v € V is contained in a cone of angle a and axis w. If all v € V are
contained in a halfcone of that cone then for every sequence of vectors
(Op-r0,) = V,

where n, = n(S) = |(n — A)/2] or [(n — A)/2].
We need one more proposition.

ProposiTioN 4.4. Let w, uy,..., u, € RY be vectors 0.4n < n, < n/2, and
suppose that |L, . u, — nyw| < r for every I C (1,...,n) with |I| = n,. Then

2ly, — w|® < 5¢2,

Proof. Define w; = u, — w. We have |, ,w,| <r for every IC [n],
|| = n,, and we have to prove that w}? < 5r% The standard calculation is the



268 P. FRANKL AND Z. FUREDI

(3.)"%(2««)’ (5, Z2)me (3, 23z

n —2

)(Ew?] 0

Proof of 4.1. Suppose that n > 20A%. Lemma 4.3 implies that |Z,_,v;| < A
holds for every I € {1,...,n}, |I| = A. Suppose that I C {1,...,n}, |[I| =A
such that for u = L{v;: i € I}, |u| = A — x is maximal. Then all the sums of
n, vectors from {v;: i & I} are in S N (S — u) which is contained in a sphere of
radius /4xA — 1x*. Let 0, be the center of S N (S — u), and n,w, = 00,. Then
4.4 gives

Y v, — w,|? < $xA.

i€l

Then one can choose J C (1,...,n} — I, |J| = A in such a way that

Y |o; — w,|* < 3xA(A/n — A) < (x/44).
i€l

Then all the v, (j € J) have components to direction w, with length at least
1 — x/4A. Hence |Zv;| > A — x/2, a contradiction if x # 0. If x = 0, then it
easily follows that all the vectors are the same unit vector. a

5. Concluding remarks

Let us mention that the proof of Theorem 1.2 actually gives m (n, A) <
m(n, A)(1 + (c(d, A)/n)) where ¢(d, A) is a constant depending only on d
and A.

Next we describe a construction showing that for [A] — A small and
d large there exists a positive constant c’(d, A) such that my(n, 4) >
m(n, A)1 + (¢'(d, A)/n)) holds.

Moreover, ¢’ (d,A) - o if d = 00, A = o0 and [A] - A = 0.

Example 5.1. Let n, k, s be positive integers and suppose for convenience
that n + s — kiseven. Let v, = v, = -+ =0p,_;, w,,..., w, be unit vectors
where v, w,,..., w, are pairwise orthogonal. Consider the sphere, S of diame-
ter (k + s2)/2 centered around ((n — k)v, + w, - -+ +w;)/2. Then S con-
tains all partial sums from I({v,,..., 0,_4 w),..., w;)}) involving at least
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(n — k — s)/2 and at most (n — k + 5)/2 out of v,,..., v, ;. That is,

1/2 -k
my (. (k + %)) 2 2 )3 (n =)
(n—k—-s/2)<sis(n-k+3/2)

_ (1 ) k +2:(1)

)ml[n, (k + 32)1/2)

holds for k + s2 < (s + 1)% ie., k < 2s.

A sharpened version of Proposition 2.4 (we did not use that the points
A(l), A(k), A(k + s — 1) lie almost on a line) gives that Theorem 1.3 holds for a
slightly larger interval, especially for s =2 if 1 <A < V2, and for s = 3 if
2 < A < /5. So we can construct a new proof for some theorems of Katona [8]
and Kleitman [11], [13]. But the length of our interval is only O(1/s%). Now we
have the following:

Conjecture 52. For n > ny(d,A), if s—1< A < (s - 1) + 1, then
my(n, A) = my(n, A).

Let us consider now open spheres. Let fi(n, A) = max{|S N LV|: S c R?
is an open sphere of diameter A and V is a set of n vectors of length at least
one}.

CoroLLARY 5.3. For fixed d and A and n = o0, if A is not an integer then

filn, 8) = (18] + 1+ o) | gy }

Similarly, Theorem 1.3 gives the value of fi(n, A) for n > ny(d, A), s —1<
A<s—1+1/10s%

sail ]
Problem 5.4. Determine (if it exists) lim, . fi(n, A)(,0q) for d,
A fixed, A an integer.

Finally we would like to mention that Katona formulated an interesting
generalization of the Littlewood-Offord preblem. L. Jones [6] answered some of
his questions.
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