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It is shown that if a graph has girth at least 8 —3 and minimum degree greater than d, then
more than d’ cops are needed to catch a robber. Some upper bounds, in particular for Cayley
graphs of groups, are also obtained.

1. Introduction

In {1] Aigner and Fromme and in {10] Quilliot studied the following game, called
cops and robbers. There is a finite, connected, undirected graph G=(V, E), m cops
and one robber. First the cops choose one vertex each as initial position. Next the
robber makes his choice. Afterwards they move alternately (first the cops, then the
robber) along the edges of the graph or stay. Denote by ¢(G) the minimum value
of m for which m cops have a winning strategy, i.c., they have an algorithm to catch
the robber (get on the same vertex as he) no matter how he plays.

In [1] it is shown that ¢(G) is at least the minimum degree in graphs with girth
5 or more.

Andreae [2] showed for every d=3 the existence of regular graphs G of degree
d and ¢(G) arbitrarily large-solving a problem of [1].

The main result of this paper extends the Theorem of Andreae.

Theorem 1.1. Suppose the minimum degree of G is greater than d and its girth is
at least 8t—3. Then ¢(G)>d’.

Note that for £=1 one obtains the bound of Aigner and Fromme. As to upper
bounds, let us mention that Meyniel [8] conjectures ¢(G)=O(/TV]), which would
be best possible.

We could only prove:

Proposition 1.2. ¢(G)=o0(|V]).
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For graphs with large girth we have another upper bound. Let us set n=|V| and
let N,(x) denote the set of vertices at distance 4 from x (xe V). Define further

n,=n,(G)=min |N,(x)}, my, = max |Ny(x)|.
xeV xeV

Theorem 1.3. Suppose that the girth of G is at least 4h—1. Then c(G)=<
(n/ny)(1 +log my,) holds.

Corollary 1.4. Suppose G is (d+ 1)-regular with girth at least 4h— 1. Then

" (1 +log(d+ 1)d" 1))

G)s—
€@ d+1Dd"

Let us now suppose that G is a (connected) Cayley graph, i.e., there is a group
structure on V, a generator set I"so that 1 ¢ "and E={(v, vy):veV,ye('U I“*l)}.
Clearly, Gis |I'U r! |-regular. For y eI, {y) denotes the cyclic group generated by
y. A Cayley graph is called full if I consists of full conjugacy classes, i.e., ye/l,
geG imply g”lyger.

Theorem 1.5. Suppose G is a k-regular, full Cayley graph. Then c(G)<k.

2. The lower bound

Let g be the girth of G and set r=2¢ - 2. We may suppose without loss of generali-
ty that G is connected. Now, if the cops have a winning strategy from some initial
position, then they can win from every initial position. Thus we may suppose that
all cops are in a fixed vertex # and the robber is in a vertex v, adjacent to u;
moreover, it is the robber’s turn to move.

The strategy of the robber is the following. He wants to be in a vertex v such that
there is a neighbor u of v so that after the cops’ move all geodesics connecting v
to cops at distance not exceeding r pass through u. Note, that this initial position
satisfies trivially these conditions.

Thus to conclude the proof it is sufficient to show that from such a vertex he can
move in ¢ steps to an other vertex satisfying the same conditions (note that this en-
sures that he is not caught on his way).

Suppose now that u, v are as above and consider the vertices at distance ¢ from
v. There are at least d’ vertices whose geodesic does not go through u. Draw a
geodesic from each cop at distance at most (g — 1)/2 to v. These paths have one point
each at distance ¢ from v or they go through u. Thus we can find a vertex x at
distance ¢, which does not lie on any of these geodesics.

Now the robber’s strategy is to go straight (in # steps) from v to x. Let y be the
vertex preceding x. We claim that x, y satisfy the desired conditions.
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We have to verify that all geodesics from cops at distance at most r to the robber
(in x) go through y. We distinguish 3 types of cops. Those whose distance to v was
at most r, greater than r but less than g/2, at least g/2. These latter pose no threat,
their distance to x will be at least g/2—2¢>r.

As to those who were closest, they can be linked to x via a trail going through
u, v and y and of total length at most r+2¢<g/2. Their geodesic path to x must
go through y, otherwise there is a cycle of length at most 2(r+2f)<g, a con-
tradiction.

Consider finally a cop whose distance to v was between r+1 and (g—1)/2. If he
got within distance r, then his distance must have been at most r+2¢, Therefore,
we have a trail from its present position to x, going through y and of total length
at most r + 4¢. If the path of length at most r from it to x misses y, then the graph
contains a cycle of length at most 2r+4¢<g, a contradiction. []

3. Upper bounds

Proof of Proposition 1.2. It is sufficient to show (1) c(G)<\V|/b+bb for every
positive integer b.

Use induction on n=|V|. The statement is trivial for n<b®. Suppose G has a
vertex, v of degree at least b— 1. Place a cop there to control its neighborhood. Let
G, be the graph obtained by deleting the neighborhood of v together with v, and
let Gy, ..., G, be the components of G,. Clearly, ¢(G)<1+max, _,_,c(G;) holds,
proving (1) via the induction assumption.

Next we may assume that G has maximum degree at most b—2. As

n=b?>1+(B -2+ +b-2)b-3)"3,

G has diameter at least b— 1. Thus we may find two vertices x;, x; so that their
distance is b— 1. Let x;, X, ..., X, form a geodesic path between them. Let G, be
the graph obtained by deleting {x;, ..., x,} from G and suppose G has components
Gy, ..., G,. Then by Lemma 4 in [1], we have ¢(G) <1+ max, _,_,¢(G;) again. Now
(1) follows by induction. [

Note that Proposition 1.2 gives

nloglogn

c(@G)=(1+o0(1) log n

Proof of Theorem 1.3. Let us consider the hypergraph H={N,(v):veV}. It has
rank n, and maximum degree m,. Hence t*(H)=<n/n, (give weight 1/n; to
each vertex). By a theorem of Lovasz and Stein (cf. [6]) one has t(H)=
(n/n,)(1+log my). Moreover, one can obtain a covering of this size by the greedy
algorithm.
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Place the cops in the corresponding vertices. Suppose that the robber is in vertex
x. For each ye N, _;(x) let c(y) be a cop in N,(»). Note that for y =y’ it might hap-
pen that ¢(y)=c(y’). Now the strategy of the cops is very simple, they just walk
straight towards vertex x, stopping as soon as the cop is on the geodesic between
the robber and x. We claim that the robber is caught after at most 24— 1 moves by
the cops. Indeed, where could he be? Suppose that he is in z and let y be such that
either y is on the geodesic between x and z or z is on the geodesic between x and
y. Let ¢(y) be in vertex u. If ¢(y) did not stop then in 24— 1 steps he reached x.
Thus z cannot be on the geodesic between u and x. By our stopping rule and because
the girth is at least 44— 1, the robber must have gone through u before c(y) got
there. Let v be the first vertex in which the geodesics to x from y and the initial posi-
tion of ¢(y) meet. Its distance to c(y) was only one longer than to x. Therefore u
must be on the geodesic from v to x. Consequently, when ¢( y) arrives to u, the rob-
ber cannot be on the geodesic linking x to y or z, and therefore it cannot get back
there without being caught by c(y). O

4. Cayley graphs: Proof of Theorem 1.5

For ye (U ™Y let c(y) be the cop labelled with p. At the beginning we put all
cops at 1. Suppose the robber starts at x. Let us write x as a product of generators
X=g,8, - &, (obviously, we may suppose that m=<n/2).

Let us make precise the strategy of the cop c(4). Suppose that he is in vertex z
and the robber is in vertex y, moreover z ! y=g,8 gkhi where all g are from
U and k is as small as possible.

If the robber moves to the vertex yf where f¢ (h), then c(#) moves to zf. Note
that

N = ah) - (T eI )

If fe (h)y and k=0, then c(h) moves to zA. Finally if fe (h) and k=1, then c(h)
moves to zg;. Note that (zg;) " 'yf=g> ---g.h". This is called approaching move.

After the cops’ move we change their labels: the one which had label £ will get
label f~'Af (note that this is a 1 to 1 map).

We claim that the robber is caught after at most (m + n)|I| steps.

In fact, at each step of the robber the cops corresponding to that generator ap-
proach. If ¢(y) did m approaching moves, then its ‘distance’ to the robber will re-
main forever a power of his label y. From this time on he and c(y™") pursue the
robber around the cyclic group (y), where at non-approaching steps the whole
cyclic group ‘travels’ without the relative position of the robber, c(p), c(y_l) being
altered. As on the cyclic group the robber will be caught after less than [(y)] steps,
the proof is complete. [

Remark. Since every Cayley graph of an Abelian group is full, we obtain if G is a
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k-regular Cayley graph of an Abelian group, then ¢(G) < k holds. However, for this
case Hamidoune [4] obtained the upper bound ¢(G)=< f3k/41 .

On the other hand the theorem does not hold for all Cayley graphs. In fact,
Margulis [7] constructed for every k=2, 2k-regular Cayley graphs whose girth is at
least c;log| V|, where ¢; is a positive constant. By Theorem 1.1 these graphs need
at least |V|1°g(2k ~Da/8 cops. Imrich [5] improved Margulis’ bounds. In particular,
he constructed 3-regular Cayley graphs with girth at least 0.56 log,|V| -5 and con-
sequently, needing at least |V|*2/2 cops.

To conclude this paper, let us mention that most recently Andreae [3] obtained
very nice upper bounds for ¢(G) supposing that G is not contractible to a fixed
graph H.
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Note added in proof

In [11] the often best possible bound ¢(G)=<[(k+1)/2] is obtained for Abelian
Cayley graphs of degree £.
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