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1. Introduction and the Erdos-Ko-Rado Theorem.

Let X be a finite set. If not said otherwise we assume X = {1,2, .., a}. n a
positive  integer. . For O0<£Lk€nrp we st 2X={F:Fcx}

X . .
[k] = (Fe2X |F| = kl. A family # is just a collection of subsets of X, i.c.,

X
FcX vFc & | then it is cailed k-wniform, or 2 k-graph. A family Fis

called intersecting if F O F # @ holds for all F, F' € & The simplest
intersection theorem is the following:

Theorem 1.0. If & is intersecting then | %] € 2°71 holds.

Proof. Partition the 2" subsets of X into 2"~ pairs where each subset F is paired
with its complement X — F. Since F 1 {X - F) = &, at most one set out of each
pair is in # Thus |#] € 27!, =

Once an inequality is proved, one is interesied in which families attain equality
- such families are called optimal.

In case of Theorem 1.0 there are many optimal familics, in fact, it is not hard
to show the following:

Proposition I.1.  Given an intersecting family % C 2%, there exists another
intersecting family 9 C 2%, satisfying # C $and | %] =2""1_ =

The first intersection theorem was proved by Erdds, Ko and Rado in the late
1930s, however it was published only in 1961. Before giving its statement one
more definition: A family & is called rintersecting (¢ = 1, integer) if
IF 0 F'| > 1 bolds for all F.F' € #.

Theorem 1.I. (The Erd'és-Ko}?ado theorem, [EXR]). Givenn 2 k 2t > Oand
a t-intersecting family & C { k] then for n 2 nglk, 1), -

W |# < {:::] bolds.

To see that the inequality (1) is best possible, i.c., max {#] > {z::], consider
the family consisting all k-subsets of X which contain  fixed ¢lements. For
n < {k—r+1} {t+1) a larger l-intersecting family was constructed in [F1] and
[EKR]. (Sec next page). Denote by mg{k,s) the leasr integer such that (1)
holds.

For n < 2k any two k-subsets have nonempty intersection, that is [ﬁ is
intersecting; and it was shown in [EKR] that ng (k, 1) = 2k. Hilton and Milner
{HM! proved that for 1 = | and n > 2k the optimal family is unique.

In fact we have ng (k, 1) = (k—r+1} (r+1) for all 1 and & as it was proved for
t 2 15 in [F1}, and for all ¢ by Wilson [WL. Moreover for n > ng (k) there is
only one optimal family.



However, for ¢ > 2 one may ask, what is the maximum size of a t-intersecting
family #, #FC | | for 2k~1<n< nplk, 1). Denote this maximum by

min k, 1).
For 0 € i € (n ~ t)/2 define the family

X
o, A€ {k JlAan L2 .+ 2 241},

> n-t
Clearly, &; is i-intersecting. One can also check that || < jdgl = lk_I]
<
according as n y k-t+ 10+ 0D

Conjecture 1.2. [F1]
m (n, k, 1) = max (A

In {F1l it is shown that for t 215 and
08k —t+ D@ +1) <n<(k—t+ 1D+ 1) the conjecture is true and o, is
the only optimal family (up to permutation of the elements). In the case n = 4ny,
& = 2ng, t = 2 the above conjecture reduces to

X
mldng, 2n9,2) € |y | = {F € {Zno]:lr N L2 .., 20}l 2 ng + 1}|.

This was already conjectured in [EKR]; however, it appears to be very difficult.

2. SHIFTING

Sets have little structure, and this often makes it hard to deal with them. For
certain kind of extremal problems shifting permits one to overcome this difficulty.

For integers 1 €7 < j € n and a family & define the (, j}-shift §; as
follows

$,() = {“’ —UD UM EF jER G- UDEF

F otherwise v

Sij(ﬁ - {SU(F).F € -ﬂ .

The next proposition collects some easy but important properties of shifting.
Proposition 2.1. ‘

@ |5;(#| = |#F

G}  If #is k-uniform then so is §;(F)

i) I & is t-intersecting then so is S;;(#).

Proof. (i) and (i) are evident. To prove (iii) choose 4;, 4; € S,;(#). Lot By,
B, be the corresponding sets in #, e, S,;(B,)=Ad, for +=1,2. Since
4 0 Ayl 2 1B, nB;| would imply {4, N Ay| 2 ¢, we may assume
l4s 0 42] < 1By n B, This implies jE€EB, N B,y and
ijjnA, NnA, =0 Say j€ A4, Then A, =5;B)} =B, -{jh vl
On the other hand 4, = B,. Why did we not shift B, when [ € B, and j € B,?

The only possible reason is Bj; = (B — {j) U lil € #  Consequenty,
Ay N Ayl ={B, N Byl 2 m



it is not hard to see that if we keep on shifting then finally we end up with a
stable or shifted family @, ie. 5, (%) = @ forall 1 i < j < n Let us show

n
that {2] shiftings are sufficient if we do them in the right order.

To do this let us first take a different look at shifting.

For 1€i€n and a family # ¢ 2¥ define FW = (F~{ilieF e #.
Then 5y (99 is the unique family <« satisfying
@G w FU U FGP), GG = FG N FG) and HeFif andonly il He @
whenever |H N {i,j}] » 1.

Now, it is easy to sce that # is shifted if and only if #{j) C #U) holds for all
1 £ < j%€n Since we shall never use Proposition 2.2, its proof will be
somewhat sketchy.

Proposition 2.2. Let #C 2¥ be s family and suppose that we perform in
succession all {g] shifts S;;, 1 € i < j € n exactly once, in an order where 5y

precedes S o whenever j' < J. Then the resulting family is shifted.

Proof. Apply induction on a. The statement is trivial for n € 2. By the
assumptions the n-1 shifts 5, 1 € i < n are performed first. Let ¥ be the
family after these shifts. Then #{n) C %{/) can be checked easily. Moreover,
this property is maintained during later shifts.

Set $(@) = (G e W n ¢ W)

The remaining {"E*] shifts transform % (n} and @ (#) independently and the
statement follows by induction. ®
Proposition 2.3. Suppose & is k-uniform, t-intersecting and shifted. Then for all
FLF € F

{F, N Fy N 11,2k ~11] 2 ¢ holds.

Proof. Take a counter-example maximizing |Fy N [1,2k ~1}|. Since # is
rintersecting there is some JE€(F, NFy), j>2%k-—1 Thus
Fy U Fy @l1,2k ~t], hence we may choose i £ Fy U Fg, i € 2k — ¢ and
replace Fy by (F, — {j)) U Ui} (recall that & is shifted), to obtain a contradiction
with the maximal choice of |[Fy N {1, 2k —¢]]. »

Let us now prove the Erdés-Ko-Rado theorem for 2 =1, n > 2k. Apply
induction on k — the statement is trivial for k = 1.

a) n=2k If F€ & then [X~F|=n~k=k and (X~ F) ¢ # Thus
1 {2k -1 .
|# < Tiel™ k-1 , as desired.
b) n 2 2k In view of Proposition 2.1, we may assume that # is shifted. Define
FowlF 0l 2k):F € &FIFnilL2k) =) _
In view of Propesition 2.3 %, is intersecting. By induction |#1] € [ =1 ] for
im0, ..,k — 1, the same bolds for { = k by a). Given G € %, there are at most

n~2k
Ik_fl sets F € Fwith F N [1,2k] = G. We infer



PPRR [m—zk} < 3 [u~:] [n-Zk} u-l} .
i - i— Y B .
1<ik LLl BP- O LS B Ll B L
n-t
Let us say that the Erdds-Ko-Rado theorem is true for (n, &, 1) if [k _‘} is

X
the maximum size of all t-intersecting families & C kl

Proposition 2.4. Suppose the Erdis-Ko-Rado theorem is true for {(ng, j, 1), ng, t
fixed and all j, 1 € j € k. Then it holds for {n, k, ¢} for all n > n,.

X
Proof. Let us suppose Fis & I-intersecting family of maximum size, # C { i F
is stable. For i € k define &, = (F N [L,ng): FE€ &, |F f}' [i,?oli - j). In
o=,
view of Proposition 2.3 #; is t-intersecting and thus |#;| < it holds. This

implies

1# < 1% n=hy ng—t [B-Ry net
; - s
mjzﬂ ! [k“’] <0<f§k-l{ i ] [k“'“i] [k_'}

Proposition 2.5. Let @ be a shifted r-intersecting family. Then for each G € @
there exists § = i (G) sothat {6 N (1,2, ., i +HH B 1 +14

Proof. Lat G = {xy, X3, ., Xp4q) With %; < X3 € -+ < X4y Suppose that
the proposition is not true for %. Note that r 2 0 since @ is f-intersecting and
xx2t+]l, xp 214+ L X2 t=20+1 Adding  the  trivial
xy 2 1, .., Xy 2t ~ 1 and using that @ is shifted, we infer

Gy={1,2, .,t=Lt+1,t4+3 .,1+2+1} €9,

Using shiftedness again, it follows that
Gaw {2, -1, 042 ., 1+ €W,

However, | %, N @;| = ¢ —1, a contradiction. ® -

Let us give now a geometric interpretation of both shifting and this propasition.
For this we associate a walk in the plane with each subset F of {1, 2, ..., n}.

We stari from the origin and at the i-th siep we move one unit up if i € F and
one step to the right if i € F, 1 £/ € n. Let us note that this defines a 1-1
correspondence between 2% and all walks of length a. For a set F (a walk w) let
Flw} {w{F)} be the corresponding walk (set), respectively. It is clear that if
i€ F, i+ 1) € F, then replacing i + 1 by i will change the corresponding part of
the walk from | to [ . Therefore if G can be obtained from F by such shifts
then w{G) is lying above w (¥). It is casy to see that for stable families F € &,
w{G) and w (F) end in the same point and w (G) lies above w (F} imply G € #.

Let us now give a geometric proof of Proposition 2.5. Draw the line y w x + 1.
The integer points of this line have the form (i, i +1). If 2 walk has some point
above this line then it cught o have a point on the line t0o. But how do we get to
the point {i, 7 + 13?7 Only if our set contains { + ¢ out of the first 2i + 1 ¢lements.
Thus to prove Proposition 2.5 we have to show that for a stable, f-intersecting
family 9 none of the walks w(F), F € & lies entirely under the line. However,
there is a unique highest walk under y = x + f; this corresponds to the set
Hy={,2, o, t~Lt+ L, t+3 ..,04+2s+1,..] Therefore if wi(F) is



under y = x + 1 for some F € # then some subset F; of H, is in &, too. Using
stability we infer that F,€ % for some
FyCHym 1,2, 0 0042, ., t+25, .} Since
HynHy={1,2, ..t ~1LIF, n Fyl €1~ 1, a contradiction.

3. SHADOWS: THE KRUSKAL-KATONA THEOREM
Suppose F is a family of k-clement sets {9 w m. Note that we do not require
FC Kl What is the minimum number of (k — #)-clement sets contained in

* some member of &, as a function of k and m? This probiem was soived
independently by Kruskal [Kr] and Katona [Kail more than 20 years ago. To
state this result we need some definitions.

For a family & define its  £~rh shadow, 9,(P by
3 (P = (G:AF € F GCF, |[F-G| =£), For £ = we write simply 9(#).

Let us define a lincar order on the k-subsets of {1,2, .., » ...}. We say
F<Gif F#G and maxli:i € F—G) < max(j:j € G-~ F} bolds. This
ordering is calied reverse-lexicographic. Suppose m is a given positive integer. Let
us take the family of the first m k-element sets in this ordering. Denote it by

@k, m). F the }deﬁmuon it 5 clear that for some integer a; > k,
1 3oy l:
Rk, m) & k I holds, and moreover, all the remaining sets in R (k, m)

Gf ther(c are any) ?onmm a; + 1. Now there is some a3y 2 k — 1 so that for all

vy By

G € [ P one has (G U {ay + 1)) € Rk, m). Clearly a; > ap_y,
{1, a +

because k G Ak, m). Now the remaining sets in @(k, »1} contzin

both a; +1 and a4,y +1. Continving in this way we find eiements
G > a1 > - >a 2t 2150 that a set Fis in Rk, m) ﬁaand only if

L
F <o+ 3, ..., ap + 1) holds, Tmsnmplmm-{k +"'+[;]- This is

calied the k~cascade represemtation of m.

Proposition 3.1, (iz “Every positi‘:re integer m has a unique k-cascade
& t
+ e +[ ]withak>ak..] > >a 2t

!
a a
-+ [,...g” {where {b} is

Theorem 3.2. (Kmkal Katona t.‘leorem) Suppose F is a family of k-sets,

representation m = k

a,
@ (@ m) =gkt ||+

understood to be zero for b < 0},
We leave the casy proof 1o the reader.

’
| wm and m = k + -+ is the k-cascade representation of m.

!
Thenforall 2,1 €< £ <k

ai
G0 {8, > [k-: + o4

@
{ - 8] holds, or equivalently

1.2 19,(1 2 |9, (&, ;23] .



.
not true then |3} > k |+ so that by induction k| >

Because of the k-cascade representation, Theorem 3.2 is often clumsy for
applications. Lovidsz proposed the following weaker, but bandier version. Recall
X oxx =1 .-=—a+1)
that -
a a!

can be defined for ail real values of x.

Theorem 3.3. ([L}). Suppose & is a family of k-scts, |#] = m and x 2 k is
x
defined by m = [k] Then for ail 1 € ¢ < k one has

X

Following [¥2] we give a unified argument yielding both results.

Proof of Theorems 3.2 and 3.3. First we note that it is sufficient to settic the case

¢ =1 (and then iterate the resuit t-timesf - this is, in fact, trivial from
x

Proposition 3.1(ii) and the monotonicity of || for x 2 a, respectively.

Our next observation is that forall 1 € §{ < jone has
BCSU(.‘D‘}) < Su{&(@)

-~ 3 fact which can be proved by a simple but somewhst tedious case by ¢ase
analysis. Therefore, in proving (3.1) and (3.3) we may assume that & is stable
(ic, Sy(#) = Fforall 1 €i <j). We apply induction on m and for given m
on k. Note that both statements are trivial for k = I, m arbitrary.

Let us define two new families
Fo=FeF 1¢F)

Fr=iF-1}):1eF ¢ #.

Clearly, .
) %ol + 1#1] = |#1 .

Since # is stable, we have

(.5 %, C F, .
We claim
x-1
(3.6 (¥ 2 {k-—}] .
x x=1 x -1
In fact, | %1 < el = | & + || and (3.4) would imply that if (3.6) were

x=1

k—-1{*

contradicting (3.5}, Therefore (3.6 is  true Nov; note  that
x—

oF c # u {ll) U G: G ¢ a#F]. By induction |8F,| 2 (k—Z}’md thus



x—1 x~1 x
a5 > I"‘“‘]+ {k-z} - {k_i}, proving {3.3) .

To prove (3.1) we first show that one can assume

ﬂ*"l a;_l
3.7 i.ﬁl;[k__, +-~+{,_1].
If this were not the casc then (3.4) would imply
ay i a1
G8) Lﬁd)t e IR

If a, — 1 > 1, then we can forget about the +1 in (3.8) and deduce from the
induction hypothesis that
a, - i

ag -1
a7 2 Ik__1]+ R

} , contradicting {3.5) .

if a, = 1 then let 5 be the largest integer so that @, = s holds, k 2 5 2 . Then
(3.8) can be rewritten as
ap—i

dgq =1
s+l

3

+ 4 +

Fram the induction hypothesis we infer

dk'—} 'JJ-M'-l 5
8! > {kwi vt s ]+ [3—1]
a =1 aga 1
;’{k-l +---+{ s |+e-r+D

Qg - 1 _ a;— I ]
u[k_l]+-..+ r....] R -
again in contradiction 1o (3.5). Therefore we can assume that (3.7) is true, We
conclude the proof of (3.1) as that of (3.3), i.e.bus' ja% > ias«a',l + 1#]. By
e -

the induction hypothesis and {3.7} |89, | 2 [k _“n + 0+ [;“2 } Adding
this inequality to (3.7), (3.1) follows. ®

Proposition 3.4, SnTaosc that #is a family of k sets, | #| = m T land x 2 kis

x X
defined by m = | 1. Supposc further that [8,(#}| = [, _,I bolds for some
Xo

1 € £ < k. Then x is an integer and F - ‘ X ] hoids for some x-element set Xj.

Proof. Suppose first that £ = 1 and # is stable. Recall the proof of Theorem 3.3.
We conclude that equality must bold in (3.6). That is,



x -1
(3.9) E.’;i - k“"‘l} .
. x x (x—1 x x=1 .
Since || - T k=1 and both k and |, .| are integers, x must be
x
rational. Now the fact, that k| 18 an integer, implies that x is an integer too.

Apply induction on x. For x = k the statement i trivially true.
From (3.9) we infer

-1
G.10) | Fo = ["k ]

By (3.5) and Theorem 3.3 we infer from (3.9) and (3.10) that

x=1
a1 8F) = #, and |88,] = {k_l] .

By the induction hypothesis Fp = [ﬂ boids for some set ¥ with {¥j = x — 1,

v}
Now & = k follows from (3.11).

To settle the case £ = 1 have to deal with non-shifted families, as well. By the
above argument we may assume that x is an integer. We have to show that

jUF#| = x.

We know, that this must hold for the shifted family. Therefore we may
indirectly assume that there exist 1 €7 < j € n such that JUS| = x + 1 but
lUSU(’H -,

X

That is, the (i, j)-shift removes all sets containing j from &. Also, |# - lk]

USU(’) ‘
k

implies S;;(#) =

]. Set ¥ = US;(#) and note j € Y. Consider the
following two families:
Fm{F-liLicFeF, H={F-|jl:jeFecF.

¥ -{il ,
Then GN =2 and $UN=1, || hod Since jUF] = x + 1,

Y-
% »= o » W follows. Conscquently, there exists some B € [ kw—z] with

BE (8% N 8.

Therefore B U {f] docs not change when one applies the (i, j)-shift to 85
Thus

6(,5';,(:?)) E Sfj(a(f)) holds, i.c., ta(")t > [kii] *

Let now ¢ 2 2. If |8,(#)| = [kil]’ then we are done by the preceding



case. If ;a‘(ml-[kil] where ¥ > x, then Theorem 3.3  imphes

[8,(#) = 8, B3N] 2 k’-y-l . & contradiction. ® Let us mention that

recently Fiiredi-Griggs [FG] and Mdrs [M} characterized those triples (m, k, £)
for which #(k, m} is the unique optimal family in the Kruskal-Katona Theorem.

X
Corollary 1.5. (Sperner [S]) Suppose  that B FC |, L Fhen

n
B (FNF > [,:_,]/H bolds with equality if and only if # = {k]

x x
monotone decreasing and apply Theorem 3.3 together with Proposition 3.4. ®

Note that this corollary can be easily proved by a direct double-counting
argument, too,

4. SHADOWS OF -INTERSECTING FAMILIES

1f one assumes that & C k is r-intersecting then the bound of the Kruskal-

Katona theorem for |8,%] can be improved. In particular, we shall show
{8, %] 2 |Flfor 2 & 1.

1,2k ~1)
Let us first consider sf = [ k ] Clearly & is t-intersecting and

2k—t
|Bpsf] = { k- !]. The next theorem shows that o is the “worst example”.

Theorem 4.1 (Katona [Ka2li Suppose that F is & k-uniform, tintersecting family.
Thenfort € £ €1

A&k —1
_ , k~¢
4.1 L 18 # 2 A
[+
holds.

Proof of Theorem 4.1. Ccf. [F3]). In view of Propositions 2.1 and 2.4 wc may
assume that F is shifted. Then in view of Proposition 2.5 for each F € F there
exists i so that |11, 1+2i1 N Fl 2 r4i bolds. Let i{F) denote the maximum
value of § for which this holds, ie, for ali j > i(F) one has
IFall,t+2j1 <t+j and, consequently, IF N [1,¢+2i(F}]| =1 +i{F).
This makes it possible to partition & according to i(F)} and
F e+ 2 + 1,0l

[2t+i41,nl]
k=t—i
Ff{2+i+1,n] = A}. Then we have the partition

First  define  for Fom{F € FilF) =i,



-10-

F= U U Fy.
OISk -1 2 +i+inl
kot ]
— —- (1,042}
Define #4 = (F— A:F € #,) and note that #4 € | ., | Thus by
t42 ) (142 _ .
Corollary 3.5 and the fact that (i-2V e +i is momotone increasing as a
function of i for fixed 0 € £ € r we have
— —_ 42 t+2 21: -] {2k—1t
RN AR AT A vl A ol 1 e

Define 53.9',( = {G U A4:G € 8,F,). Itis immediate that 3, %, C 8,%, bolds.
We claim that for 4, A' distinct 3,8, N 8, F,, = .

Suppose |A| =k ~t ~j |4’} =k -1t —i',{ €i' Let us first consider the
case i = i'. Since for H € 8, F (8, F,) coe has H Nt + 2i + L, nl = A(4'),
respectively, we see that the same M cannot be in both families.

Suppose next i < i, H € 6;?,4, H' € 8, &, let F, F' be respective members
of F,, Fy4 satislying H CF, H' C F'. Note that i(F) =i, i(F) =" Thus
the definition of i(F) implies IFalL2i+e)l <it +1,
P nin2it+ell=i"+1 Consequently |[H N2 +1)j<i' +r-2=
1B n L2+, shawin[sl H = H'. Therefore summing (4.2) over all

2i+t+1,n]
0€isk—tandall 4 € the inequality (4.1) follows. ®

Remark 4.3. OnEc cazz sho]w, using the above approach, that in (4.1) equality holds
1,2k —t
anly for # = k . Moreover, the following result of Fiiredi and the

avthor can be deduced.
Theorem 4.4. Suppose & is k-uniform, t-intersecting and | %] > mg(k, r). Then
for 1 €<t

2k—2~— 2k —-2—1
(4.3) {8, #F1/# > [ -1—:} [ k-1 ]

The inequality (4.3) is asymptotically best possible as is seen by considering
ln .
gy -E{F € [ k ]: |Fal,2k=-2-t1 2> k—l},utending to infinity.

5. THE MAXIMUM SIZE OF t-INTERSECTING FAMILIES: THE KATONA-
THEOREM

In Theorem 1.0 we showed that 2"~! is the maximum size of an intersecting
family # C 200l What if F is t-intersecting? Let us first give examples of
large t-intersecting families:

B, 1) = {B €x:|B| > ”*']

It is ciear that 9@ {n, 1} is r-intersecting. However, for a + t odd onec can add

1-“}’—;——----elemem sets to 48 (n, £} and still have a f-intersecting family.



.11 -

X
A ) =R,V BE L |ing B}

2
It is casy to check that @*(n )= (B C X:BN[l,n—1l¢€ B0 1,0}
Thus {#*(n, 3| = 2| @ (r ~ 1, 0| holds.
Theorem 5.1. (Katona ([Ka2l)) Suppose & € 2X is t-intersecting. Then onc of
the following two cases occurs.

n
2) n+:—2:and|§!€t§(n,t)f-%{i]

fwmy

-1

b) n+l-2:+landff§(i@'(n,:)i-l”‘

n n
+ F i
femg+l

Moreover, for 1 2 2 the only optimal families are #(n, t) and @*(m, 1),
respectively.

Proof. First note that |[F N F'| > t implies that for G C F, |F~ Gl =t -1
one still has & N F' # @ In particular, no member of §,;F can be the
complement of a member of #F  To apply this observation define
FU alF e #F|F| =i}, f; = |F9]. Then we have

) —ti) n H‘H 1
{9, FO| + |Fa+e | <€ n+t—1-—i] 1€i €

Using (4.1} we infer

5.1 [kl ok ¥

n
n+r-~l«-i]' 1€is =

t+lff+fn+t 1-i €

n+g-1

Summing (5.1) for 1 €7 < 3

obtain in the case n + ¢ = 25

|#1 -"éf; <[z -

L]

and noting f, € 1, fi=0fori <t we

fe+f.+,——: + /5 & E ]l. proving

J=s

I+1

the theorem for this case. If ¢ 2 2, then ag - ¢t 4+ 1. Thus to have equality, onc
must have f; = 0 for § Qs*l-fwmww,n.e.,fc @(n, 1.
In the case # + 1 = 25 + ], we obtain in the same way

|# < |@n 0] + | #Y)].

-y [ n-1
Applying (5.1) for i =5 = & +; gives | F9| = 1, < 3 [s} - [ s }

yvielding | %] < |@*(n, 1)|, as desired. The uniqueness of the optima! family can
be argued similarly to case a). ®

1et us note that for F,F CX |FNAF'| 21t is equivalent to
|F U F'| € n~t Thus the Katona Theorem can be restated as follows.

Theorem 5.2. Suppose that F C 2* satisfies for all F, F' € &,
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(5.1 [FUF{€b<n.

Then onc of the following holds

X
) b=2%k and |#1€ 3 m
=0
-1
Gi) bm2 -1 and |#Fl € ¥ [’:+ :__1].
0KIKk

Moreover, for b € n ~ 2, the optimal families are unique.

X
Note that in case (i) for every intersecting family @ C |,| the family

guilFc Xl: [F] < k] satisfies (5.1). Thus Theorem 5.2(i) implies that
o
| #} g k1| which is the Erdés-Ko-Rade Theorem. Also, the uniquencss of

the optimal families implies that for n > 2k therc is 4 unique optimal family in
the Erdés-Ko-Rado Theorem, as well.

6. THE HILTON-MILNER THEOREM.

As we saw in the preceding section, the Katona Theorem implies the Erdds-
Ko-Rado Theorem together with the uniqueness of the optimal families for
n > 2k. Hilton and Miiner described the next to optimal families.

in

Define M= {HE [[ k ]:1 el (2k+1lnH=eu fi2,k+1l

Clearly, .ﬁ’ : is intersecting and N =, Define also
N
#=3Ge | . |:len (1,31 z]. Note that % is intersecting, N% = @

and for k =2, G = W holds.

X

Theorem 6.1. (Hilton-Milner Theorem ([HMJ}) Supposc that FC |, is

intersecting, n > 2k and NF = @. Then - -

6.1 191 < (o = [:::] - [";’:l] +1.

Morcover, equality holds in (6.1} if and only if & is isomorphic to XH,or k=13
and & is isomorphic 1o ¥,

The ariginal proof of this theorem is rather involved. For other proofs cf.
Mors IM] and Alon [A]. The present proof is duc to [FFL.

Proof. We start by applying the (i, j)-shift to . Then cither 5,;(#) satisfies the
assumptions of the theorem or i is contained in every member of S;(#). In the
first case we keep on shifting until, eventually, we obtain a shifted family satisfying
the assumptions.

Suppose now that at some point the second possibility oceurs. Without loss of
generality suppose i = 1, j = 2. Since 1 € F for all F € SU(.‘?‘), {1, 2] intersects
all members of &, Taking & of maximal size we may assume that
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X
6.2) {o: (121C G ¢ M} c¥.

Since NF = @, we may assume that {1,3,4,..., k + 1} € & Now, instead of
$ 12 we keep applying the (i, j)-shift for 3 € i < j € n. Then (6.2) implies that
NSy(# = &. Eventually we obtain a family, which we denote by abuse of
notation by %, satisfying S;(#) = F for all 3&¢ <j<pn Note that

Ge={fl L[} k+1] is the wunique smallest - set Ge k satisfying

Gnl,2l=isl, £=1,2 Thus NF = @ and the shifiedness of & implies G,
Gy € & Together with {6.2) this yields

[Lk+1]
6.3) k
,k+1l
Now we can apply an arbitrary (i, j)-shift, even with / = 1,2, k

will not change and therefore N F = @ will be maintained.

Consequently, in proving (6.1) we may assume that & is a stable family. Now
stability implies {2, k + 1] € # and thus (6.3} holds by stability.

We apply induction on n. Define
F=Fnl,2k):Fe#F [FollL,kl| =i}, 0€i€k In view of
Proposition 2.3 the family &;lf; is intersecting. Consequently, # = &. Also,

(6.3) implies ) = 2.

Claim 6.2
2k ~1 k-1
I k=1
6.5 el € | oy ]~ lg—q] T boid.
Proof. 1f NF; # @, then (6.3) implies (6.4). If NF; = @ then by the induction
assumption
k-1 ki1 2k -1 k-1 .
EARS i=-11" i—1 |1 s o i , proving (6.4) .

. 1 2k 2k -1 k-1 . .
Fora-k,t.ﬁiﬁ? el = Te=11= le=1 + 1 is trivial because ¥ is

intersecting. ™

n-2k

Given A C {1,2k], there are at most {k—tzﬂ sets F € & with

F n{1,2k] = A Thus Claim 6.2 implies:
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s i2]mere 2] 755

e (":’i}‘]‘-ﬂ

If we have equality, then [#5] = max {3, k} follows. Since #, is intersecting,

either Xf; w{1,j):2€ € k+1) and conn:{umtl},

-1+

proving (6.1).

o qin3l
FC{H € k]:HﬂA#fmailAG.ﬁ}tx’. Orkm=3 F =

)

2
and FclGe | I: 16 n 11,3 » 2} = ¥ This proves the uniqueness of the

optimal-families among stable families.

The general case follows from the fact — whose proof is easy and omitted —
that if & is intersecting and §;;(#) = % or #then F= For H B

Let us mention the following sharpening of the Hilton-Milner Theorem — the
proof of which uses shifting as well,

For3€i € k + 1 define
X
.

Note that W= Wy and & -y, Also for n> 2
(51 = 108 < L] < - < ol

' X
:1&H.t2.i1ﬂﬁ¢9]u Hklztlﬂ.[lilcff}.

X
For FC {1 It d(# be the maximum degree of F, e,
d(#H = max |(F € #F:i¢ #Al
1<i%a

X
Theorem 6.3 ([F4]) Suppose that ¥ C |, | is intersecting and d(#) < d oF)

holds for some 3 € i € k + 1. Then |#| € ||, moreover, equality bolds-if
and only if cither & is isomorphic to X, or / = 4 and # is isomorphic to 5.

To obtain the Hilton-Milner Theorem just observe that d(# > d{(Myy)
immediately implies N&F » 2,
7. ON r~-WISE -INTERSECTING FAMILIES

A family & € 2¥ is called r-wise t-intersecting if any r members of it intersect
in at least 1 elements. Denote by f(n, r, #) the maximum size of all rwisc 1
intersecting families in 2.

Proposition 7.1.

)] Sfa+ln)22r) fornz1,

(i) plr, 1) = tim f(n, r, 1)/2" exists for all .1 .
Nomon

Proaf.

© If # c 2* is r-wise t-intersecting then so is
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FmiFocXula+1):Fnllale #.

()  In view of (i} the function f (n, r, £}/2" is monotone non-decreasing in »
and it is clearly bounded above by 1. ®

Let us note that p (, 1) € 1/2 follows from Theorem 1.0. Consdering 4 (n, 1)
from Theorem 5.1 one sees that in fact

p(z.:)--;- forall + 3 1.

Soon we will see that the situation is radically different for » > 2 and in fact
pl ip{r — 1,1} tends to zero exponentially fast for r fixed and 1 — oo,

It is casy to see that Proposition 2.1.(iii} bolds for r-wise -intersecting families,
therefore we will assume that 9 is a stable, r-wise rintersecting family.

Proposition 7.2. For each F € & there exists some { > 0 so that
.1 IFolle+rill 2 ¢4 ¢~ 1i bolds.

Proof. To prove (7.1} we apply the geometric approach of the proof of
Proposition 2.5.

Then the statement is equivalent 1o saying that for F € & w(F) meets the line
y=1t+{r—1)x. Again, there is a4 unique maximal walk not meeting this line,
corresponding to the {infinite) set

Ag={L,2, ., 0=Lt+1, ., t4r—1t+r+1, ., t4+2r—11+2r+1, ..

e, Agmisses t, t+r, t + 27, ...

If Proposition 7.2. was not true then for some F € & w(F) would lic under
w{dg). Using the stability of % one finds Fo € F satisfying Fy C Aq.

Let wus define A4 =1{1,2, ...n . J=b+it+i+rnt+i+2n .1
1€ 4§ <r Sime Fg C Ay and A; can be obtained from 44 by shifting, there
exist F, C A, F e F for all 0€i <y, However,
fFon -+~ AF 1€ ]4g0 - N A4, | =t~ 1, a contradiction. ®

Since a set uniquely corresponds to a (0;1)-vector, its characteristic vector, one
can give a probabilistic interpretation for the ratio of sets satisfying (7.1): consider
the infinite random walk in which at each step we move one unit with probability

«i- up or right. Then the above ratio is the probability g (r, ) that we ever hit the
line y = ¢ + ( — Dx.
It is casy to see that g(2,7) = i for all r while g(r1) < 1foralir 2 3.

Propasition 7.3. Let a, denote the unique root in the interval [% . l} of the
polynomial z* — 2z + 1. Then

() glr,t) =al.
. 1 1 1
(i) 2<a,<2+2’

Proof. First note that g(r, ) satisfies the lincar recursion g(r, 0) = 1,
glr, i+ 1) = -%q(r. 0+ é-q(r, t+r) Next we prove that glr,¢) is
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multiplicative, i.e.,
.2 qlr.t +5)wqlr, g, ).

Let g; be the probability that 2 walk hits the line y =1 + 5 + (r — 1)x and the
first place it hits y = 1 + {# ~ Dx is at x = i. Obviously

(1.3) glr,i+s)= Y q.
i»0

Let p; be the probability that a walk hits the line y = ¢ + (- — 1)x first in the
place x = {, Clearly

gl )= T p and g = pglr, 5).
>0

Thus {7.3) implies

gt +3) = Bpglr, s} =gl dqlr ), proving (7.2) .
£30

In view of (7.2) g(r, 1} w g (r, 1)* holds. Let us set 8, = g (r, 1). Substituting
this into the recurrence rclation 28, = 1 4+ 87 follows. Thus 8, is & root of
Gf =~ 224 )=z~ + -+ +z—1). Since B, is a positive real and
B, < 1 itis a positive root of 2”7 4 - -+ 4z — 1. This polynomial is monotone
increasing for z > 0, thus it has only one positive root which is easily seen to be
between 1/2and 172+ /2. ®

Note that Proposition 7.3() holds for 7 = 2 as well, a; = 1.

Theorem 7.4 ([F5]) There exists an absolute constant ¢ so that for all ¢ 2 1 and
¥ 2 3 one has

(6.4 al 2 pG,8) > calll,

Proof. The first part follows directly from Propositions 7.2 and 7.3. To prove the
second consider the family W (n, 1) consisting of those subsets F of X for which the
corresponding walk w (F) is going above the line p =1 + (r — )x at x = i, That
s Whd={Fex:lFnll,e+rili 2 ¢+ - 1Di). This family is clearly
r-wise t-intersecting and with the previous notation |W(m, i)]2™ > p, holds for
n > ¢+ ri. Direct calculation shows that for | > ¢ the ratio |W(n, |20
decreases exponentially fast as a function of i/, where ¢, — 0 as r — oo, This

shows that the maximal value of |W (m, i)|27" is greater than %pr - calft for
some absolute constant c. W

Conjecture 7.5. ([F6l)

(6.5) flnro 'mfﬂW(ﬂ, 0.

Remark 7.6. 1In [F6] the above methods were used to prove this conjecture for
t € r2°/150. In the case » = 2 the conjecture is implied by the Katona Theorem
(Theorem 5.1). Simple computation shows that on the RHS of (7.5) for
t €2 —r~1is the family W{n, 0} = (F € X:[1,71]  F} is maximal and in
fact it is the only maximal one for r < 2 —r — L. It is tied with Win, 1) if
{2y, whilefor1>2 —r—1onehas [Win )| > |W(n, 0)].

Let us give the proof of the following, relatively simple case.
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Proposition 7.7. Suppose that ¢ < (In2)2~! ~ 1 then f(n, r 1) = 2" and
W {(n, 0} is the only optimal family.

Proof. Suppase & C 2% is rwise t-intersecting. If for some F,, .., F,_, € &
one has |Fy N -+ O F,_;| =1, then necessarily this t-subset of X is contained
in ali members of & proving the statement. Thus we may assume that F is
(r — 1)-wise (t + I)-intersecting. Since p{r,)2" 2 f(n, r, 1), Theorem 7.4
implies

141

] < 1=l G

2

14—

Shr=Lt+ 1) 2% )" <2 po

which is smaller than 2™ for r + | € 277" In 2. This yields |#] < 2"~!. =

8. CROSS-INTERSECTING FAMILIES

Let #, ..., &, be families of subscts of X. We say that they are cross-wise
I-intersecting if for all choices of F € F, 1K j€r |F N - NFi3:
holds.

It is easy to check that if we apply the (7, j)-shift simuitaneously 1o #,, ..., &,
then the resulting families S;;(#,), ..., S;;(%;) will be cross-wise t-intersecting.

Thus when we are interesting in bounds on f(|#], ... |#.]), we may
suppese that 9, .., &, are stable. The next proposition is a sharpening of
Proposition 7.2.

Proposition 8.1. Suppose that &, ..., # are stable, cross-wise t-intersecting
families, F; € #, is arbitrary but fixed, 1 € j € r. Then there exists £ 2 f such
that

8.1 S IFnlLal > ¢~1e+1 holds.
1Sj&r

Note that (8.1) is equivalent 1o F]{1,#) - F;| € £ — ¢ and therefore implies
LanrFn - aflz:

Proof of (8.1). Suppose that (8.1) does not hold for some F| € &, ..., F, € &,
and among such F; suppose that Fy, ..., F, ischosensothat [F, N --- N F,|is
minimal, : h

Choose ¢ as the minimal integer satisfying
8.2) [Fin - nFnlLe) =t

If there exists 1 € i < ¢ such that i is not contained in at least two out of
Fi,..,F, then chooge 1 €p<g<r with [ ¢F,, i £ F, and define
Fp = (Fy ~ &) Uli), F, = F, for s # p. Since &, is stable, F, € #, and

{8.3) Fin o  nF,=F N - NF —{£ holds.

By minimality, there exists ¢ # 0, such that

(8.4) S IENLAIZC-DE+1> 3 |F 0L
1€/ %r 1€/%r

Comparing the extreme sides of {8.4) yields 7 < ¢£. Consequently,
IFon - nEaalzFin o nFamelse.

This, however contradicts {8.2) and {(8.3), #
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Hujter observed that Proposition 8.1 has the following surprising corollary.

Proposition 8.2. (Hujter [Hul) Suppose that &, .., #, C 2 are stable, cross-
wise f-intersecting. Let | € 7 € 7 and let F;, G; be arbitrary sets satisfying
Fy=1tlw= Gy = 1{1,¢), |F;| = |G| and F; € #,. Then adding G, to &, will
nat destroy the cross-wise -intersecting property.

Progf. Let F, e &, be arbitrary, 1€gs=jgr Since
1F; 0 (1, 81] =[Gy 0 (1, €] for all £ > 1, Proposition 8.1 implies the existence
of £ 3 t with

G, n{,ell+ B IF N {LL 3 (¢ ~1)24 ¢ and thus
Fi 0

IG, n (’QJF,) niLediz: m

For a family #C2' define AP mmaxlt: vVF € # 320 with
IFNllLrite) 2 ¢~-Di+8. Cleardy, A# 20 In the geometric
language, £ is the largest integer such that no walk w(F), F € & lies entirely
under the line y = (r — 1)x + ¢,

The next proposition extends Proposition 7.2 in another way.

Proposition 8.3. Suppose that &, .., #, € 2¥ are stable and cross-wise -
intersecting. Then

8.5 MF)+ - +A(F) 2 holds .

Proof. Set A;w MSF)). By stability for 1 € j €7 we can choose F; € F
satisfying

Fyo (L2, h M+ 2, 0 +3, 040 0 +r+ 2,0 7 43,0} e,
Fclunl-D+1+irii >0},

Note that for every £ 2 0

T It e~ £}l > [ - x| boias. i
in view of Proposition 8.1 we can choose £ > 0 such that
s.7 pARRIES ARY B

/

Summing (8.6) for 1 € j € 7 and using {8.7) gives

t-122IA-Fl> 3 [€-2n] > -y
J I<jgr i

Comparing the extreme sides (8.5) follows. ®
Recall the definition of «, from Proposition 7.3.

Corollary 8.4 Suppose that &, ..., #, € 2% are cross-wise t-intersecting. Then
{3.8) [# ] .. |F| <2*a¥.

Proof. In proving (8.8) we may assume that #; is stable. Then Theorem 7.4
implies | %] < 2"}, Taking products over 1 € j < r and using (8.5) the
inequality (8.8) follows.
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9, SOME NUMERICAL EXAMPLES

In this section first we will bound the maximum size f {(n, 3,1) of 3-wise +
intersecting families for ¢ € 6. In particular, we will show that

S =2"" for 1 €13.
Throughout this section # is a 3-wise fintersecting stable family on
[Lnl={1,2,.., al
Forsets A C Bletusset 4, Bl = [F-B: F N B= A F¢F.
Claim 9.1. Either n# D [1,1) and thus |#] € 2™ or
6.0 |# W), D € 22701

Proof. 1f (9.1) does not hold, then by Theorem 1.0 we can find two sets F, F' € &
with ¥ N F' = [1,1} implying (1,61 € F forall F* € #. 0

Recall the definition of a3 from Proposition 7.3 and note that
ay = (5 ~ 1)/2. Propositions 7.2 and 7.3 imply f (n, 3,7) < 2"a}. The next
proposition gives a slight improvement.

Claim 9.2, Fort 2 2

0.2 fin 3,0 € 2%al—27"") holds .

Proof. Since a§ — 27" > 27 for 1 > 2, we may suppose that {NF} <7~ L
By Proposition 7.2 every walk w(F) with F € 9 hits the line y = 2x + 7. By
Proposition 7.3 there are less than a} 2" subsets F € 204") such that w(F) bits
this line. Among these sets 2"~ contain [1,4/]. But Claim 9.1 implies that at least
2*~*~! out of these sets are notin #. ®

Proposition 9.3. For 5 €t and A C [1,5]) the family #4,11,5)) is 3-wise
{r + 25 — 3| A |)-intersecting.

Proof. Let Fy, F3, F; be arbitrary members of & with F; n[1,s1=4,
i=1,2,3. Choose # from Proposition 8.1 andset G, = F; N [s + 1, £1.

Then we infer - .
[G | +1Gal + |G| = |Fy n (1, elf +|Fy nl1, 2li +1Fy n {1, & -3l 4]

22(0—5)+t+25~34],

yvielding |Gy NG, N G3| 2 r+25 34| »

Theorem 9.4. The following equality and inequality hold.

(9.3) f3n=2"faigt€3n21.

(9.4 f(n, 3,6) < 0.03149-2",

Moreover, if % is 3-wise r-intersecting with | N #| < ¢ then [#] < 2" holds for

1€t €3,

Proof. We prove all the upper bounds together, using induction on n. Forn €«
all bounds arc trivially true, Without loss of generality we may assume that
| F| < t and therefore we can apply (9.1).

Consider first the case ¢ =3, For 4 € [1,3] set f(4) = |F4, [1,3D].
Clearly, we have
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{9.5) |#l= 3T s

Aciyy

In view of Claim 9.1 we have

9.6 FAG R IE i

For 4 € 11,31, #(4, {1, 3] is 3-wise (9~3| A |)-intersecting by Proposition 9.3.
‘The induction hypothesis yiclds

9.7} FUA) €276 forall 4 C [1,3), 4| =2 and

©.8) F{4) € 003149 - 2" forali 4 € [1,3], |4} =1.

For 4 = &, (9.2) implies
5.9 f (@ <€ 001218 2"

Summing 9.6), 9.7, (38 and (9.9 it follows from (9.5) that
|#] < 0.98165 - 2"3, as desired.

Now, f(n, 3,1) 2 f(n = 1,3,1 — 1) implies (9.3) for ¢ = 1,2 as weil.

To prove (9.4) we set £ (4) = |#F(4, 11,61 for A C [1,6). Then

9.10) i#l= 3 f{4) bolds.

FR-JIN:|

The next six inequalities follow from the induction hypothesis or from (9.2),
using Proposition 9.3,

£AaLeh € 207

FAC VR for 4 € (L6, 14} =
FU) < 003149-27% forA € “fr
f{4) < 001218 _- - for A € ufj
£ (4) < 0.00299 - 2*™$ for A € [l;ﬂ
l
FA) <000072-2"%  forA € (1,6} and

i

(&) < 000018 - 2*%

Summing these inequalities yields in view of (9.10)
|# < 003149 - 2", as desired, B

Remark 9.5. From the proof it is clear that if # is 3-wisc 3-intersecting with
[n#F <3 then actually, [#F] < 098165 273 holds. With similar
considerations one can show that if & is 3-wise 2-intersecting with | N ] < 2 then
[#] < 0.81 ' 2"2. The same approach yields:
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(9.11) S (n,5) €079 2""*, which we will use in Section 12.

10. PAIRWISE DISJOINT SETS
We start this section by a theorem of Erdés and Gallai on 2-uniform
hypergraphs, that is ordinary graphs.

X
Theorem 10.1 {IEG]) Let 9 C 2] be a graph on & vertices, s 2 2, n 2 25 and

suppose that @ does not contain s pairwise disjoint edges. Then
-1} [s—1
(10.1) !*3¥<m“ 3 },[ 2 +(s—!)(n-:)}

Morcover, equality holds in (10.1) if and only if cither & = [;'] for some

X
(25 — 1)-clement set Y or % = {G € [2

1 G nZ#B]forsomeZE ls__l].

Proof (Akiyama-Frankl [AF]). In proving (10.1) we may suppose again that & is
stable. Since % contains no § pairwise disjoint edges, one of the following s
subsets is not in @,

Gimli,2s+1 =4}, iwl, ...5.
However, if G; £ @, then the stability of ¥ implies

G C@®-{Ge [':]:Gnh.i—u#e or G Clt,2s =11}

Note that actually G, contains no s pairwise disjoint edges. Now (10.1) follows
from

@ =% or | ¥
]liifé,i il lll I.r;

and equality holds only if .

' B=® or G,

Finally, note that if % contains no s pairwise disjoint edges and S;(#¥) is

isomorphic to %, for some 1 € £ £ s, then % is isomorphic to %, as well. ®
The families corresponding to @; and %, for k-graphs with k > 3 are!

X [,ks—1]
f,—{Fé{k}:Fﬂ[i,s—il#Q}and-ﬁ'[ k ]

Conjecture 10.2 (Erdos [E]) Suppose that # C ,a 2 ks and # contains no

X
k

s pairwise disjoint sets. Then

- 1} (ks =1
{10.2) Iﬂémx{li]wln :+ i, [sk ]} holds .

Erdds [E] proved this conjecture for n > ng(k, 5). The bounds on ng(k, 5)
were improved by Bollobds, Daykin and Erdds [BDS] who showed that (10.2)
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boids for m > 2k’s. Fiiredi and the author (unpublished) proved (10.2) for
n > 100ks?, but to prove (10.2) in full generality appears to be & very difficult
problem.

Let us prove an upper bound, which is not too far from (10.2) and bolds for all
n > ks

X
Theorem 10.3. Suppose that F C kl» 7 2 ks and & contains no s pairwise
disioint edges. Then
‘ n—1
(10.3) H#Fl1 € -1 {k-a holds .

Proof. Note that for 5 = 2, (10.3) reduces to the Erdds-Ko-Rado Theorem. In
fact, our proof will be similar to that. First we prove (10.3) for m = ks. Let
X=G UGV - UG, be  an  arbitrary  partition  with
|Gyl m - = |G,| =k Out of these s sets at most s — | can be in &
Averaging over all partitions gives

e i 7]

Now we apply induction on n and prove the statement simultancously for all &
with ks € n.

Again, we may assume that & is stable. Consider #) = (F € #:n € F)
aod Fn) w {F ~{n}:n € F € #). We claim that neither of them contains s
pairwise disjoint sets. Indeed, this is trivial for #(n) C # As to $(n), note that
if Hy, .., Hy € #(n) are pairwise disjeint then choosing s distinct clements
Y1o s ¥s from {Ln)~ (H,; U -+« U H,), which has size n —s{k —~ 1) 2 5,
the stability of & implies F; = (H; U {y]) € # However, Fy, ..., F, are
pairwise disjoint, a contradiction.

Now using the induction hypothesis we infer

n—2 n—1

1# = 1@ +1Fw] < 6-D [:__1

11. ON r~-WISE INTERSECTING FAMILIES

Recall that & C 2% is called ~wise intersecting if F; N -+ N F, » @ holds
for all Fy, ... F, €F If {F,]+ -+ 4 |F| > —1Dn then necessarily
Fin --- 0 F, = @ bholds. This shows that the assumptions of the next result
are pecessary.

Theorem 11.1  ({F8]}) Suppose that F C
rk € ¢ -~ )n. Then

(11.1) |# < [::;] .

is r-wise intersecting,

X
k

Moreover, excepting the case r = 2, n = 2k equality holds if and only if
F=|F ¢ [k]:x € X] holds for some x € X.



-13-

Neither the original nor the present prool uses shifting. However, the present
proof uses the Kruskal-Katona Theorem, which we proved by shifting.

First we prove a proposition which is due to Kleitman.

X
Proposition  11.2  ([Kil)  Suppose that &, C k| i=l,...r

ky+ - +k=n If there are no F,€#F, 1€i<r wih
Fy U -+ UF, =X, then

(1L b If,t/[:] < r ~ 1 holds .
‘ 161€r !

Morcover, equality holds if and only if for every ordered partition
X =G, U - UG, satisfying |G,} = &, there is exactly onc 4, | €7 € r with
G ¢ F.

Proof. Consider all ordered Xyartmons X=G, U - UG, with |G]=
1€{<r Forafixed F € {’q] one has F = G; for a fraction lflk] of all these

partitions. Thus G; € #; holds for a fraction ||/ kf of them, Since G, € &

must hold for a1 least one i, the statement follows, ®

Proof of Theorem 11.1. Set % = {X — F: F € #}. Choose numbers k;, .., k
satisfying O S k; € n =k ky+ -+ 4k, =n

Set F = ag..g‘(’j - {G €

X
k :3F € F,G C F.

Note that the fact that $ is r-wise intersecting is equivalent to & not
containing r sets whose union is X. Thus &, .., &, satisfy the assumptions of
Proposition 11.2.

n—1 -1
Suppose |#] » %—11 = |n—k|- Then, by a consequence of the Kruskal-

n—1
Katona Theorem (Corollary 3.4), ome bhas |&Fi 2 [ X; l, that is

n k
AP —-L for 1 € ¢ € r. Comparing with (11.2) gives that equality
k;

must bo}d fo{; ]aii i Again by Corollary 3.4 if k; < n — k for some i, we infer
Fow | g |forsomex € X

If ky= - =k,=n—k and thus (—-Dawrk ie, |if
Fi= o owmFo=F, then by Proposition 11.2
r—1 [rln—k) n-1y . . .
7| < | a=k | ™ jk-1 with equality only if there is one missing sct

from every partition. This implies that [rr-— k] ~  is an intersecting family of

. L |
size § g1l

Thus, for » 2 3, that is, for {n — k} € n/3, the uniquencss of the optimal
fam‘ifies in th; Erdds-Ko-Rado Theorem implies
n—k] - - {G € {n—k :x € G} for some x € X, and the uniqueness part
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of Theorem 11.] follows. ®

12. A Helly-type theorem

From various previous theorems we know that if # € 2% is r-wise intersecting
with 1] 2 2%, then for r 3 3 F consists of all subsets through some fixed
element. What if we bar this family? Define

H=Wnr)=lHCX |[HNLr+1]] 2 7).

Ciearly, 2 is r-wise intersecting, N W = & and |#] = (7+2)2"~""! hold.

Theorem 12.1 {(Brace and Daykin [BD]). Suppose that & C 2% is rwise
intersecting, N.F = @ then | F] € | MW (n,7)|; moreover, for r 2 3 equality boids if
and only if & is isomorphic to #n,r}.

The original proof of this powerful result did not use shifting. Kleitman (cf.
[P]) gave a proof using shifting. Here we present an alternate proof which is based
on the following.

Proposition 12.2. Suppose that @ € 2¥ is r-wise r-intersecting, r » 3. Then
| #| £ 2" with equality holding if and only if ¥ « {G C X: T C G} for some
T« [’:]

Proof. For r w3 this result is contained in Theorem 9.4. For r 2 6, the
statement follows from Proposition 7.7. Supposc now that r = 4 or 5. If ¥ is not
(r—1)-wise (r+1)-intersecting, then we can find an r-clement set T and
Giroo o Gy e ¥ with Gy N - - NG,y = T. Consequently, T < G for every
Ge®

Suppose next that % is (r—1)-wise {r+1)-intersecting. If » = 4, then (9.11)
implies |%| < 0.79 2"* and we are done. If r = 5, then Propositions 7.2 and
7.3 imply | ®| < 2" af. One can check that a4 < 0.544 and thus | %] < 2"~
concluding the proof. W

Proof of Theoren: 12.]. We may assume that % is a filter, i, 6 C H C X and
GeSimply He®. Since NY =2, X~ [ilisin Fforall 1 €7 <n Asthis
"is maintained by shifting, we may assume that 9 is stable. For r = 2 on¢ has
(r+2)2%™""! = "1 Thus the statement is trivially true. Apply induction and
suppose that for r—1 the theorem is proved. Consider the families %{1) and
#(1). Since ¥ is r-wise intersecting, ¥(1) is {r—1)-wise intersecting on X ~ {1}
and (X~ li)e® for 2<i € n implies N®(1) =@ By the induction
hypothesis we infer:

ga.n j#(D] < G}

From Proposition 8.1 it follows, in the same way as Proposition 9.3, that #(1)
is r-wise r-imersecting on X — {1}. Thus Proposition 12.2 implies:

(12.2) | @] < 22~

Adding (12.1) and (12.2) we obtain | 9| € (»+2)2"™ 7", as desired.

In case of equality, equality must hold in (12.2). Conscquently, {2,r+11¢ %,
which implies {H n [2,r+1]] 3 r~1 for H ¢« #(1).

We infer |6 N [1,r+1}| 2 rforall G ¢ %,ic, ¥ C ¥nr), as desired. ®
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Remark 12.3. Let us note that the present proof shows (via Remark 9.5) that if
& = (nr)then |¥]| < F+1982)2" 1,
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