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It is shown that if a graph has girth at least 8 t -  3 and min imum degree greater than  d, then 
more than d t cops are needed to catch a robber. Some upper bounds,  in particular for Cayley 

graphs of  groups,  are also obtained. 

1. Introduction 

In [1] Aigner and Fromme and in [10] Quilliot studied the following game, called 
cops and robbers. There is a finite, connected, undirected graph G = (V, E),  m cops 
and one robber. First the cops choose one vertex each as initial position. Next the 
robber makes his choice. Afterwards they move alternately (first the cops, then the 
robber) along the edges of  the graph or stay. Denote by c(G) the minimum value 
of  m for which m cops have a winning strategy, i.e., they have an algorithm to catch 
the robber (get on the same vertex as he) no matter how he plays. 

In [1] it is shown that c(G) is at least the minimum degree in graphs with girth 
5 or more. 

Andreae [2] showed for every d >  3 the existence of  regular graphs G of  degree 
d and c(G) arbitrarily large-solving a problem of  [1]. 

The main result of  this paper extends the Theorem of  Andreae. 

Theorem 1.1. Suppose the minimum degree o f  G is greater than d and its girth is 
at least 8 t - 3 .  Then c(G)>d t. 

Note that for t = 1 one obtains the bound of  Aigner and Fromme. As to upper 
bounds, let us mention that Meyniel [8] conjectures c(G)= o(vI vI ), which would 
be best possible. 

We could only prove: 

Proposition 1.2. c(G) = o( I VI). 
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F o r  g raphs  with large gi r th  we have ano the r  upper  b o u n d .  Let  us set n = IV[ and  

let Nh(x) denote  the  set o f  vertices at d is tance  h f rom x ( x e  V). Def ine  fur ther  

nh = nh(G) = min  INh(x)l, mh = max  INh(x)l. 
x ~  V x ~  V 

Theorem 1.3. Suppose that the girth of G & at least 4h -1 .  Then c(G)< 
(n/nh)(l + log mh) holds. 

Coro l l a ry  1.4. Suppose G is (d+ 1)-regular with girth at least 4h - 1. Then 

n (1 + l o g ( ( d +  1)d h-  1)). 
c(G)<_ (d+ 1)d h - I  

Let  us now suppose  tha t  G is a (connected)  Cayley  g raph ,  i .e. ,  there  is a g roup  

s t ructure  on  V, a genera to r  set F so tha t  1 ¢ F and  E =  {(o, oy) : o e V, y e ( F U  F -  1)}. 

Clear ly ,  G is IFu F -1 I-regular.  Fo r  y e F ,  ( y )  denotes  the cyclic g roup  genera ted  by 

y. A Cayley  g raph  is cal led full  if  F consists  o f  full con jugacy  classes, i .e. ,  y e F ,  

g~G imply  g-l~geF. 

Theorem 1.5. Suppose G is a k-regular, full Cayley graph. Then c(G)<k. 

2. The lower bound 

Let  g be the gir th  o f  G and  set r = 2 t  - 2. W e  m a y  suppose  wi thout  loss o f  general i-  

ty  tha t  G is connected .  Now,  if  the  cops  have a winning s t ra tegy f rom some init ial  

pos i t ion ,  then  they can win f rom every init ial  pos i t ion .  Thus  we m a y  suppose  tha t  

all cops  are  in a f ixed ver tex u and  the robbe r  is in a ver tex o, ad j acen t  to  u; 

moreover ,  it is the r o b b e r ' s  t u rn  to move.  

The  s t ra tegy o f  the robbe r  is the fo l lowing.  He  wants  to be in a vertex o such tha t  

there  is a ne ighbor  u o f  o so tha t  a f te r  the cops '  move  all geodesics  connect ing  v 

to cops at d is tance  not  exceeding r pass t h rough  u. Note ,  tha t  this ini t ial  pos i t ion  

satisfies t r iv ia l ly  these condi t ions .  
Thus  to conc lude  the p r o o f  it is suff ic ient  to show tha t  f rom such a vertex he can 

move  in t steps to an o ther  vertex sa t is fying the same cond i t ions  (note  tha t  this en- 

sures tha t  he is not  caught  on  his way).  
Suppose  now tha t  u, o are as above  and  cons ider  the vertices at d is tance  t f rom 

o. There  are  at least d t vertices whose geodesic  does not  go t h rough  u. Draw a 

geodesic  f rom each cop at  d is tance  at  mos t  ( g -  1)/2 to o. These  pa ths  have one po in t  

each at d is tance  t f r om o or  they go th rough  u. Thus  we can f ind a ver tex x at 

d is tance  t, which does not  lie on any  o f  these geodesics .  
N o w  the r o b b e r ' s  s t ra tegy is to go s t ra ight  (in t steps) f rom o to x. Let  y be the 

ver tex preceding x. We cla im that  x, y sat isfy  the des i red  condi t ions .  
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We have to verify that all geodesics f rom cops at distance at most r to the robber 

(in x) go through y. We distinguish 3 types of  cops. Those whose distance to o was 
at most  r, greater than r but less than g/2,  at least g/2. These latter pose no threat, 

their distance to x will be at least g / 2 - 2 t > r .  
As to those who were closest, they can be linked to x via a trail going through 

u, o and y and of  total length at most r + 2 t < g / 2 .  Their geodesic path to x must 

go through y, otherwise there is a cycle of  length at most 2 ( r + 2 t ) < g ,  a con- 

tradiction. 
Consider finally a cop whose distance to o was between r +  1 and ( g -  1)/2. I f  he 

got within distance r, then his distance must have been at most r+2 t .  Therefore,  

we have a trail f rom its present position to x, going through y and of  total length 
at most r+4 t .  I f  the path of  length at most r f rom it to x misses y, then the graph 
contains a cycle of  length at most 2 r + 4 t < g ,  a contradiction. [] 

3. Upper bounds 

Proof of Proposition 1.2. It is sufficient to show (1) c ( G ) < l V [ / b  + b b for every 

positive integer b. 
Use induction on n = ]V[. The statement is trivial for n < b  b. Suppose G has a 

vertex, v of  degree at least b -  1. Place a cop there to control its neighborhood. Let 
Go be the graph obtained by deleting the neighborhood of v together with o, and 

let Gl . . . . .  Gr be the components  of  G 0. Clearly, c(G)<_ 1 + maxl~i<rC(G i) holds, 
proving (1) via the induction assumption. 

Next we may assume that G has maximum degree at most b - 2 .  As 

n>_bb> 1 + ( b - 2 ) +  ... + ( b -  2 ) ( b -  3) b-3 , 

G has diameter at least b -  1. Thus we may find two vertices x~, x b so that their 
distance is b -  1. Let x~, .rE . . . . .  Xb form a geodesic path between them. Let Go be 
the graph obtained by deleting {x~ . . . . .  Xb} f rom G and suppose G has components  

G1 . . . . .  G r, Then by Lemma 4 in [1], we have c ( G ) _  1 + max 1 <_ i<_ r c(Gi) again. Now 
(1) follows by induction. [] 

Note that Proposit ion 1.2 gives 

c(G) <_ (1 + o(1)) 
n log log n 

log n 

P roo f  of  Theorem 1.3. Let us consider the hypergraph H =  {Nh(v) : v e V}. It has 
rank n h and maximum degree m h. Hence r * ( H ) < n / n k  (give weight 1/nk to 
each vertex). By a theorem of  Lovfisz and Stein (cf. [6]) one has r ( H ) <  
(n/nk)(1 + log ink). Moreover,  one can obtain a covering of this size by the greedy 
algorithm. 
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Place the cops in the corresponding vertices. Suppose that the robber is in vertex 

x. For each y e N h_ 1 (x) let c(y) be a cop in Nh(Y). Note that for y ~ey' it might hap- 

pen that c(y)= c(y'). Now the strategy of  the cops is very simple, they just walk 

straight towards vertex x, stopping as soon as the cop is on the geodesic between 
the robber and x. We claim that the robber is caught after at most 2h - 1 moves by 

the cops. Indeed, where could he be? Suppose that he is in z and let y be such that 

either y is on the geodesic between x and z or z is on the geodesic between x and 

y. Let c(y) be in vertex u. If c(y) did not stop then in 2 h -  1 steps he reached x. 

Thus z cannot be on the geodesic between u and x. By our stopping rule and because 

the girth is at least 4 h - 1 ,  the robber must have gone through u before c(y) got 
there. Let v be the first vertex in which the geodesics to x from y and the initial posi- 
tion of c(y) meet. Its distance to c(y) was only one longer than to x. Therefore u 

must be on the geodesic from o to x. Consequently, when c(y) arrives to u, the rob- 

ber cannot be on the geodesic linking x to y or z, and therefore it cannot get back 

there without being caught by c(y). [] 

4. Cayley graphs: Proof of Theorem 1.5 

For y ~ ( F U F  -~) let c(y) be the cop labelled with y. At the beginning we put all 

cops at 1. Suppose the robber starts at x. Let us write x as a product of generators 

x = gig2"'" gm (obviously, we may suppose that m <_ n/2). 
Let us make precise the strategy of the cop c(h). Suppose that he is in vertex z 

and the robber is in vertex y, moreover z -1 Y=glg2"'" gk hi where all g are from 

F U F  -1 and k is as small as possible. 

If  the robber moves to the vertex y f w h e r e f ~  (h) ,  then c(h) moves to zf. Note 

that 

(zf)- l  y f  = ( f -  l g l f ) . . .  ( f -  l gkf)( f -  I h f ) i .  

If  r e  (h )  and k = 0 ,  then c(h) moves to zh. Finally if r e  (h )  and k_> 1, then c(h) 
moves to zgl. Note that ( z g l ) - l . , v f = g 2  . . .  gk]l i'. This is called approaching move. 

After the cops' move we change their labels: the one which had label h will get 

label f - l h f  (note that this is a 1 to 1 map). 
We claim that the robber is caught after at most (m + n ) l F  ] steps. 
In fact, at each step of  the robber the cops corresponding to that generator ap- 

proach. If  c(y) did m approaching moves, then its 'distance' to the robber will re- 

main forever a power of his label y. From this time on he and c(y -l) pursue the 
robber around the cyclic group (y) ,  where at non-approaching steps the whole 
cyclic group 'travels' without the relative position of the robber, c(y), c(y-1) being 
altered. As on the cyclic group the robber will be caught after less than ](y)] steps, 

the proof  is complete. [] 

Remark. Since every Cayley graph of  an Abelian group is full, we obtain if G is a 
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k- regu la r  Cay ley  g raph  o f  an  Abe l i an  g roup ,  then  c(G)<_ k holds .  However ,  for  this 

case H a m i d o u n e  [4] ob t a ined  the uppe r  b o u n d  c(G)<_ F3k/47 . 
O n  the o the r  hand  the t heo rem does  no t  ho ld  for  all Cayley  graphs .  In  fact ,  

Margul i s  [7] cons t ruc ted  for  every k>_ 2, 2k- regular  Cayley  graphs  whose gir th is at 

least  cklogl VI, where c k is a posi t ive  cons tan t .  By T h e o r e m  1.1 these graphs  need 

at  least  I VI l°g~2k-t)ck/8 cops.  Imr ich  [5] i m p r o v e d  Margu l i s '  bounds .  In  pa r t i cu la r ,  

he cons t ruc ted  3-regular  Cayley  graphs  with gir th  at  least  0.56 log2l VI- 5 and  con-  

sequent ly ,  needing  at  least  I V1° 2/2 cops.  

To conc lude  this pape r ,  let us men t ion  tha t  mos t  recent ly  A n d r e a e  [3] ob t a ined  

very nice upper  bounds  for  c(G) suppos ing  tha t  G is not  con t rac t ib le  to  a f ixed 

g raph  H.  
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Note added in proof 

In [11] the  of ten  best  poss ib le  b o u n d  c(G)< [ ( k +  1)/2-] is ob ta ined  for  Abe l i an  

Cay ley  graphs  o f  degree k. 

References 

[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1-12. 
[2] T. Andreae, Note on a pursuit game played on graphs, Discrete Appl. Math. 9 (1984) 111-115. 
[3] T. Andreae, On a pursuit game played on graphs for which a minor is excluded, J. Combin. Theory 

Ser. B, to appear, 
[4] Y. Hamidoune, A pursuit game on Cayley digraphs, Europ. J. Combin., to appear. 
[5] W. Imrich, Explicit construction of regular graphs without small cycles, Combinatorica 4 (1984) 

53-59. 
[6] L. Lov~isz, On the ratio of optimal integral and fractional covers in hypergraphs, Discrete Math. 

13 (1975) 383-390. 
[7] G.A. Margulis, Explicit construction of graphs without short cycles and low density codes, Com- 

binatorica 2 (1982) 71-78. 
[8] H. Meyniel, personal communication, 1985. 
[9] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. 43 (1983) 

235-239. 
[10] A. Quilliot, Etude de quelques probl~mes sur les graphes et hypergraphes et applications ~ la th6orie 

des jeux ~t information complete, Th~se Univ. P. et M. Curie, Paris 6, 1980. 
[11] P. Frankl, On a pursuit game on Cayley graphs, Combinatorica, to appear. 


