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ALL TRIANGLES ARE RAMSEY

PETER FRANKL AND VOJTECH RÖDL

ABSTRACT. Given a triangle ABC and an integer r, r > 2, it is shown

that for n sufficiently large and an arbitrary r-coloring of Rn one can find a

monochromatic copy of ABC.

I. Introduction. Let Rn denote n-dimensional Euclidean space. A finite point-

set A = {Ai,.. .,Aa} is said to be Ramsey if for every integer r there exists an

no = 7io(A, r), so that if the points of Rn are partitioned into r classes one can

always find a congruent copy of A inside one class. In [1] it is proved that the

vertex set (and consequently each subset) of a brick (rectangular parallelepiped) of

arbitrary dimension is Ramsey. On the other hand, it is shown there that if A is

Ramsey, then it is spherical; i.e., it is contained in a sphere.

The first open question which arises is to decide whether obtuse triangles are

Ramsey.

THEOREM 1.   All triangles are Ramsey.

For the proof of this result we use two well-known results.

RAMSEY'S THEOREM [2]. Given integers k,l,r>2 there existsn0 = n0(fc,I,r)

so that for all n > n® and all r-colorings of the l-subsets of {1,2,... ,n} one can

find a k-element set all of whose l-subsets have the same color.

Suppose A, B are finite point sets in Rd, R", respectively. Define A * B =

{A * B: A G A, B 6 B}, where for A = (oi,...,ad), B = (bt,...,ba), A* B =
(oi,...,at,&i,. ■.,ba) is a print in Rd+a.

PRODUCT THEOREM [l].   If A, B are Ramsey, then A* B is Ramsey too.

PROOF OF THE THEOREM. We prove the theorem in three stages.

Stage 1. The triangle with side lengths y/2t, y/2t, \/8f - 6 is Ramsey for all í > 2.
Choose n = no(2i + 1,2t — 1, r) from Ramsey's Theorem. Let us associate with

each (2t - l)-subset B = {t'i,... ,i2t-i}, where 1 < t'i < i2 < ■ - ■ < i2t-i < n, a

point P(B) = (xi,...,xn) by setting x¡ = 0 unless j G B, Xi„ — u for v — 1,...,t

and Xiv = 2t - v for v = t + 1,..., 2i - 1. For example, for B = {1,4,6} and n = 6
we have P(B) = {1,0,0,2,0,1}.

Suppose the points of Rn, and, in particular, the points of form P(B) axe r-

colored. This defines an r-coloring of the (2t - l)-subsets of {1,2,...,n}. By

Ramsey's Theorem there exists a set A = {¿i,...,Ât+i} all of whose (2t - 1)-
subsets have the same color.
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Choosing Af = {ju ... ,j2t-i}, A2 = {j2,j3,.. .,j2t} and A3 = {j3,... ,j2t+i},

P(Af), P(A2) and P(A3) have the same color. An easy computation shows that

the distances are

d(P(Af), P(A2)) = d(P(A2), P(A3)) = v/2i,    d(P(Af), P(A3)) = ^i^6.   □

Note that for t —► oo the largest angle of this triangle tends to 180°.

Stage 2. All isosceles triangles are Ramsey.

Let ABC be a triangle with side lengths a, a, b, BC = b. Let the angle at A be
a, and choose t so large that the angle of P(Af)P(Ä2)P(A3) at P(A2) is larger

than a.

Let us now rotate ABC around BC, and denote by A(ß) the orthogonal pro-

jection of A on the plane after rotation by angle ß. Since A(90o) is on BC, there

exists a ß for which A(ß)BC is congruent to P(Af)P(A2)P(A3). By the product

theorem the prism {A(a), B, C} * {0, yL4(a)} is Ramsey. Since ABC is embedded

into this prism, it is Ramsey.    D

Before going to Stage 3 let us extract some slightly more general results by the

methods of Stages 1 and 2.

Stage 2'. Suppose the triangle A'BC is obtained from ABC by orthogonal

projection on a plane through BC. If A'BC is Ramsey, then so is ABC. Note also

that if ß' and ß (7' and 7) are the angles at B(C) in the two triangles, respectively,

then tan 7/ tan ß and tan 7'/ tan ß' are equal.

This makes possible a reformulation of the above statement. If a triangle with

angles a', ß' is Ramsey, a' < a and tan a/ tan ß = tana'/tan/?', then any triangle

with angles a, ß is Ramsey.

Stage 1'. lîp, q are integers, then for an arbitrary e > 0 there exist triangles with

angles a, ß which are Ramsey and which satisfy | tan a/ tan ß — p/q\ < e, a + ß < e.

Choose this time n = no(2t + p + q — 1,2t — 1, r) and proceed as in Stage 1. Find

{ji,J2, - - ■, 32t+p+q-i}, all of whose (2t — l)-subsets have the same color. Set Af =

{il, • • -J2t-i}, M = {jp+i,- ■ .,J2t+P-i}, A3 = {jp+q+1,.. .,J2t+P+q-i}- Let q¿ be
the angle at Ai in AfA2A3. It is easy to see that, for t —> 00, tan c*i/tan0:3 —* p/q

and af + a3 —► 0.

Stage 3. All triangles are Ramsey.

Let ABC be an arbitrary triangle with angles a, ß, 7. Suppose a < ß < 7

and rotate ABC around BC with A(6) being the image of A by the orthogonal

projection as the inclination of ABC is 6. Let a(6), ß(6) be the corresponding

angles. Then

tana(¿) _ CA(90°) def

6^90" tanß(6) ~      BC

Let p/q be a rational number between c and tan a/ tan ß. By a continuity argument

one can choose 8 so that tana(¿)/tan/3(¿) = tanai/tanaß, ai < a(S) and a2,a3

are angles from Stage 1'.

By Stage 2' we infer that triangles with angles a(6), ß(6) are Ramsey, and again

by Stage 2' it follows that those with angles a, ß, 7 are Ramsey too.    □

II. Concluding remarks. One can apply the approach of Stage 1 to obtain

that many other finite configurations are Ramsey. However, the dimension of these

configurations tends to infinity as the number of points increases.   In fact, we
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were unable to prove the Ramseyness for any pentagon. We can show that some

symmetric trapezoids are Ramsey. Here is the argument.

Let us associate with {i,j} C {1,2,..., n}, i < j, the point P(i,j) which has ith

coordinate 1, j'th coordinate —2 and all others 0.

If n > rin(4,2, r) and Rn is colored by r colors, as in Stage 1, we can find

{Ji,J2,js,ji} so that all six 2-subsets of it have the same color. This will give a

monochromatic configuration isometric to the point set (1,0,-2,0), (0,0,1,-2),

(1, —2,0,0), (0,1,0, —2). It is easy to check that these points are coplanar, and in

fact they span a symmetric trapezoid with sides \/ÍÜ, \/8, \/IÜ, y/2 and diagonals

of length y/Ï4.
Using the product theorem, one obtains an infinity of other symmetric trapezoids

which are Ramsey.

We can also prove that all simplices in arbitrary dimensions are Ramsey. The

proof, however, is less elementary. We shall return to this problem in a later paper.
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