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FORBIDDEN INTERSECTIONS

PETER FRANKL AND VOJTECH RODL

ABSTRACT. About ten years ago P. Erdos conjectured that if J is a family of

subsets of {1,2,..., n} without F,F' S J, \Ff\F'\ = [n/4], then |7| < (2-e)n

holds for some positive absolute constant e. Here this conjecture is proved in a

stronger form (Theorem 1.1), which solves a $250 problem of Erdos. Suppose

C is a code (i.e., a collection of sequences of length n) over an alphabet of q

elements, where | > S > 0 is arbitrary. Suppose further that there are no two

codewords at Hamming distance d where d is a fixed integer, 6n < d < (1 — 6)n,

and d is even if q = 2. Then \C\ < (q — e)n, where e > 0 depends only on q

and S.

The following conjecture of Erdos and Szemeredi is also proved: If J is a

family of subsets of {1, 2,..., n} not containing a weak A-system of size r (cf.

Definition 1.8), then \7\ < (2 - er)n, eT > 0 holds.

An old conjecture of Larman and Rogers is established in the following

stronger form: Let A be a collection of 4n-dimensional (±l)-vectors, r > 2 is a

fixed integer. Suppose that A does not contain r pairwise orthogonal vectors.

Then \A\ < (2 - e)in.

All these results can be deduced from our most general result (Theorem

1.16) which concerns the intersection pattern of families of partitions. This

result has further implications in Euclidean Ramsey theory as well as for iso-

metric embeddings into the Hamming space H(n,q) (cf. Theorem 9.1).

1. Introduction and statement of the results. The results of the present

paper can be divided into three areas: (i) extremal set theory; (ii) coding theory;

and (iii) geometry.

(i) Extremal set theory. Let X be an n-element set—we often suppose X =

{1,2,..., n}. Define 2X = {H,H C X}, and

(Xk)={HCX,\H\=k}.

A subset 7 C 2X is called a family. If 7 C (x), then J is called /c-uniform. The

easiest result in extremal set theory states that if' FC\F' / 0 holds for all F, F' € 7,

then \7] < 2n~x (proof: at most one of F, X — F can belong to 7). Under the

additional restriction |F| = k for all F € 7, i.e., J C (x), the problem becomes

more difficult. The best possible bound is 17 < (£lj) (when Ik < n) given by the

Erdds-Ko-Rado theorem (see below).

What happens if we assume \F fl F'\ > t? The answer is given by the following

two theorems.
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260 PETER FRANKL AND VOJTECH RODL

Katona's Theorem [K]. Suppose 7 C 2X and \F n F'\ > t holds for all
F, F' G 7.  Then

,,,       f £i>(n+t)/2 (?) l/n + * » even'

'   '-IzEi^n-D+o/aCT1)    ^fn + tlsodd.

Moreover, for t > 2 equality holds if and only if

j = (FCX:\F\ > (n + t)/2 ifn + tiseven,

'  " \ F C X: \F n (X - {x})\ > (n - 1 + f)/2   for some x G X, if n + t is odd.

ERDOS-KO-RADO THEOREM [EKR]. Let 7 C (x) and suppose \F H F'\ > t

holds for all F,  F' G 7.    Then \7\ <  (£l*) for n > n0(k,t).   Moreover if n >

n0{k,t), then \7\ =  (£~J)  is possible if and only if 7 = $F G (x): T C f\ for

some T G (f).

REMARK. The exact value of no(k, t) is (k — t + l)(t + 1). It was determined by

Frankl [Fl] for t > 15 and recently by Wilson [W] for the remaining values of t.

These theorems lead to the following more general problems: Let L = {/i,..., ls}

be a set of integers satisfying 0 < l\ < l2 < ■ ■ ■ < l3 < n.

DEFINITION. Let m(n, I) (resp. m(n, k, L)) denote the maximum of 17\, 7 C 1x

(resp. 7 C (fc)) subject to the constraint: \F n F'\ G L holds for all distinct

F, F' G 7.
One can reformulate the above theorems in the above terminology. For example,

the Erdos-Ko-Rado theorem states

m(n,fc,{t,t + l,...,fc-l})= ("~   J    forn > (fc - t + l)(t + 1).

Another example of a result of this type is the following recent theorem of the

second author [R] who proved that for 1 < t < fc < n,

m(n,k, {0, l,...,t- 1}) = ("j /(    J(l4-o(l)),     where o(l) -<• 0 as n -> oo.

For a recent review of general results concerning m(n, fc, L) and m(n, L) see [DF].

The special case which is central for this paper is when L — {fc: 0 < fc < n— 1, fc ̂

1} for some integer /.

Let us introduce the notation:

m(n, {0,1,..., n - 1} - {I}) = m(n, I),

m(n, fc, {0,1,..., fc - 1} - {/}) = m(n, fc, I).

The problem of determining or estimating m(n,l), m(n,k,l) goes back to Erdos

[El].

FRANKL-WILSON THEOREM [FW],   Suppose k-l is a prime power.  Then

(a)        m(n,fcJ)<L_™     J if k > 11 + I;

(«    »<».M)^)(ar')/("'1  »"*+'•
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Frankl-Furedi Theorem [FFl and FF2].

(a)

m(n, fc, I) < I 1     if k > 21 + 2 and n > n0(k, I).

Moreover, equality is attained only for <F G (k):T C F> for some T G (l+1)-

(b) For n > n0(l)

m{r> fi -VM + I ^>(n+i+D/2 (?)    ifn + l is odd,
m(n,l) - ^ {.) + |2E^+j (n-i)        lfn + l lg even

Moreover, equality is attained only for

If C X:0 < \F\ < I or \F\ > n+^+1|

if n = 1 is odd, and for

IfcX:0<\F\ <l or \F n (X - {x})\ > ^±H

(x €. X is fixed) if n + I is even.

The essence of this last theorem is that weakening the assumptions of the Erdos-

Ko-Rado and Katona theorems by requiring only |FnF'| ^ t — 1 instead of \FC\F'\ >

t still leads to practically the same bounds. However, the condition n > nn(0 makes

it impossible to apply these results if / = an, a > 0.

The applications of the next-to-last theorem are restricted by the condition that

fc — I is a prime power. In fact, if this could be removed, then it would imply some

of our results.

THEOREM 1.1. Suppose 0 < n < | is given. Then there exists a positive

constant Eq = £q(v) so that m(n, 1) < (2 — So)n holds for all I, nn < I < (| — n) n.

Making the necessary calculations one deduces

Corollary 1.2.

(1) m(n, [n/4]) < 1.99".

COROLLARY 1.3.   For a fixed constant p with 0 < p < 1,

m(n,-pn) < (2 - p2/2 + o(p3))n.

Let us mention that taking 7 = {F C X: \F\ > (1 + p)n/2} one obtains a rather

large family satisfying \F fl F'\ > pn and therefore \F fl F'\ ^ \_pn\.

Setting p — \ior n> no one has \7\ > 1.9378", showing that the upper bound

in Corollary 1.2 is not far from being best possible.

Similarly, one sees that m(n, [pn\) > (2 - p2 + o(p3))n holds.

Theorem 1.1 and its corollaries will be deduced from the following, more general,

two-family version.
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262 PETER FRANKL AND VOJTECH RODL

THEOREM 1.4. Suppose 0 < n < \ and two families 7, Q C 2X are given

which satisfy \F r\G\ ^ I for F G 7, G G Q. If nn < I < (1 - n) n, then

\7\\9\<(4-el(n)T,

where £i(n) is a positive constant depending only on n.

Let us mention that two-family versions of extremal theorems are often more

useful and cannot be deduced from the corresponding one-family version. For

example, if 7 C 2X satisfies \F n F'\ = I for all distinct F, F' G 7, then Ryser's

theorem [Ry] gives 17] < n when / > 0 (for / = 0, 17] < n + 1 is trivial).

On the other hand, if X = Y U Z, \Y D Z\ = I, then the two families A = {A C

Y:YnZ C A}, B = {BCZ:YDZCB} satisfy \AnB\ = I for all A G A, B G B,
and \A\ \B\ = 2n~l which is exponential in n.

In §10 we shall prove \A] \B\ < 2" with equality only if I = 0 (Proposition 10.1).

There we prove some similar results for the case when |AflS| = I (modp) is required

instead of |A n B\ = I for all A G A, B G S.

A short proof of a theorem of Ahlswede et al. [AGP] is also given in §10.

Theorem 1.4 can be generalized in the following way.

THEOREM 1.5. Let 7, 7' C 2X be two families with \F n F'\ ^ [pn\, 0 <
p < 1. For 0 < p < 1 and F G 7, set wp(F) = p^(l - p)""lFl and wp(7) =

Y1W(F) (wp(7') is defined analogously). Suppose further that n > 0 is such that

either

(i) 0<rj<p<p — n < p < ^, or

(ii) j < p < 1 and 2p — l + n<p<p — n holds.

Then wp(7)wp(7') < (1 - e(n,p))n, where e(n,p) > 0.

By considering the system of all m-subsets of an n-set, where m = [an\, and

realizing that for p = a these sets have joint weight > 0(l/n) we get the following

result.

COROLLARY 1.6. Let a, 0 < a < 1, and n < a/2 be given reals. Let 7 and 7'

be two families of m-element subsets of an n-set X such that \FDF'\ / [pn\ for

all F G 7, F' G 7', where m = [an\ and max{0,2a — 1} + n < p < a — n.

Then

IWI^(^)   (i-O"*     where e = e(a,V)> 0-

We will further prove the following strengthening of Corollary 1.2.

THEOREM 1.7. Given 0 < 6 < 1, there exist positive constants a = c(8), s =

e(6) so that whenever 7 C 2X with ]7\ > (2 — e)n and ]n/4 — l\< an, then

(1') \{(F,F');F,F' e7,\FDF'\=l}\ > |J|2(l-r5)n.

DEFINITION 1.8. A family A - {Ai,A2,...,Ar} is called a strong A-system

(weak A-system) of size r if A% D Aj = Ai f"l A2 (|A, n Aj\ — \A\ n A2|) holds for

all 1 < 1 < j < r, respectively.

In [ES], P. Erdos and E. Szemeredi proved that there exists a family Q of subsets

of a given set X so that Q does not contain a weak A-system of size 3, where

\X\=U, \9\ >n'°g"/41°glogn
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On the other hand, they conjectured that if e is sufficiently small and 7 c 2X is

sufficiently large, for example, \7\ > (2 — e)n, then 7 contains a weak A-system.

(Note that it is also proved in [ES] that if (2 - e)n is replaced by 2(1~1/10"1/2)",

then the family contains a strong A-system of 3 elements.) Theorem 1.7 implies

the conjecture of Erdos and Szemeredi in a stronger form:

THEOREM 1.9. Given r > 3, there exist constants n = n(r), e = e(r) so that

for every I with \n/4 — l\ < nn and for every 7 C 2X with ]7\ > (2 — e)n, there

exist Fi, F2,..., Fr G 7 with \Ft n Fj\ = I, 1 < i < j < r.

(ii) Coding theory. Given a finite set Q, \Q\ = q > 2, called the alphabet, by a

code of length n over Q we mean a family C = {Ci,..., Cm} with each d (called

a codeword) being a sequence of length n of elements from Q. The Hamming

distance of two codewords C = (a\,a2,... ,an), D = (b\,b2,... ,bn) is defined by

d(C,D) = ]{i, ai ^ bi}]. Clearly d(C,D) = 0 if and only if C = D. Define
d(C) = {d(C,D);C / D G C}. A classical problem of coding theory is to give

upper and lower bounds for max|C|, given d(C). Delsarte [D] proved an upper

bound in terms of |d(C)|. This was recently strengthened by Blokhuis and the first

author:

THEOREM [B1,F2]. Suppose C is a code of length n over Q, p is a prime, and

d(C) is covered by t nonzero residue classes mod p.  Then

\C\<±(a-i)-(n\

i=0 V   '

This theorem often gives quite accurate bounds if \d(C)\ is small with respect to

n. However, for d(C) > n/q it becomes practically trivial. Our result concerns the

case |fi(C)| = n - 1.

THEOREM 1.10. Let C be a code of length n over Q, and let 6 satisfy 0 < 6 < \.

Suppose that Sn < d < (1 — 6)n, and d is even if q = 1. If d £ d(C), then

\C\ < (q — e)n with some positive constant e = e(8, q).

REMARK. If Q = {ai,a2}, then Ceven = {C = (ci,c2)- ■ ■ ,cn): \{i:ci = ai}| is

even } shows that the condition "d is even" is necessary for q = 2.

(iii) Geometry. The Frankl-Wilson theorem has had numerous geometric ap-

plications. In particular, it implied that if n-dimensional Euclidean space Rn is

partitioned into fewer than 1.2" sets, then in at least one of the sets all distances

are realized; that is, for any positive real number 7 there are two points in that

set at distance exactly 7. Corollary 1.2—via the methods of Larman and Rogers

[LR]—provides an exponential lower bound as well.

Larman and Rogers [LR, Conjecture 2] asked whether every set of 2d/d2 (±1)-

vectors in Rd contains a pair of orthogonal vectors if d is of the form 4n. Here we

prove the following stronger statement:

THEOREM 1.11. Given r, n > r > 2, there exists a positive constant e = e(r)

so that in any set of more than (2 — e(r))4" (±\)-vectors of length 4n there are r

pairwise orthogonal vectors.

Note that if d is odd, then no two ±l-vectors in Rd are orthogonal. If d — 4n-f2,

then the collection of ±1-vectors with an even number of — l's shows that one can
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have \2d vectors without an orthogonal pair. Thus the assumption d = 4n is

necessary. This result leads to the following problem:

Problem 1.12. Let 2 < r < n and let p be the usual Lebesgue measure on the

unit sphere Sn~x in Rn. What is p(n,r) = sup{p(E)/p(Sn-x):E C Sn~x, E is

measurable, and there are no r points in E such that the vectors pointing to them

from the origin are pairwise orthogonal}.

This problem was stated by Witsenhausen (personal communication) in the case

r = 2. In [FW], p(n, 2) < (1.13 + o(l))"" is proved.

Taking the open cone with half-angle 45° shows p(n, 2) > (\/2 + o(l))~"; it is

conceivable that equality holds here. However, already ^(3, 2) is unknown. An

easy averaging argument along with Theorem 1.11, and the obvious inequality

p(n,r) < p(n',r) for n < n' yield:

THEOREM 1.13. There exists a positive constant e = e(r) so that p(n, r) <

(1 + e)-" holds.

DEFINITION. For an integer / and families 7, 9 define:

h(7, 9) = {(F, G):FG7,GG 9, ]FHG]= I},

ii(7,9) = \H7,9)]-
For / = {F} we write ii(F,9) and Ii(F,9). In §§6, 7, and 8, various stronger

theorems are established.

THEOREM 1.14. Suppose 1 > pi, p2, 8, and n, are positive constants, 7i C

( xn), and I is an integer with

max{(pi + p2 - 1 + v)n, nn} < I < min{(pi - n)n, (p2 - n)n}.

Then there exists a positive s = s(pi,p2,8,r}) so that:

\^\h]>(n)(n)(i-sr
\PinJ \P2nJ

implies

For h,l2,...,l3 positive integers with ly + l2 + ■ ■ ■ + ls — n, let (, x t ) denote

the set of all ordered partitions (Ai,..., As) of X with |A,| = ^. Obviously

(     X     \(      n      )=^^

yiu-.-js)    \k,...,ia)   /i!..-u

For

A = (Ai,..,As)g(^*)/s)     and    B = (Bu ... ,Bt) G (^ *   ^ ,

the intersection pattern is an s by t matrix M with general entry m^ = [A; f) Bj\.

We denote this fact by writing |A n B] = M. For families

~ \h,-Js) ' ~ \ki,...,ktJ '
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let us define IM(A,B) = {(A,B):A G A, B G B,  ]AnB\ = M}, iM(A,B) =

]Im(A,B)].
A necessary and sufficient condition for M to occur as intersection pattern at all

is: J2i mij = kj< Xw mij = '»> Si mij = n- Our next theorem asserts that if m^

is not too small and \A\, |S| are large, then this condition implies that there are

many pairs with intersection pattern M.

THEOREM  1.15.   Let n, 7 be arbitrary positive constants, A C (,   X l ),  B C

(fc  X fc )' an^ 'e* ^ = (m*>) ^e an s ^1 matrix satisfying mij > nn.   Then there

exists a positive constant e = £(77,7) so that

implies

Instead of the intersection pattern of two partitions one can consider several par-

titions (Aj ,..., Ai, ),..., (Aj ,..., As/) and their intersection pattern, which

will be an s\ by s2 by • • • by sr array with general entry |A^    fl • • - n A[J |.

As we shall see Theorem 1.15 easily implies the following more general result.

THEOREM 1.16. Let n, 7, be arbitrary positive constants, A^ a family of

partitions of X,

*(i,c (,(<>,.*,«<?)'    ' = '•   -■

Let M = (mi1i3...ir) be an s\ by ■ • • by sr array with all entries satisfying mi1...lr >

nn. There exists a positive constant e = e(n,i) so that

iM^i\...,A^)>(i-iriM((lwtx ,/(}>)'••••(/w...,^),.;.,iw))

holds whenever

|i?(U|>(l-£)W/W   n   ^}j     f0r am.

This last theorem might look somewhat technical and unattractive; however, it

has many geometric applications.

Let us recall that a finite subset A C Rd is called Ramsey if for every integer

r > 2 there exists n0 — n0(A,r) with the property that for every partition of Rn°

into r classes, one of the classes contains a congruent copy of A.

DEFINITION 1.17. A finite subset A c Rd is called exponentially Ramsey if

there exists a positive real e = e(A) so that for every partition of Rn into r classes

with n > d and r < (1 + e(A))n, one of the classes contains a congruent copy of A.

It should be clear that being exponentially Ramsey is a property much stronger

than just being Ramsey. The concept of a set being Ramsey was defined in 1972 by

Erdos, Graham, Montgomery, Rothschild, Spencer, and Straus [EGMRSS], who
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proved that the vertices of an arbitrary-dimensional rectangular parallelepiped are

Ramsey.

On the other hand they showed that if A is Ramsey, then A is spherical (it can

be embedded in a sphere).

The first open question therefore was what happens with obtuse triangles.

In [FR] it is shown that all triangles are Ramsey. With the aid of Theorem 1.16

we can prove the following stronger statement.

THEOREM 1.18. Let A be a simplex in Rd, i.e., A consists of d + 1 affinely

independent points.  Then A is exponentially Ramsey.

Note that the special case when A is a regular simplex also follows from Theorem

1.11.

The proof of Theorem 1.18 will appear in a separate paper—along with more

results on Euclidean Ramsey theory.

2. The proof of Theorem 1.4 and its corollaries. First we give a proof

of the following auxiliary result analogous to a theorem of Ahlswede and Katona

[AK].

THEOREM 2.1.   Let 7* and 9* be two families on an n-set and let /?, 0 < /3 < 1,

be such that ]F n G\ > 0n for all F G 7* and G G 9*.
Then

\7*\\Q*\ < 22™H((1+/3)/2)i

where H(x) = —xlog2 x — (1 — x) log2(l — x) is the entropy function.

PROOF. Let t be the largest integer such that \F n G] > t for all F G 7* and

G G 9*■ Suppose, without loss of generality, that \7*\ < ]9*\- We clearly have

§("H>£(")
for some a < \n.

Let crt(7) be the set of all subsets of the underlying set having Hamming distance

at most t from some member of 7. Then, by the theorem of Harper [H],

a-l+t   /     \

]o\r)]> £ (jj.

The choice of t implies that at(7") l~l 9*c = 0, where 9*c = {X - G;G G 9*}.

Consequently,

m<- t (')
i=a+t  \     J

and hence

mi<m£(:) t (:)•
i=0   \     /   i=a+t  \     /

Moreover, by the Chernoff inequality [C] we have

J2(n) <2"(a/">"    and       £   ("\ < 2H«°+f>/")",

i=0  V     / i=a+t  \     )
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provided that (a + t)/n> ±. Since (\-x-0/2)-(\ -0/2) = (\ - 0/1)-(x-0/1)
and H'(x) = log((l — x)/x) is monotone decreasing, we have

H(x + 0/2) -H(\+ 0/2) = H(l-x- 0/2) - H(\ - 0/2)

<H(\-0/2)-H(x-0/2).

Thus, we see that the function H(x - 0/2) + H(x + 0/2) attains its maximum for

x—\. Hence, for a + t > n/2,

\7*\\9*\ < 2Wa/») + tf((a+t)/n))n < 22"^(1/2+/3/2) _

If a + t < n/2, we have (similar to the above)

\7*\ \9*\ < 2nH{a,nHn < 2(W(1/2-/3) + ff(l/2))n < 22ntf(l/2+/3/2)_ rj

We need one more auxiliary result.

THEOREM 2.2. Let A and B be families on an n-set and let k, 0 < k < \, be

such that

|ADB|<(|-/c)n   for all AG A, B € B.

Then for an arbitrary X satisfying 0 < X < k we have

(2) \A\ \B\ < max{2"2"(1/2-A)"+1,22("((i+«-A)/2)n+i)}

PROOF. Set Ao = {A G A: \A\ < (^ - X)n}. Then |4,| < 2H(1/2"A)". Thus if

1^01 > 51^1' tne statement follows.
Arguing similarly with B, we may therefore suppose that at least half the mem-

bers of both A and B have size greater than (| — X)n. Let A* and B* be the

corresponding subfamilies and note that |^||S|<4|^*||S*|.

Define C* = {X - B: B G B*}. Then for C G C* and A G A* we have

\AnC\ = ]An(X- B)\ = |A| - |A n B] > (k - X)n.

Applying Theorem 2.1 to C* and A* and noting |C*| = |S*|, the statement follows. □

For the proof of Theorem 1.4 we will introduce some notation. Let 7, 9 be two

set-systems on an n-set X. Let a,b, 0 < a < b < n, be positive integers. We will

write that (7,9) G P(n, [a, b]) iff \F n G] & [a, b] for all F G 7, Ge 9- For a fixed
element x G X set

70 = 70(x) = {F;x£Fe7},

71 = 71(x) = {F-{x};xeFe7},

9o = 9o(x) = {G;x£Ge9},

9i = 9i(x) = {G-{x};xeGe9}-

Below we shall use the following easy

Observation. Let (7,9) G P(n, [a, b]). Then

(71,9i)eP(n-l,[a-l,b-l]),

{7o,9oU9i)eP{n-l,[a,b]),

{7i,9on91)eP(n-i,[a-i,b]).

For set systems 7 and 9 we will write

PW = 21^'        P^ " WS\'
We will also use the following proposition.
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PROPOSITION 2.3.   Suppose x, y, 8 are positive reals with 8 < 1/10 satisfying:

(i) (l + y)2<l+8,

(ii) (l + x)(l-y)<l + 8.

Then

(iii) (1 + y)(l -x)>l-8 -282 holds.

PROOF. From (ii), using also y < 8/2 < 1 (which follows from (i)), we have

x < (8 + 2/)/(l — y). Since the LHS of (iii) is monotone decreasing in x we may

assume x = (8 + y)/(l — y). Substituting this into (iii), multiplying by 1 — y, and

rearranging we obtain

282(l-y)>2(8 + y)y.

To verify the latter inequality note that the LHS is monotone decreasing, the RHS

is increasing in y for y < 6/2, in view of (i), and for y = 8/2 we obtain

182(l-8/1)>382/2

which holds because 8 < \.

Now we can give the proof of Theorem 1.4. The proof is based on the following

ALGORITHM, (a) Set m = n, a = I, b = I, and fix

(3) 8 = 6(n)

sufficiently small positive real.

(b) Check whether a = 0. If yes, terminate; if not go to (c).

(c) Check whether b = m. If yes, terminate; if not go to (d).

(d) Check whether p(7i)p($i) > (1 + 8)p(7)p(9). If yes, set 7 = 7X, Q = Qu
a = a — 1, 6 = 6—1, and go to (h); if not go to (e).

(e) Choose 7\ or 9\ (saY ̂ i) with p(7\) < \/l + 8p(7) and go to (f).

(f) Check whether p(90 U £i)p(70) > (1 + 8)p(9)p(7). If yes, set 7 = 72, 9 =
9o u 9i, and g°to (h);if not g°to (g)-

(g) Set 7 = Ji, 9 = 9o n Qi, a = a - 1, and go to (h).
(h) Set m = m — 1 and go to (b).

REMARK. Note that in (d) and (f) we obtain families with

p(r)p(9')>(i + 8)p(7)P(9)-

Before applying (e) we have

4§)<v/TT*    and    ̂ fl.-^)<l + ,.
P(?) P{9)        Pi?)

Set

p{7) p(9)
Suppose for now that y < 0, i.e., p(7i) < p(7o). Then since

(1 + ar)(l - y) + (1 - x)(l + y) > 2,

we infer that (1 - x)(l + y) > 1 - 6, i.e.,

P(9on 9i)p(7i) > (i - 8)p(7)P(9)

holds. If y > 0, then the assumptions of the proposition are satisfied and we get in

a similar way

p(9o n 9M?i) >(!-*- 282)p(7)p(S).
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Summarizing: If (7,9) 6 P(m, [a,b]) then either

(4) P(7')p(9')>(l + 8)p(7)p(9),

where

(7', 9') eP(m-l, [a, b]) U P(m - 1, [a - 1,6 - 1])

or

(5) V{7')p(9') >(l-8- 282)p(7)P(9)

with

(7',S')&P{m-\,[a-l,b\).

Let I, nn < I < (| — n)n, be the integer from the statement of Theorem 1.4. Set

/ = pn and let 7n be the number of steps before the algorithm terminates. Let an

be the number of steps for which (4) holds and 0n such that (5) holds. Let 7*,S*

be the families with which the algorithm terminates. We have

(6) i > P(r)p(91 > a + <srn(i - * - ^2fnp(7)P(9).

Suppose now that

(7) P(7)p(9)>(l-62)n-

This yields
oln(l + 8) + /31n(l - 8 - 182) + ln(l - 82) < 0

and hence,

a ^ /?ln(l/(l + 6)(1 - 8 - 182)) + ln(l/(l - 82))
a - 0 <-T—r.—r\-•

ln(l + r5)

Using the fact that x > ln(l + x) > x — x2/I holds for any x > 0, we conclude

a    P-\P(l + 8)(l-8-282) + l-82)l-8/2

which gives

(8) a - 0 < 38

if 8 < 1/10. Now we distinguish two cases according to where the algorithm

terminates. Suppose that a = 0; this means that 7*, 9* are sucri that 17*V\9*\ > 6

for all F* G 7*, G* G 9*, and some 6 > 0. Since in each step for which (5) holds,

the interval [a, b] gets longer by one and this happens only if (5) holds, we conclude

that 6 = 0/n. Both /* and 9* are families of subsets of a (1 — 7)n-element set.

Take the set y of the remaining 7n elements and consider

7={F*UY;F* &7*,Y CY},

9 = {C*UY;G*€9*,YcY}.

Clearly \F n G\ > b for every F G 7, G G §■ Thus, according to Theorem 2.1, we

get

(9) '    4(H«x+MV-Vn>p(7)p(9).

Moreover, we have

p(?)p(9)=p(?'M9*)
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and hence by (6) and (9),

(10) 4("((i+/3)/2)-i)n > p(7*)p(9*) > (i + 5)Q"(1 -8- 262fnp(7)p(9).

Since a + 0 = 7 > p, we infer (using (8)) that

(11) 0>P/1~ 3*5/2,

Now (10) and (11) yields

4H((l + /3)/2)-l

"2» WWWs (1 + f).(i-*-»y
4tf( 1/2+^/4-36/4)-1

"  (l + «)Q(l-«-2tf2)'9'

Let r)i = 8i(n) be the supremum of all 8 > 0 such that

4(1 + 6)a(l - 8 - 282)0(l - 62) > 4"(1/2+P/4-36/4)

hold for all p, n < p < \ — n. We clearly have 8i(n) > 0 by an easy continuity

argument. It follows now from (7) and (12) that

(p(7)p(9))x/n<l-82.

Suppose now that the second possibility occurs, i.e., b — m. Similar to the preceding

case, 0n is the length of the interval [a, 6] at which the algorithm terminates and,

since m = 6 we get

(13) a = m- 0n.

Further, since the total number of steps of the algorithm equals (by definition)

(a + 0)n and also equals n — m we find that

(14) (a + 0)n = n-m.

Comparing (14) and (9) we get

(20 + 38)n >n-m

and since (| — n)n > pn > m, we infer that

(15) 0 > 1/4 + n/2 - 36/2.

As in the preceding case, consider the two families 7, S now defined in the following

way: Let Y be a set of (^ — n)n — m elements and set

7={F'UY;F* G7*,Y CY},

S = {G*UY;G*eS*,Y^y)-

We again have p(7)p(§) = p{7*)p(9") and, because of (13), also

\FHG\ < (\ - n - 0)n < |(i - n)n - (n - f )n.

Assume without loss of generality assume that \8 < n. Set k = (n- ^8)/(l/2 — n),

n' = (\ - n)n, and take Ao to minimize the RHS of (2). Let us define £ = £(n,8)

by
cgi'2H(l/2-\0)n'' + 1 _ 22(H((l+K-Ao)/2)n' + l) _  en
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Then, by (10) and Theorem 2.2 (since 8 < ^n we have k > 0) we infer that

(p(7)p(9))x'» <       (*?>(a)1/n       <_«3i_>_
WmV))      - ^ + s)«(i - 6 - 262)P - (l + S^l-S-IS2)^

Let 82 be the supremum of all 8 < |?? such that

(1-8- 182)0(1 + 8)a(l - 82) > fa, 6)

holds. Again, by a continuity argument, we obtain 82 > 0. Set 8 = min{8i,82} (cf.

(3)). Now £i = 162 yields \7[ \9\ < (2 - £j)".    □
Theorem 1.1 follows now by setting 7=9-

PROOF OF COROLLARY 1.2. Here, one goes through the proof of Theorem

1.4 again. Set p = \ = n and 8 — 0.1. One checks that in Proposition 2.3(iii)

the improved lower bound (1 + y)(\ — x) > 0.884728 holds. Suppose first that the

algorithm terminates with a — 0. Then we can use the next, improved version of

(12).
(p(?)p(S))1/n < 4"«1+/J)/2)-1l.l-a0.884728-/5.

Noting that the RHS is a decreasing function of a and since a + 0 > \, we can

suppose a = \ — 0 and derive

(p(?)p(S))1/n < 4H«X+MV-X1.1-X/H.14331<3.

Maximizing the RHS for 0 < 0 < \, one finds p(7)p(S) < 0.99", which yields (2).
Suppose next that the algorithm terminates with b = m. Since 6 < n/4, we infer

7 — a + 0 > |. Now using (6) instead of (12) with the improved lower bound from

Proposition 2.3(iii), we infer

{P(7)p(9))x/n < l.l-3/41.24332/3.

Since 0 < \, this yields p(7)p(9) < 0.984", concluding the proof of (1).    □

COROLLARY 2.4. If p < 1, then (p(7)p(S))x/n S \-p2/4for any two families

7, S with the property \7C\ S\ ̂  [pn\ for all F G 7, G G S-

PROOF. Setting 6 = § and recalling that a, 0 < p, we have

tf(^)-l = -^log2e + 6V),

(1 + 8)a = 1 + a6 + 0(p3),        (1-6- IS2)13 = 1-06 + 0(p3).

Thus, (12) gives

(v(7)v(G))1/n < _-_=_      P KP '
\VK   )V\S))        - l + ,a _ 0)8 + olpi)        1 + ,a_p)S + 0(p3) •

Using a + 0 > p, we infer

To conclude the proof, we show that for 0 < p the RHS is bounded from above by

1 - p2/4 + 0(p3), or equivalently,

1 -02 < (l- £) (l + P~ -0p) +0(p3) = 1 -0p+ £ +0(p3).
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Comparing the two extreme sides gives

Pl-p0 + 0^=(^-0)2>Q. □

Now Corollary 1.3 follows again if we set 7 = S-

3. Proof of Theorem 1.5. We indicate the proof of (i). (Going over to the

complements of sets in 7 and 7', we can get (ii) from (i)). For (i) one needs

the same proof as for Theorem 1.4 with p(7) replaced by w(7) (observe that for

p = \, p(7) = w(7)) and with Theorem 2.1 replaced by the following

THEOREM 3.1. Let 7* and S* be two families on an n-set and let 0 and p be

such that:

(1) 0< 0 <p< \, and
(2) \F n G\ > 0n for any F G 7* and G G 9*.
Then

wP(r)wp(S*) < 22["((1+/3)/2)-u\

PROOF. First we realize that if w(7*)w(9*) is maximal subject to |.FnG| > 0n,

then 7*, 9* are up-sets (an up-set is a family 7 such that FgJ and F C F'

implies F' G 7). Suppose now that 7 is an up-set. We prove by induction on n

that wpi(7) > wp(7) whenever p' > p. The statement is trivial for n = 1. To prove

the induction step consider

u>P(7) = pwp(7i) + (1 - p)wp(70).

Since 7 is an up-set we have 7o C 7i and thus w(7o) < w(7i). Hence

pwp(7i) + (1 -p)wp(70) < put?(7i) + (l-p)wpt(7o)

< p'wp,(7i) + (1 - p')wp,(70) = wpl(7)

(the first inequality follows by induction).  Thus for p < \ we have by the above

fact and Theorem 3.1,

u>p(7*)wp(S*) < p(7*)p(S*) < 22["«1+/3)/2)-1l".       □

Note that instead of Theorem 3.1 one can also use the following result of the first

author [F4].

THEOREM 3.2. If A C (x), B C (x), \X\ = n, and\AC\B\ >t for anyAeA

andB&B, then either \A\< (fc"t) or \B\ < (,"t).

Actually, for p small, we obtain a better bound in this way.

4. Proof of Theorem 1.7. First let us give the proof of a well-known simple

fact which we will often need in what follows.

Lemma 4.1 (The bipartite graph counting principle). Suppose that
G is a bipartite graph with vertex sets A and B, \A\ = a, \B\ = 6. Assume further

that G is regular on both sides, of respective degrees e and f. Also, let Ao be a

subset of A, |A0|/|A| = c, and let Go be the subgraph of G spanned by A0 and B.

Then there are at least c \B\/2 vertices in B with degree at least cf/2. Moreover

these vertices cover at least half of the edges of Go ■

PROOF. The number of edges in Go is |A0|e = c|A|e = c|5|/. Let Bo be the

set of vertices in B having degrees more than c//2 in Go-   Then the number of
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edges covered by vertices in B - Bo is at most \B — B0\cf/2 < |B|c//2. That is,

at least half the edges are incident to vertices in B0, proving the second statement.

Since no vertex in B0 has degree more than /, |Bo|/ > |B|c//2 follows. Thus

|B0| > c|B|/2.    □

Now we turn to the proof of Theorem 1.7.

We can clearly suppose that all members of 7 have the same cardinality fc. We

can further suppose that 2fc = n (if 2fc < n we find by an averaging argument a

2fc-subset of the underlying n-set that contains at least (k ) (1 — £/2)" members of

7 and consider this subsystem); if 2fc > n, add 2k — n new points—we denote the

family which we get in both cases by 7*. Clearly \7*\ > 22fc(l-£o)2fc, where £o —* 0

as £ —► 0. We can further clearly suppose that the cardinality of the underlying

set X is divisible by four. (If \X\ = 4n + 2, then we add two new points x, y

and extend all members of the family 7* by a point x, i.e. consider the system

{FU {x};F G 7*}.) Summarizing: it suffices to prove the statement for |X| = 4m

and \F\ = 2m for all F G 7.

Set |/| = ©/W' We prove that there exists £ > 0 and a > 0 such that

f(m) > (1 - £)™ and |1 - l/m\ < 4a imply (1').

For every A G [X]2m, denote by x\ the number of all sets F G 7 with the

property \F n A| = m. We clearly have

^:AG[X]2-} = |7|(2^   .

Since

we have

e {— >-\ (2:)2«™>) >-> (r)2 -5 (£) (2:)2^

Fix a > 0 such that (e/a)4a < (1 — 6/4)/(l - 6/2) and denote by yA the number

of pairs F, F' G 7 satisfying

(16) |FnA|=m,     |F'nA|=m,     |FnF'nA| = am,     |FnF'| = /.

Then

where f; —> 0 as a —> 0, and hence for a < cr(8)
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Combining (16) and (17) we see that there exists A0 G [X]2m such that xa0 >

^Cm) f(m) a11^ VA0 < \xa0, since otherwise,

e{— >-i(2:)2^}>-i(z){2:)2^

>(m),(*n)(im)'(i-s-Y
~ \amj    \2mJ \m)\       2)

>J2ivA-,Ae[X]2m}

which yields a contradiction. Note that the second inequality follows for n > no

since £ < 6/4 and (e/a)ia < (1 - 8/4)/(l - 8/2). Let 7a0 be the family consisting

of those F G 7 for which \F n A0| = m holds. Take the family 7a0 which we get

from 7a0 after deleting those F G 7a0 for which there exists F' G 7a0 such that

(16) holds. Set S = {B G [A0]m; there exists at least |(2™)/(m) different F G 7Ao

with B c F}. Since

— 11 ( 2m\
\7Ao\ > xAo - 2yAo > -xAo > ^ I   m   I   /(m),

we find that there exists B, B' G B with |BnB'| = an (this holds for e < £0, where

e0(v), ?7 = a/2 is from Theorem 1.2). Set 7B = {F - B; B C F G 7a0}, ?b' =

{F — B'; B' C F G Ja0}- Both Jb and Jg' are families on the 2m-set X — Ao, and

™^(2r)/<m» -°d '/b^ 5 (2r) /<*">■

Setting
.    f  I       a   I     a       I   )

,? = mmi2^-2'2 + 2-2^/'

and taking £i = £i(?y) sufficiently small with 0 < £ < £i, we can use Theorem 1.4

to obtain (F - B) G 7B and (F' - B') G 7B' so that |(F - B) n (F' - B')| = / - am

and thus |FnF'| = /. Consequently, F, F' G 7a0 satisfy (16), a contradiction.    D

Proof of Theorems 1.9 and 1.11.

PROOF OF THEOREM 1.9. We apply induction on r. The case r = 2 is covered

by Theorem 1.7. Suppose that the statement is true for r with n(r), e(r).

We want to apply Theorem 1.7 with 6 = ^£(r). Set

n(r + 1) = min{a(r5), n(r)},        e(r + 1) = min{e(«), \e(r)}.

Then Theorem 1.7 guarantees the existence of Fo G 7 so that

|/,(F0, 7)] > (1 - |e(r))»|7| > (1 - \e(r))n(2 - e(r + 1))" > (2 - e(r))n.

By the induction hypothesis one finds r sets Fi,...,Fr so that (Fo,Fi) G Ii(Fo, 7)

and |Fj nF,| = Z for 1 < i < j < r. Thus F0, Fi,... ,Fr are the desired sets.    □

PROOF OF THEOREM 1.11. Let V be a family of (2 - e(r))in ±l-vectors of

length 4n. To each v G V assign a subset S(v) of {1,2,..., 4n} consisting of the

positions of the entries of v which are equal to 1.   It is easy to check that v and
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if are orthogonal iff \S(v)AS(if)] = 2n. Choose fc, 1 < fc < 4n, so that Sk =

{S(v);veV,\S(v)\ = fc} has maximal size. Then |Sfc| > |V|/4n > (2 - £(r))4n/4n.

Consequently fc = 2n(l + o(l)). For S, S' G Sk, |SAS"| = 2n is equivalent to

\S n S'\ = k — n. Now Theorem 1.9 can be applied to complete the proof.      □

REMARK. In [F3] for n an odd prime, it is shown that the maximum num-

ber of ±l-vectors of length 4n without two of them being orthogonal is exactly

^Eo<i<n (4r\_1)- I* *s conjectured there that the same holds for all n. The meth-

ods of [F3] are completely powerless for r > 3.

6. The proof of Theorem 1.14: a special case. In this section we prove a

special case of Theorem 1.14. The general case is deduced in the next section.

THEOREM 6.1. Let H be a 2m-element set, 9i->92 C (^), and let 8, n be
arbitrary positive constants. Suppose further that k is an integer, nm < k <

(1 — n)m.  Then there exists e = e(8, n) > 0 such that

iAiifti>p:)V«r

implies

(18) •^^)>i*((m).(™))(1-*)m-

PROOF. During the proof we will use various constants. It is supposed that

l<<53>a»rj»£, where 8 3> a means that 8 is incomparably larger than a.

Define

*-{«e(*5j=«**)>«'(*(*))ilVC}.

By the bipartite graph counting principle (Lemma 4.1) we have

/     2m     W
1 " ~ I 2k-am J        2

SetK = ik(s,Q)(l-e)m/2.

CLAIM. There are at least

/      \ am I       I 2fc- am I I      \ am J

2fc-sets A C H with the property that fc<|AnGi|<fc + am holds for at least K

members Gi of S% (* = 1)2).

PROOF OF THE CLAIM. Define S[ C Si to be the collection of those members

of Si which after adding am elements in an appropriate way contain some member

of S2. In other words, S{ = {Si G Si:3S2 G S2, \S2 - Si\ < am}. Then for
Si G (Si - SO) S2 G S2 one has |5i n^l < \Si\-am and, in particular, |Si C\S2\ ̂
2fc - 2am. Using Corollary 1.6 and £ « <r, we infer that | Si - S[ ] is very small with

respect to Si. Consequently, |Si| > ^|Si| holds.
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Now associate with each S G S{ a 2fc-set A = A(S) C H, so that S C A and

A contains some member of S2 as well. Since the same A can be associated with

at most (2 ) sets 5, the number of distinct A's is at least |Si|/2( ) and by the

definition of Si it follows that the A's have the desired property, proving the claim.

Let A be the collection of 2fc-sets defined by the claim. For A & A define

9 a  ={Ge9l:k<\AnG]<k + am},        \SAl)\ = x^

and

yA = {(GUG2)- |G1nG2] = fc, |G!nG2nA| = fc - am,

Gi G Si, k < \Gi n A| < fc + am, i = 1, 2},

where q is a constant, a <§C a <g 6. By the definitions we have

£^=^'G2>(fc-fcoJ
AeA \ /

Elm — k \ I   m — k \ I fc \
\ i + am J \ j + am ) \ fc — i — j — am I

0<i,j<am  V /    \J /    \ J /

Using q <C 8, we obtain

/       8 \ m

X>*<ifc(Si,&)^l+2j    •

Assuming to the contrary that ifc(^i,^2)  <   (2^) (™)  (1 - 6)m, and using the

identity (2~) (T)2 = (%™) (2fcfc) (2™=2fe) we infer    ""

v^ (2m\ (2k\ (2m-2k\ (       6\m

IM^UJU-OH) •
By the claim,

i^»rJ<'-r/«(-)>(s)/H)"-
Thus there exists Ao £ A satisfying

-<(:)(2::f)Hr
By definition,

(0      ic _ (M-am\ (2m - 2k + am\ (1 - £)m

xA0^K-y   k   jy    m_fc    j    2   •

Consequently, i^ > 2yAo ■

Let £>'*' consist of those members of 9a   which do not contribute to yA0- Then

|£W| > %\9aI\ and there are n0 G* G D({)  With

|GinG2| = fc,        |Gi DG2nA0| = k-am.
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Recall that

Define D* = {B C A0: \{G G D{i\ G (1 A0 = B}\ > K/22k+2}. Since for Gt G D{i)

there are fewer than 2lA°l = 22fc choices for Gi n Ao (which satisfy fc < |Gj fl Aq| <

fc + am), it follows by an easy averaging argument for i = 1,2, that

m > *L = (2k ~r) o - ■)- (2m ~l r™)/22"+3-

Since £ and rj are incomparably smaller than a, Theorem 1.4 applies and provides

us with Bi G B* such that |Bi fl B2| = fc — am.

Applying the same theorem to the two families 7i = {G — Ao'.G G D^l\ Gfl Ao =

Bi}, we obtain F; G 7% such that |Fi ("1 F2| = am. That is, (Fi U Bi) G D[i),

|(FiUBi)n(F2UB2)| = fc, |(FiUBi)n(F2UB2)nA0| = fc-am, a contradiction,

proving the theorem.    □

7. The proof of Theorem 1.14: the general case. We successively reduce

the general case to the special case proved in the last section.

PROPOSITION 7.1.   It is sufficient to consider the case Pi+ p2 < 1.

Suppose pi < p2, p2 > 5. Define 72 = {X — F2:F2 G 72} and note that

\FxC\F2] = l^ \Fi n (X - F2)\ = pm - I. That is, it(7i,72) = iPin-i(7i, 72c) and
also

H ((pf») ' (pfn)) =^-« ((pf„) ' (X n~P2n)) ■

To conclude the proof of the proposition we must show:

max{(pi + (1 - p2) - 1 4- n)n,pn} < pin - / < min{(pi - n)n, (n - p2 - n)n}.

Since pi < p2, pi + 1 - p2 - 1 = pi - p2 < 0, and the first inequality is equivalent

to / < (pi — n)n. As to the second inequality, the first part follows from / > nn.

The second is simply I > (pi + p2 — 1 4- n)n.    □

We need an auxiliary averaging result.

PROPOSITION 7.2. Given positive reals p,a,b, a + b < 1, and two families

A c (<^)'  ^ c (b!ri)> "lere exists £ = £(p) > 0 so that whenever

wiai>(i-.l-(-)(-).

there exists a family

cc(«.^)»). w >((»;«„) f1 -"»"

with the property that every C G C contains at least K^f^'")^ ~ £)™ mernbers of

A and at least §((a^)n)(l ~ e)n members ofB.
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PROOF OF PROPOSITION 7.2. Let e, a be positive constants with £ < a < p.

Define

>\({a+br)n) ('-«)■}.

i.e., 7(A) consists of those (a + b — er)n-element subsets of X which contain

many members of A; 7(B) is defined analogously. Since |i?| > (a™)(l — £)", |S| >

(6™)(1 — £)", the bipartite graph averaging principle yields

\m\Am\>l[ia+^_a)n)(i-er.

Now define

7* = \f& 7(A): there exists C G ( X ) , G G 7(B) with G C F U G I.

Note that for all F G (7(A) - 7") and G G 7(B) one must have |FuG| > (a + 6)n,

whence |F n G| ^ (a + 6 - 2<r)n.

We can apply Corollary 1.6 to 7(A) — 7* and 7(B). Since e -C a, we infer

w»-/'i<!((.+^),)ii-£i"

and thus,

1     '      4 \^ (a + 6 - a)n j v '

For each F G 7* let us fix C(F) G (^), such that C(F) D F = 0 and F U G(F)
contains some member of 7(B). Define C = {F U C(F): F G J*}. Then

'^^'(<a::)")">5((«+;-„„)"->"((o:„t)n)"

>((a+V) <'-")"
because £ <C a -C p.    D

Proposition 7.3.   /t is sufficient to prove Theorem 1.14 in ttie case pi +p2 = 1.

PROOF.  Assuming this special case true with 6' = 6/2 and using Proposition

7.2 with p < 6/2, we find that each G G C contains at least

((Pi + P2)n\ f Pin\ f   p2n   \ /   _ <5\n

V      Pi"       A   '   /  VP2""'/ V        V
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pairs (A, B) with A G x\, B G 72, and |A fl B| = /. Since there are |C| choices for

C E C and a pair (A, B) is counted at most

/        n-\AuB\        \((l-Pi-p2)n + l\

\(pi+p2)n-\AuB\)      y I J

times we infer

«*,»*(<*;->") (7) (T) (1-f)"((pi;K)n)(I-Pr

_ Al-Pi-P2)n + A~

-*((£M£))(>--0V,r

Thus we have reduced Theorem 1.14 to the case Ji c ( Xn), ^ C ( ), pi +p2 =

1. Suppose pi < p2 and replace 72 by 72 = {X - F: F G 72}. As in the proof of

Proposition 7.1 this leads to the case

9lC{pl)>   52C{pI)>      v = P^-P2<\{9^7i,92 = 7i)-

Now applying Proposition 7.3 to the families Si, S2, we infer that it is sufficient

to consider the special case |X| = 2pn, that is, the case which we dealt with in the

preceding section. This concludes the proof of Theorem 1.14.

8. The proof of Theorems 1.15 and 1.16. We apply induction on t + s.

Note first that the case t = 2, s = 2 is covered by Theorem 1.14. Next we deal

with the case t = 2, s > 2.

Let us define S1 = {Bi: (BUX - Bx) G S} and

A1 = {Ai: (Ai,...,A3)G A},        AAl = {(A2,..., As): (Au. ..,A3)e A}.

Define

Obviously,

\A\= £ ]Aa\>(,    H   ,   )(!-£)"■

Using

\l2,... ,ls I \li,.-.,lsJ      Wi / \h,- ■ ■ Js J
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the bipartite graph counting principle again yields

Let 6 <C 7 be a small constant. For e < e(8,n) one can apply Theorem 1.14 and

deduce

= (?)(h )(hn~h V1-*)"
\h J \mu J yki -mn J

Define

9' = {Ge9--imlAG,B)>imil\G,(x)y-^^y

By Lemma 4.1, |£*| > (£)(1 - <5)"/2 holds.

For G G C* and G G ( G ) define

fl(G, G) = {B - G: B G S: B D G = G},

By the bipartite graph averaging principle we have

Now apply the induction hypothesis with 7' = 7/2 to the families Ag and B(G, C),
C G Cg. Let M' be the (s — 1) by 1 matrix with general entry mn, i = 2, 3,..., a.

This gives at least

%M' \\h~Gls) ' (*f-~mii)) (1_ i)"

pairs (A2,...,AS) G ^5, B' G B(G,C) with intersection pattern M'. Each such

pair gives rise to a pair (G, A2,..., As) G >?, B = B' U C G S with intersection

pattern M. This gives a total of not less than

(GO^KU.)^)
■^'((^...Ijifcf-mnJJ^-i)   •

Since 6 <C 7, this expression is greater than

which concludes the proof for the case t = 2.
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Thus we have proved the desired result for the case t = 2 or equivalently s = 2.

Now we turn to the case t > 2.   The family 9* is defined as above except that

l'»m ((*)'(£)) is rePlaced bv ^((iiMfci.^fct))' where Mi is the row vector

(mii,...,mu).

For (Ci,C2,..., Ct), a partition of G with \d\ — mu, define

B(G,(Ci,...,Ct))

= {(Bi -G,...,Bt-G):(Bi,...,Bt)eB,Bjr\G = Cj,j = 1,...,t},

Cg = l(Ci,...,Ct):\B(G,(Ci,...,Ct))\

^H»1,',J)i1-'r/4U'J)'
By the bipartite graph averaging principle we obtain

(19) |C,|>( '' )^.
^mn,m12,...,mity       4

Let Af2 be the matrix M with its first row deleted. We want to apply the induction

hypothesis to B(G, (Ci,..., Ct)) and Ag. Now the induction hypothesis applied for

7' = 7/2 gives

iM2(A9,B(G,(Ci,...,Ct)))

>iMJ(X-Gl),(k X~Gk ))(l-?r.\\h,---,ls)    \ki -mu,...,kt -mitJJ \       2>

Every pair (A2,..., As) G Ag, (Fi,...,Ft) G S(G, (Ci,...,Ct)) with intersection

pattern M2 gives rise to a pair (G, A2,..., At) G A, (Fi UCi,..., Ft UCt) G S with

intersection pattern M. This leads via (19) to

iM(A,B)>]9*\\(rn     h   m   )(l-6)n4 ymii,...,mitJ

'tM* [[l2,...,ls)'{ki-mi1,...,kt-mit)j (1-2~)   "

Using the lower bound for 9* and the fact that 6, e are incomparably smaller than

7 we obtain

«*»»(;)(^..J(fi(""?a,')U*.-.))<1-*
■<-((i,.*..«.)'(h..x.,fc).)ii-i»"- °

PROOF OF THEOREM 1.16. We apply induction on r. The case r = 2 is just

Theorem 1.15. Suppose r > 3 and let 70 be the value of £(",7) for r - 1 and let

£ = min{7o, £(s3 • • ■ sr, n, 70) for r = 2}. Define the si by s2 matrix M* = (m* )

by

Wij   =     Xl   mW3,.,ir> 1 < * < *1.    1   < 3   <  S2.
%&■■■%,
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Note that m^ > S3 • • • srnn. In view of Theorem 1.15,

iM> (A, B) > iM. I I ^     ^ £} j , 1^     ^ ;(2} j j (1 - 70)".

Note, however, that if (A,B) G i\f*(A,B), then they define uniquely a partition

Ar\B = (A1r\B1,...,AlnBa3,A2nB1,...,AainBa2) and

Therefore A\2 = {A fl B: (A, B) G /m- (A, fl)} satisfies

Wial>(l-eo)"fTO.     *TO.     V
Ymll'- ■  • 'm3lS2  /

Let M' be the sis2 by S3 by • • • by sr array which has general entry mtl3...iT =

mi,;,...;,, where t = (u — l)si +i2. Now the desired statement follows by induction

applied to the r-1 families A12, A3,..., Ar with intersection pattern array M'.    □

9. The proof of Theorem 1.10. In fact, Theorem 1.10 follows almost trivially

from Theorem 1.16. Therefore we only sketch the proof. For a codeword G =

(ai,... ,an) over Q = {1,2,... ,q}, define its weight w(C) — (h,l2,... ,lq), where

li = \{j: ay = i}\. There are fewer than ( "J choices for (Zi,..., lq); therefore there

exists (Zi,..., lq) so that at least |C|/( "1) codewords have weight (li,..., lq). It will

be sufficient to consider these codewords. They are in one-to-one correspondence

with ordered partitions A(C) = (Ai,..., Aq), where Aj = {j:aj = i}.

Now for G, C G C and A(C) = (Au..., Aq), A(C') = (A[,..., A'q), one has

d(C,C') = n - J2i<i<q I At H AJ-|. Fix an intersection pattern matrix M = (m^)

with J2i<i<qma = n — d and (assume) mtj > 8n/1q2. Applying Theorem 1.15

with A = 8 = {A(C):C e C,w(C) = (h,...,ls)}, t) = 6/1q2, and 7 < 1, the
statement of Theorem 1.10 follows.    □

REMARK. By applying Theorem 1.16 to codes, we can obtain much stronger

statements. For example, it enables one to find r codewords having pairwise pre-

scribed distance as long as there exists an intersection pattern array realizing these

distances and without very small entries. We mention explicitly only one example.

Let, as usual, H(t, q) denote the metric space of all codewords of length t over Q.

Let S be an arbitrary metric subspace of H(t, q). For integers m, 6 > 0, mS + b de-

notes the metric space over the same pointset with distance d'(s, s') = md(s, s')+b.

THEOREM 9.1. Suppose n is a positive constant, S C H(t,q), and m, b > nn

with mt + b < (l-n)n. Then there exists e = e(n,q) > 0 so that for allT C H(n,q)

satisfying \T\ > (q—e)n, there exists S' CT so that S' andmS+b are isometric.    □

10. More intersection theorems for two families. Let us start with the

following simple result.

PROPOSITION 10.1. Suppose that A, B Clx satisfy ]A n B| = I for allAeA
and B G fl, where I is a fixed, nonnegative integer. Then \A\\B\ < 2" holds with

equality if and only if for some partition X = Y U Z one has A = 2Y, B = 2Z.

This statement will be deduced from the following theorem.
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THEOREM 10.2.   Suppose that A, B C 1x satisfy \AnB\ = i (mod 2) for all
AG A and B G S, i = 0 or 1.  Then either (i) or (ii) holds.

(i) i = 0 and |X| |2| < 2",
(ii) i=l and |X| \B\ <2n~x.

PROOF OF THEOREM 10.2. For F C {l,2,...,n} let x(F) be the charac-

teristic vector of F, i.e., x{F) = (^l) • • • ,£n), where £j = 1 if t S F and Si = 0

otherwise. Let us consider first case (i).

Let V = (x(A): A G A) be the vector space over GF(2) generated by the char-

acteristic vectors of the sets in A. Set W = (x(B): B G S).

Our assumption implies that W <VL, the orthogonal complement of V. Hence

AirnW + &mV <n. This yields ]A\\B] < ]V\]W] < 2".
If one has equality, then A = V and 8 =W. In particular, 0 £ AdB.
Consider next case (ii). For F C {1,2,..., n} let x(F) be the extended character-

istic vector of F: x(F) has length n + 1, it agrees with x{F) m the first n positions,

and its last entry is 1. Now define V = (x(A): Ae A),W = (x(B):B G S). Again,

V' and W^ are orthogonal subspaces, leading to the inequality dim V+dim W < n+1.

Since for A G ^ the vector x(A) has 1 in the last position, \A\ < \V]/2 holds.

This leads to \A\ ]B] < \V\ ]W\/4 < 2n~1, as desired.    D
PROOF OF PROPOSITION lO.l. The upper bound is explicitly contained in

Theorem 10.2. If one has equality, then I must be even, and—as pointed out in

the above proof—the emtpy set must be among the members of A. Thus I — 0.

Consequently, ((J A) fl ((J S) = 0, implying the statement.    □

One can extend Theorem 10.2 to odd primes, as well.

THEOREM  10.3.   Suppose A,  8 C 2x, p is a prime, 0 < i < p, and for all

A G A, B G S one has |A fl B| = i (modp).  Then either (i) or (ii) holds:

(i) t' = 0 and \A\\B] < 2",
(ii) 0<z'<p and \A\ \B\ <2n~x.

For the proof we need the following slight extension of a result of Odlyzko [O].

For a field T let T" denote the standard n-dimensional vector space over T. For

7, 6 G r, a vector (xi,..., xn) G T" is said to be a (7 — <5)-vector if Xi = 7 or Xi = 8

holds for all i = 1,..., n.

PROPOSITION 10.4. Suppose that U is a k-dimensional affine subspace ofTn.

Then U contains at most 2k (7 — 8) -vectors.

PROOF. Let U = Uq + v, where Uo is a (vector) subspace. Then f7o has a basis

of the form (IM) where I is the identity matrix of order fc and M is some fc by

n — fc matrix. Let u\,...,Uk be the vectors of this basis. Suppose that v + ^2 aiUi

is a (7 — 8)-\ector. Let 0i be the ith entry of v. Then ai = 7 — 0i or ai — 8 — 0i

holds. This leaves altogether 2fc possibilities for the choice of Qi,..., afc.    □

PROOF OF THEOREM 10.3. Define V and W as in the case of Theorem 10.2,

except that now these are vector spaces over GF(p). Again dim V + dim W < n. By

Proposition 10.4 one has \A\ < 2dimV, |S| < 2dimVV, which yields the statement.

To prove (ii) extend the characteristic vectors x(A) by 1 in the (n+ l)th position

and x(^) by — i. Otherwise the argument is the same.    □

Let us use now a similar approach to give a short proof for a slightly improved

version of a result of Ahlswede, El Gamal, and Pang [AGP].
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THEOREM 10.5. Suppose that d is a fixed integer and A, fl C 1x satisfy

|AAB| = dforallA&A, BeB.
Then \A\ \8\ < 2". Moreover ifn^2d then ]A\ \B\ < 2""1 holds.

REMARK. The condition n ^ 2d cannot be removed as it is seen from the

following example.

Let X be the disjoint union of d subsets Yi,... ,Yd of size 2 and define:

A = {AC X:\AHY,] = 1, i = l,...,d},

S = {BCX:|Bnyi| = 0or2, i = l,...,d}.

PROOF THEOREM 10.5. For D C X = {1,2, ...,n}, let P(D) be the vector

(point) in Rn which has ith coordinate +1 or —1 according to whether i G D or

i'<£ D holds.

Let V(A) (V(B)) denote the affine span of A (B, respectively).

The assumption |AAB| = d translates into d(P(A),P(B)) = 2\[d, i.e., every

point P(A) is at the same distance from all points P(B) with B G S.

This implies that V(A) is orthogonal to V(B), and in particular, diml^(A) +

dimV(B) <n.

By Proposition 10.4, \A\ < 2dimV^A\ |fl| < 2dimV(B), which implies

\A\ \B\ < 2dimV(A^+dimV(B} < 2"

This inequality proves the first part of the theorem, and also the second unless

dimF(A)+dimV(B) = n.

Let us note that the zero vector 0 — (0,..., 0) is at distance 2^/n from all P(D)

with D C X. Thus the subspace generated by V(A) and 0 is orthogonal to V(B).

Therefore 0 ^ V(A) would lead to the desired inequality (dimV(A) + 1) +

dim V(B) < n. One argues similarly in the case 0 ^ V(B).

The only remaining case is when V(A) and V(B) are orthogonal subspaces

through the origin, that is, (P(A),P(B)) = 0 for A G A and B G fl. Since

(P(A), P(B)) = n- 2|AAB|, n = 2d follows     □
For different proofs and extensions of the result of [AGP] see [DP and P].

11. A linear lower bound to a problem of Galvin. Recently Ron Graham

told us about the following problem of F. Galvin. What is the minimum number

m(k) of subsets in a family 7 C (2k), \X\ = 4k, which has the following property:

For every G G (xk) there exists F g7 with |G n F| = fc. Taking

J = {[i,« + Jb-l]:t = l,...,2fc}

shows that m(k) < 2k. On the other hand, m(fc) > (^) / (2fcfc) is clear by a

counting argument. Therefore m(fc) > c\/k for some positive c.

THEOREM 11.1. Suppose that k is odd. Then m(k) > ck for some positive

absolute constant c.

PROOF. Let V = (x(F):F G 7) be the vector space over GF(2) generated by

the characteristic vectors of members of 7. The assumption says that for every

G G (£) there exists F G 7 with (x(C),x(^)) = 1^0. In particular, G £ Vx.

That is, V1- contains no vector of weight 2fc.
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Since Vx is a subspace, it follows that |AAB| ^ 2fc whenever x(A),x(B) G V-1.

Now Theorem 1.1 (or Theorems 1.10 and 1.11) imply ]V±\ < (2 - e)Ak and thus

dimV1- < 4fc — cfc with some positive constant c. This leads to

]7\> dimV > 4k-dimV^>ck.       □

Let us mention that for fc = pa, p odd, one can use a theorem of [F3], mentioned

in the introduction to get m(fc) > 0.8fc. In view of this, it seems likely that m(fc) =

2fc holds. For fc odd this would follow from
CONJECTURE 11.2. Suppose U < GF(2)4fc, dimU = 2fc+ 1. Then U contains

a vector of weight 2fc.

Let us note that this problem is due to Ito [I], although it is not stated explicitly.

Very recently, Alon [A] proved this conjecture when fc is a power of 2.

ADDED IN PROOF. Markent and West showed m(2) = 3 and m(4) < 7. Con-

jecture 11.2 is proved in [EFIN].
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