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Suppose that v > k > 0 and L = {/i,...,/s} with 0 < /t < ... < /s < fc. A family <F of
/c-element subsets of a u-element set is called a (v, L, /c)-system if for all F, F' in SF one
has \FnF'\ e L. It is known that, for v > vo(k), then | ^ | < fli**«»("-'«)/(*~'i)
and that equality corresponds to structures of great regularity, known as perfect
matroid designs.

Here we consider the family of sections of each type of a given non-singular quadric
or Hermitian variety in a projective space PG(n,q) as a (v,L, /c)-system. The
corresponding values of k and L are calculated. If such a family has size of order vs',
then by the above bound we have that s' ^ s. All families for which s — s' ^ 5 are
listed. For s — s' ^ 3, it is shown that these families have the largest possible order of
magnitude apart from four families, all with q = 2, which are not optimal.

The case in which the sections by 3-dimensional subspaces are elliptic quadrics
provides families with cv* members, k = q2 + 1 and L = {0,1,2, q + 1}. As q increases,
one gets fairly close to perfect matroid designs, since \&\/[Y\(v — li)/(k — li)'] -* 1 as
q -> oo.

1. Projective spaces: notation

We use the following notation throughout:

K = GF(?);
PG(n,g) is the projective space of n dimensions over K;
P(X) is the point of PG(n,q) with coordinate vector X = (x0, ...,*„);
V(F) = {P(X)| F(xo,...,xn) = 0} where F is a form in *[*<,,. . . ,*,,];
Il r is a subspace of dimension r, with — 1 ̂  r ^ n;
n r iT is the cone with vertex ITr and base f in a subspace IT, skew to n r ; it

comprises the points in all subspaces PITr for P in "V.

To simplify some numerical formulas, we define the following symbols:

l) for r < s ,

for r > s, each of these symbols is 1. We also write

0n = | PG(n,q)\ = (q" + l — l)/(q — 1), where n ^ 0,
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and let N(Il r ,nn) be the number of ITr in PG{n,q),

~q»(r+l)-«r+l) for

For any variety "V, the projective index g is the largest dimension of the subspaces
lying on V.

In the quadrics and Hermitian varieties, defined in § § 2 and 3, each variety is given
in canonical form and is unique up to projective equivalence.

For other background on projective spaces see [9].

2. Quadrics in PG(n,q)

First we list the canonical forms for quadrics and then give some of their basic
properties, concentrating on numerical ones.

(i) Non-singular quadrics:

n even, &n = \{X0
2 + XtX2 +... + Xn.{Xn), parabolic,

-... + *„_!*„), hyperbolic,

T3 +... + Xn_ !*„), elliptic,

where / is irreducible over K.

(ii) Singular quadrics:

t even

rodd

1 ^ t ̂  n - l

For any non-singular quadric °Ln, the quadric II . ^ = 2,n.
The section of Qn by IId is either IId itself or a quadric nd_r_ !-St. When Ild c Q.n,

then Wdr\2.n = nd^f_1} a hyperbolic section. To each quadric n , , . , . ^ , we attach
the character w = 0, 1, or 2 according as <2.t = St, 0>t, or tf,. From [9, p. 110], we have

and

In particular,

The projective index g of quadrics is as shown in Table 1.
As defined in § 1, a quadric II r^ t is a cone with vertex n r and base 2,t. So the points

of the quadric consist of the joins of all points of IIr to all points of £,. If, in
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with F irreducible, then £t lies in the f-space \(Xt + l,Xt + 2,...,Xn) and Ilr is the
space \{X0,Xu...,Xt); that is, r = n-t-l. For example, in PG(3,g), the cone

TABLE 1

!-3) fti-2)

2n —r-3)

+ XiX2) consists of the join of the vertex I l 0 = P(0,0,0,1) to the conic
2)<^ \(X3) (Fig. 1). Put parametrically, in PG(3,g),

FIG. 1

For low dimensions, we list all quadrics iV in Table 2.

TABLE 2

Space IT |1T| 3 Description

0 - 1 0

PG(1,<?) ^f, 2 0 point pair
£i 0 - 1 0

rio^o 1 0 Point

PG(2,g) ^ 2 9 + 1 0 conic; no three points collinear
Wo^fi 2q+\ 1 line pair
no<?i 1 0 point
n ^ o 9+1 1 n n e

PG(3,<7) Jf3 (9+1)2 1 hyperboloid; each point lies on two
of its 2(g+l) lines

<f3 q 2 + l 0 ellipsoid; no three points collinear
1 cone; q+1 lines through the vertex
2 plane pair
1 line
2 plane

T,* pf!/ c «\ -v̂ * â 7 p̂ n <® n î 7 n
in rO^J ,^ , W — ̂ 85,05, llQi/4,11 |^c 3,11
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PROPOSITION 2.1. Let N(Tld-t-&,£,]) be the number of subspaces Ud such that
Tldn£n is projectively equivalent to Ylj-,-^,, where 2.n has character w and Qt has
character u. Then, with T = n + t — 2d,

t-X2,t,2.^ = qt{T[t+l+uw(2-uH2-w)]-u(2-u)(w-l)*}

This is known as the big formula for quadrics, [10]. It is an accumulation of several
formulas proved geometrically by Segre [11] and algebraically by Dai and Feng
[1,5].

PROPOSITION 2.2. For a fixed q, the only cases for which two quadrics or their sections
have the same number of points are as follows:

(a) \nn^.1\ = \nn^\ = \nn.t^t\ = en;
(b) q = 2, | n n _ 2 ^ | = |nn_3<?3| = 3.2-"1-!.

Proof We compare two quadrics iV = n , , . , . .^ , and W = Tln. -t--x2.f of charac-
ters w and w' respectively. From above, | T T | = 9n.1+(w-l)q"~{t+l)l2.

When w = 2, we have - 1 ^ t ^ n and t is odd. When w = 1, we have 0 ^ t ^ n and
t is even. When w = 0, we have 1 ̂  t < n and t is odd. Now six separate cases are
considered.

(i) w = 2, w' = 2. Here we have

When n > n',

which gives a contradiction,
(ii) w = 2, w' = 1. Here,

n' > n and ^

ri = n +1 and t = — 1

TT = n ^ - i and TT'

this is part of Case (a),
(iii) w = 2, W = 0. Here,

=> n' > n and ^ ^

=> n' = n + 2, t = - l , and t' = I or

ri = n + l and



VARIETIES OVER FINITE FIELDS 409

In the former case, IV = UnJf.i and IV' = n ^ ; this is included in (a). In the latter
case, q = 2 and q»-«+1>i2 = g»-<«'-n/2 = \ q \ whence |(r +1) = %t!-1) = 1; so q = 2,
t=l,t' = 3. Thus iV = nn-23P1 and iV' = n n _ 3 ^ 3 with q = 2. This is Case (b).

(iv) w = 1, W = 1. Here,

which is again included in (a),
(v) w = 1, w' = 0. Here,

=> ri >n and ^"'-C' q q +

=> «' = n + 1 and t' = 1

=> *r = n ^ , , ^ , and or1 = nn_^ i ;

this is the remaining part of (a),
(vi) w = 0, W = 0. Here,

when n > n',

which gives a contradiction.

3. Hermitian varieties in PG(n,q), with q square

In a similar fashion to the previous section, we list for Hermitian varieties the
canonical forms and basic numerical properties,

(i) Non-singular Hermitian varieties:

Wn = \(X0X0 + XxXl + ... + XnXn) where X = * A

(ii) Singular Hermitian varieties:

nn_t_x<%t = Y(X0X0 + XlX1 + ... + XtXt) where 0 < t < n - 1 .

As for quadrics, U-i
(Wn = <&„.

The section of °Un by Ud is either Ud itself or a Hermitian variety n , , - , . ^ , . When
n d c ^ n , then n d n Wn = YV£U.^. From [9, p. 102],

and

The projective index g of Hermitian varieties is shown in Table 3.

TABLE 3

n odd even
g Un-l) 4<II-2)

!!„-,-,«,

odd even
n - t - l ) 4(2n-t-2)

For low dimensions, the Hermitian varieties T̂ * are listed in Table 4.
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TABLE 4

Space "W \"W\ g Description

PG(U)

O,^o 9+1

1
0
0
0
1
1
1

1
2
2

0
sublinePG(l,V<7)
point

unital; each section by a line is °UX or O0<^0

yjq+l concurrent lines
line

Hermitian surface containing {q<Jq+l){-Jq+ 1)
lines; each plane section is °U1 or O ^ ,

qjq + 1 lines through the vertex
l]q +1 collinear planes

plane

in PG{4,q), TT = « 4 ,no« 3 ,n 1 « 2 ,n 2 « 1 , i i j
In PG(5,q), -W = #s ,no<#4,n1#3,02#2 ,n3

PROPOSITION 3.1. Let N<J\d_t_fllt,
(!ttt) be the number of subspaces Ud such that

T\dr\°lln is projectively equivalent to Yld-.t-l°ttv Then, with T = n + t — 2d,

Proof See Wan and Yang [12].

PROPOSITION 3.2. For a fixed q, the only cases in which two Hermitian varieties or
their sections have the same number of points are the following:

\nH^.l\^\Titflio\ = 0H.

Proof We have

when n > n'

=> n = ri+l and yjq.q"'1 + q n = (—l)tqn~tl2 — (—l)'qn~tl2

=> t - 0 and f = - 1

4. Large intersection families of sets and perfect matroid designs

Suppose that v and k are integers such that v > k > 0. Fix a subset L = {/l512,..., /s},
with ly<l2< ••• < *s> of {0, l, . . . ,fc-l} and a set X with | X | = v. A family of sets
j ^ = {/I.} is a (y, L, k)-family and is denoted J/(U, L, k) if /!,- c X, \ Ax \ = fe, and
I /4j n Aj I e L for 1 # 7. The maximum cardinality of a (y, L, /c)-family is denoted
m(y,L,/c). Deza, Erdos, and Frankl [3] have proved the following.
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THEOREM 4.1. For v ^ vo(L,k),

m(v,L,k)^ n (v-h)/(k-ld- (*)

Further, either

or
m{v,L,k)^c{L,k)vs-1

for a suitable constant c(L,k).

The aim is to seek large (v, L, /c)-families. Examples of such families are perfect
matroid designs, PMD's for short. A matroid, or more exactly, the hyper plane family of
a matroid is a family {Hj} of subsets of X such that

(i) Hk t H2 if H^H2,
(ii) for any Hx, H2 with Ht # H2 and x in X\(H1 u H2), there exists a unique subset

H3 with (Ht n H2) u {x} a H3.
Subsets of X which are intersections of the sets Hj (hyperplanes) are flats of the
matroid. Each subset Y of X has a well-defined rank and the rank r of AT is the rank of
the matroid. For any flat F of rank i and an element x in X\F, there is a unique flat of
rank i + 1 containing F u {x}, providing i < r.

A PMD(u,L,/c) is a matroid of rank r = s + 1 such that all flats of rank i, with
0 < i ̂  r, have the same cardinality li+1. Here we also use the notation that k = ls+1

and t? = ls+2. Without loss of generality, we may consider only simple PMD's, namely
those with lx = 0, l2 = 1.

Every known example of a PMD(u,L,k) belongs to one of the following four
classes.

(1) X = PG(n, q) and {Hj} is the set of all (s— l)-dimensional subspaces for a fixed s
such that 1 < s < \n; so lx = 0, /, = 0,_2 for 2 ̂  i ̂  s + 1 , and / s + 2 = t> = #„.

(2) X = AG(n,q), affine space over GF(g), and {//,} is the set of all (s— 1)-
dimensional subspaces for a fixed s such that 1 < s < ^n; then /x = 0, /, = ql~2 for
2 ^ i ̂  s + 1, and / s + 2 = v = q".

(3) X = S(t,k, v), a Steiner system, and {Hj} is the set of blocks; so /,- = i —1 for
1 ^ i! ^ t, lt+l = / s + 1 = k, and /f+2 = / s + 2 = v.

(4) X = ATS(m), an affine triple system and {Hj} is the set of blocks. Then X is a
PMD(3m, {0,1,3}, 9) of rank 4.

The examples of type (3) with t = k are truncated Boolean algebras. Those of type
(4) can be defined as Steiner systems S(2,3, v) such that any triangle generates an affine
plane AG(2,3).

For further information on PMD's, see Deza and Singhi [4].
The hyperplane family of a PMD(y, L, k) is an stf(v, L, k) with

\s/(v,L,k)\ = Y\leL(v-l)/(k-t).

Deza [2] showed that, when v ̂  vo(L, k), any family s#(v, L, k) for which this equality
holds is necessarily a PMD(v, L,k). The upper bound (*) can be regarded as

m(v,L,k)^c(L,k)vs.

Frankl [6] showed that if there does not exist a PMD(fc,L\{/s},/s), then
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A family stf(v, L, k) = {A,} is maximal if there exists no /c-subset B of X such that
| B n A{ | e L for all At. Deza and Singhi [4] showed that a PMD(u, L, /c) in one of the
above four classes is maximal, and conjectured that the result holds for every PMD.

There is another general bound on m{v,L,k) due to Frankl and Wilson [7].

THEOREM 4.2. Suppose that p is a prime and / i l 5^2 , ...,/*,. are integers such that
(a) 0 ^ Hi < 1*2 < ••• < t*r>
(b) I = Hi or Hi or ••• or Pr (mod p),for all I in L,
(c) k ^ Hi (mod p),for i = l,2,...,r.

Then , x
m{v,L,k)^[\.

5. Sections of quadrics and Hermitian varieties as intersection families

Here we examine 2.n and °Un for families s/(v,L,k), with \L\ = s, where
m = | s/{v, L, k) | is as large as possible. From § 4, m cannot be of order greater than vs;
in other words, if m ~ cvs>, then s ^ s\ So we look at families for which s—s' is small.

For quadrics and Hermitian varieties iVn, we define the families

to consist of all Yldc\Hr
n projectively equivalent to n j . ^ j i ^ , . So the families

considered are, for a sufficiently large fixed n,

In the first three cases, £Ln can be elliptic, parabolic, or hyperbolic. A family 3F{J\d, i^n)
is simply a subfamily of the PMD formed by all subspaces of PG(n, q) and these are
not considered.

There follows a list of all families for which s — s' = 0,1,2,3,4,5 in Tables 5 and 6.
Table 5 is for q > 2 and Table 6 is for q = 2. The latter case must be considered
separately because of Proposition 2.2 (b).

The parameters v and m are given asymptotically; exact values are in § § 2 and 3. We
recall the parameters of the family & =

S£ is the set of projectively distinct Ax n Aj,
L = {\A\\Ae&},
s = \L\,
d is the dimension of the space containing an Ah

t is the dimension of the space containing the non-singular part of A{.

THEOREM 5.1. The intersection families for which D = s — s' ̂  5 are exactly those of
Tables 5 and 6. The corresponding k-sets are as follows.

(a) q > 2.
D = 0: 0>2,<%2,£2;
D=l: n o ^ ! , n o ^ \ , J i f 3 , n 0 ^ 2 ;
D = 2: ni3^u%i,no

<}u2,n^unos^n^2;
D = 3: ^4,n0^r3,n2jf1,^4,n2^1,n2^'2;
D = 4: <£5,11^3,X\^x,W^2,X\xm2,ria^;
D = 5: ^nij^n^^n^iio^n^!
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TABLE 6. q = 2

s — s'

0

0

1

1

1

1

2

2

2
2

3
3
3

3

3

4

4

4

4

4

5

5

5

5

d

2
3

2
3
3
4

3
4
4
5

4
4
5

5

6

5

5

5

6

7

5

6

7

8

t

2
3

1
3
2
3

1
2
4
3

1

2

5

5

1

4

2

3

3

1

2

®i {0,1,2}
<?3 {0,1,2,3}

IVf , {0,1,2,3}
f̂3 {0,1,2,3,5}

no<?2 {0,1,2,3,5}
n</3 {0,1,2,3,5,7}

n , ^ {0,1,2,3,5,7}
n , ^ 2 {0,1,2,3,5,7,11}

9A {0,1,2,3,5,7,9}
n,(f3 {0,1,2,3,5,7,11,15}

n2Jf, {0,1,2,3,5,7,11,15}
nojf3 {0,1,2,3,5,7,9,11}
n 2 ^ 2 {0,1,2,3,5,

7,11,15,23}
*5 {0,1,2,3,5,

7,9,11,15}
Y\2$3 {0,1,2,3,5,7,

11,15,23,31}

JTS {0,1,2,3,5,7,9,
11,15,19}

n3jf, {0,1,2,3,5,7,11,
15,23,31}

no^4 {0,1,2,3,5,7,9,
11,15,19}

n3^>2 . {0,1,2,3,5,7,11,
15,23,31,47}

n3*3 {0,1,2,3,5,7,11,
15,23,31,47,63}

ntjf3 {0,1,2,3,5,7,9,
11,15,19,23}

n 4 ^ ! {0,1,2,3,5,7,11,
15,23,31,47,63}

n 4 ^ 2 {0,1,2,3,5,7,11,15,
23,31,47,63,95}

n4<?3 {0,1,2,3,5,7,11,
15,23,31,47,63,
95,127}

k

3
5

5
9
7

11

11
15
15
23

23
19
31

27

47

35

47

31

63

95

39

95

127

191

s

3
4

• 4
5
5
6

6
7
7
8

8
8
9

9

10

10

10

10

11

1?.

11

12

13

14

„

?::
2n-l

2 «- i

2--1

to
 

to
 

to
1 

1
 

1

to
 

to
 

to
1 

1
 

1

2--i

2""1

2.-i

2»-i

2 n - l

2-.-I

m

23n-6

24n - 1 2

23/i-7

24n-12

24n - 13

25n-21

2 4 n ~ ' 5

25n-23

25n-20

26n-33

25/1-26

26n-3O

27n-48

26n-3O

26n-40

27n-52

28n-66

26n-33

27n-57

28n-71

(b) q = 2.
D = 0.• 3P2,£Z;

D = 1. 110^,^3, Ilo^rio^;
D = 2: n^i,0^2,^4,n^a;

D = 3.- n2jrl,n0jp3in292t#5tn2ti;
D = 4; Jfs.r^!, Ilo^, n3^2, Ila^;
D = 5: n^a,U^,,!!^,!!^.

Proof. The necessary facts are contained in Tables 7 and 9.
The first three rows of Table 7 give the number of projectively distinct hyperbolic,

elliptic, and parabolic sections of each type of non-singular quadric; these numbers
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come from [10]. To calculate s, we need to consider Proposition 2.2, which explains
when the cardinalities of projectively distinct sections coincide. For q > 2, we throw
away all sections 11 ,^ and count one parabolic section for each dimension two larger
than the projective index, as well as the empty section ^ 0 . For q = 2,it is necessary
also to discard sections n / 3 where a section 1 1 , + ^ is present. Hence row (7) of the
table gives s for the quadric 2,n.

To find 5 for an arbitrary quadric Yld-t-iSlt = Tle£t, we consider the sections of
Tle+1£t that are not sections of He£t. If, for a fixed s, the quadric ITe^t has a section
Tlr£s with r a maximum and the character of £s determined, then ne+l£, has a section
n r + 1i2s of the same character with r+1 the maximum value possible.

For the quadric TIe£t, denote s by set. Then an easy count gives Table 8.

TABLE 8

q>2 q

2,t=\ 2 , t = l
t,t>\ 3,( = 3

t-l,t>3

t t - 1

t '2,t = 2
t-l,t>2

Row (7) of Table 7 gives the numbers s_ t „. Hence set may be calculated as in row
(8). Finally, s' = e + t + 2, and D = s — s' is given in row (10).

Table 9 gives a similar analysis for Yi£Uv Here, if we write \iet for the value of s for a
Hermitian variety TIe*%t, then fie+ltt — \ie,t = t + l.

TABLE 9. Sections of Hermitian varieties

(1) Number of distinct sections
(2) Number of distinct cardinalities

of sections

(3) Number of distinct cardinalities
of sections, s

(4) Dimension of family, s'
(5) D = s-s'

n odd

!("+!)("+" 35!"1

t odd

e{t+\)+%t+\){t + l) e

e+t+2 t
et - l + i ( f +!)(( + 3) t

n even

%n(n + 6)

t even

i + t + 2
'.t-\+{t{t + 4)

6. More upper bounds on the size of intersection families

The aim of this section is to present some general methods for bounding m(v, L, k).
These methods can be applied to show that all families in Table 5 of defect s — s' ^ 3
with q > 2 have the greatest possible order of magnitude. For q = 2, there are four
exceptions, namely the families with sections n , j f x and UOJ^3. We recall that f{v) is
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of order va if there exist positive constants c and d such that cva ^/(u) ^ dv* for all
v> v0.

Suppose that & = {Fl5..., Fm} is a {v, L, fc)-system. For F in J5", the trace ofZF on F is

STpiF) = {F n F | F e J% F # F}.

Fundamental for our investigations is the following theorem, which was conjectured
by Frankl and proved by Fiiredi [8].

THEOREM 6.1. There exists a positive constant ck such that any (v, L, k)-system IF has
a subsystem &* c gF satisfying the following conditions:

(i) \**\>ck\P\;
(ii) the families & p*{F) are all isomorphic for F in ^*;

(iii) 3~p*{F) is closed under intersection, that is

71, T2

(iv) \T\eLforallTin0~f4F).

From (i), we have ck < | &* |/| $F \ < 1; so | &* \ and | & \ have the same order as
functions of v. Therefore, if we are only interested in the order of magnitude of
m(v,L,k), we may replace SF by J57*. Thus, in this section, we now assume that
& = &* and write 3T{F) instead of ^>.(F).

DEFINITION 6.2. A set G ̂  F is free with respect to 2T(F) if there is no T in
with G^T.

Note that F itself is always free.

PROPOSITION 6.3. / / F in 2F has a free subset G of size I, then

V

Proof Since, for F and F' in ̂ , the sets <̂ "(F) and «^~(F) are isomorphic, all F' in J5"
have a free subset G(F'). By the definition of free subset and of $~{F), we have
G{F') * G{F") for F',F" in &. Thus

/

Our method for proving upper bounds on | #" | will consist of establishing that, for
every ZT <=. 2{1'2 k) satisfying (iii) and (iv) of Theorem 6.1, there exists a relatively
small free subset.

Let us introduce the notation

a(k,L) = max{min{|G|: G <= {l,2,...,/c},
G is free with respect to 2T\. ST c 2{1>2 k\3T satisfies (iii), (iv)}.

Theorem 6.1 and Proposition 6.3 imply the following.
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PROPOSITION 6.4.

m(v,L,k)^ck-
l( "

\a{k,L)

The good thing about a{k, L) is that it is independent of u; it can also be bounded by
looking at subsets of {1,2,...,k) only. The bad thing about it is that it cannot be
calculated easily; for example, a( l l l , {0,1,11}) = 3 if and only if a projective plane of
order 10 exists.

However, we do have the following inequality.

PROPOSITION 6.5. For each i with 1 < i < s,

a(/c,L) ^ max{«(fc,L\{/l}),a(/l,{/!,/,,...,/,_!})

Proof. Let 9~ c 2{1 k) be a family for which the value of a(k,L) as min|G| is
realized. If | T | # /, for all T in &~, then by definition there exists a free subset of size
a(k,L\{li}) with respect to F; thus a(k,L) < a(k,L\{/,}).

Hence we may assume that | To \ = /,- for some To in 2T. Define

J 0 = { T E f | T c r 0 ) and 3T, = {T\T0\ To <= T <= F).

Clearly &~Q and ST^ satisfy (iii) and (iv) with Lo = {/l5...,/,_ i} and

respectively. Thus we may choose free subsets GQ,GX such that

\G0\ = a(lh {/± / , - i», \G1\ = a(k-li,{0,li+l-lh...,ls-li}),

where Go <= To and Gx c ({l,...,fc}\T0).
It is sufficient to show that Gou Gx is a free subset with respect to 2T.
Suppose that (Go u G J c T e l Since Go c r0, we have Go £ (To n T). As

TonT e ^ and Go is free with respect to $~0, we have T o n r = T o ; that is, To £ r .
Also Gi c= T\T0 and Gx is free with respect to Fv Thus T\T0 = {l,2,...,fc}\T0.
Consequently, T = {1,2,...,/c}; that is, G Q U G J is free.

A more indirect way of bounding a(k, L) is provided by the following.

PROPOSITION 6.6. Ifa(k, L) ^ b, where b is a non-negative integer, then there exists a
family

<% = {BuB2,...,Bb}czyi'2-'k-»

such that, for every 1 ̂  j ' ^ b and 1 ̂  it < i2 < ... < ij ^ b,

(\Btln...nBtj\ + b-j)eL.

Proof. Let &" cz 2{1 •••'fc} be a family for which the value of a(k,L) as min|G| is
realized. Let G be a minimal free subset for ZT. Then | G | ^ b. By symmetry, assume
that F = {1,2,...,/c} and {1,2,...,6} £ G. By the minimal choice of G, for 1 ̂  i ̂  6
there exists T{ in ̂ " with G\{i} c 7J. Define Bt = Ttn {b+ l,...,/c}.

Since «̂ " satisfies (iii) and (iv), for 1 ^ 7 " ^ b and 1 ̂  it < i2 < ... < /_,• ^ b, we have
that | 7 ; i n . . . n 7 ; j = | B l l n . . . n B , J + fe-7 e L.
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Now let us turn to the specific values of L given in Tables 5 and 6. First note that

m(u,{0sl52,3,5,7,9,ll},19)^m(i;,{l,3,5,7,9,ll},19).
Now,

m(w,{l,3,5,7>9,ll},19)^m(i;-l,{0,2,4,6,8,10},18)f

since we may just add a point to all sets in a family realizing the right-hand side. Also

since we may double any point in a family realizing this right-hand side. For large v,

m(Uv-\),{0,\,2,3,4,5},9)^ cv6,

where c is a positive constant; see [6]. Hence,

m(t;,{0,l,2,3,5,759,ll},19)^ct;6,

where c is a positive constant.
Thus, for q = 2, the section Tlojf3 does not give a family of best-possible order of

magnitude, optimal for short. The same holds for Tli3^l with i ̂  0, since the
corresponding values of k and L are the same as for I T , - ^ . However, the latter
family has greater order of magnitude; compare Proposition 2.2.

In view of Theorem 4.1, all families with s-s' = 0 are optimal. Also those for which
s — s'= 1 and the divisibility condition in Theorem 4.1 is not satisfied are optimal.
This covers almost all cases with s — s' = 1 and q # 2. The only exception is the case
where q = 4, k = 13, L = {0,1,3,5}: the section is T\Q^lv Applying Proposition 6.5
with /4 = 5 gives

a(k, L) ^ max{a(13, {0,1,3}), a(5, {0,1,3}) + a(8, {0})}
= max(3,a(5,(O,l,3}) + l}.

Thus it is sufficient to have a(5, {0,1,3}) = 2, which can be checked directly.
All the cases for q = 2 with s — s' = l and for q > 2 with s — s' = 2 or 3 can be

handled in a similar way, that is by repeated application of Proposition 6.5. Therefore
we pick out only one case which illustrates the general procedure. We show that the
family with section Yi^^ is optimal for q > 2. We have

+ a(2q2-q,{0,q2-q})}

= max{a(2q2 + q+ 1,(0,1,2, q+\,q2 + q+\}), 3 + 1}

^max{a(2q2 + q+ 1,(0,1,2, <?+ I}),a(q2 + q+ 1,(0,1,2,^+1})

+ a(q2, {<>}), 4}

= max{a(2g2 + g +1,(0,1,2,^ + 1}), 3 + 1,4}

= 4.

Use has also been made of Theorem 4.1: if the divisibility condition is not satisfied,
then a(k,L) ^ s—1.

The remaining cases can be solved by applying Proposition 6.6. As an example, we
take the most complicated case, that with section n2<^3.
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Suppose that, on the contrary, m{v,L,k) £ O(u7). Then, in view of Proposition 6.4,
Proposition 6.6 implies the existence of eight sets Bl5...,B8 c {1,2,...,39} such that

(i) |B , | e {0,4,8,16,24}, for l ^ i ^ 8 ;
(ii) \BhnBh\ e {1,5,9,17,25}, for 1 ̂  il < i2 ^ 8;
(iii) | Bh n Bh n B,3 \ e {0,2,6,10,18,26}, for 1 < ^ < i2 < i3 ̂  8;
(iv) | Blx n Bi2 n Bh n BI41 e {1,3,7,11,19,27}, for 1 ̂  i, < i2 < i3 < i4 ̂  8;
(v) | B,, n. . . n Bh \ e {0,2,4,8,12,20,28}, for 1 < ix < ... < j 5 ̂  8.

Since the 4-wise intersections are non-empty, the 3-wise intersections are also
non-empty. Thus we may leave out 0 from the possible sizes in (iii). Hence
\Bitn Bh n Bh | ^ 2 and we deduce that | B,, n Bh | ^ 5 and | B, \ ̂  8 in the same way.
Similarly, | Bt \ ̂  24 implies 15,-, n Bh \ ̂  24 and thus | Bu n Bh | ^ 17. This in its turn
yields \Bhn Bh n Bh \ ̂  10 and | B(1 n fl,2 n B,-3 n Bu \ ̂  7. Let us rewrite the
conditions:

(i) |B, | 6 {8,16,24};
(ii) \BtlnBi2\ 6 {5,9,17};

(iii) \BtlnBt2nBti\e {2,6,10};
(iv) | B i l n 5 1 . n S i 3 n B i j G { l , 3 ) 7 } ;
(v) | Btl n Bla n B,3 n B,4 n Bh \ e {0,2,4}.

Suppose first that for some 1 < ^ < i2 < i3 < 8, we have | Bit n BI2 n B,-31 = 2;
assume by symmetry that | B 6 n B 7 n B 8 | = 2. Set Ai = B{nB6nB1nB8 for
i = l,2,3,4,5. In view of (iv), |/4f| = l and, in view of (v), At n Aj = 0 for
1 ^ i ¥=j' ^ 5. However this is impossible as 2 < 5. Thus | Bix n Bh n Bh \ ̂  6.
Consequently, |Bt l nBh\^9 and |B, | ^ 16.

Suppose that, for some 1 ̂  it < i2 ̂  8, we have | Bit n Bi2 \ = 9. Assume that
| B-j n B81 = 9 and define D, = B, nB-jnBg for 1 < i ̂  6. Thus | D{ \ = 6, and we
deduce that | Dh n Dh | = 3, for 1 ̂  it < i2 ̂  6. However, one cannot take more
than three 6-element subsets of a 9-set with pairwise intersections exactly 3, a
contradiction.

We are left with the case that | Bh n B,21 = 17 for 1 ̂  it < i2 ^ 8. Consequently,
| B, | = 24 for 1 ̂  i ̂  8. Define C, = B, n B8 and C,- = B8\C,-, for 1 < t ̂  7. Then
| C,-1 = 17 and | C( \ = 7. For 1 < i < j ^ 7 w e have

\CtnCj\ = \Ct\ + \Cj\-\CtvCj\>\Ct\ + \Cj\-\Ba\ = 10.

Thus (iii) yields | C,- n Cj| = 10 or equivalently C{ nCj = 0 But this is impossible as
there is room only for three pairwise disjoint 7-sets in a 24-element set, establishing
the final contradiction. Thus the proof that a(47,{0,1,2,3,5,7,11,15,23,31}) < 7 is
complete.

7. Maximal intersection families

We consider which of the families SF of § 5 are maximal in the sense of §4; that is,
can we add fe-sets to $F without increasing the size of the set L? The following
proposition shows that some of the families !F are not maximal.

THEOREM 7.1. (a) ,^'(n<,_,_1^,,.2ll)u.^'(n<f_1,.2,l) is an intersection family of the
same asymptotic size as the first component.

(b) For q = 2, ̂ (Ud_ 2Jf? lt £„) u ^(Ud_ 3^3, £n) is an intersection family of the same
asymptotic size as the second component.
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Proof, (a) From § § 1 and 2,

\ n d . t . M = ed.l = \nd.l\.
From Proposition 2.1,

N ( n d _ l 5 <2n)

N(U <9 9 \
ly \lld-t- \<Sf> un)

The intersections of spaces Tld-X have size 0h for 0 ̂  i ̂  rf-2, or zero; all these
numbers are in the set L for

(b) By Proposition 2.2(b),

The members of S£ for the first family are all of the form IT,-, for - 1 < i < <J—2, or
rTjJf l5 for — 1 ̂ j^d — 3. All are contained in the set i f for the second family. We
have

3^3,^n) - 2
n ( d + 2 ) - 3 ( d 2 + d + 2 ) / 2 .

For both families, the set L is in fact the same.

8. Further properties of intersection families on quadrics

Let J / be any of the (v, L, fc)-families defined in §5 as sections of a quadric X. Let
38 = {/4, n Aj\ Ah Aj e sf, i #./}. We will denote by F' any element of 38 of size /,-, for
0 ^ i ̂  s - 1 ; for consistency, let Fs be any element of $$ and let F + 1 = X. The
following properties are satisfied.

(1) 3d contains all subsets of X of size at most 2
(2) The set 38 u si u {X} is a partial perfect matroid design PPMD(u, L, k); that is,

for any F', with 0 ^ i"^ s, and any F1 (a point of X) with F1 £ F', there exists at most
one Fi+X with F ' u f F 1 } c Fi + 1.

The term partial PMD is used since, if'at most one' is replaced by 'exactly one', then
we do have a PMD. A further reason is that, when s = 2, a partial PMD is a partial
linear space.

(3) 38 is the set of r-wise intersections of elements of s&.
Deza, Erdos, and Frankl [3] showed that any family of fe-sets of a given u-set with L

as the set of sizes of r-wise intersections has cardinality at most

leL

So this bound holds for the family stf.
Another type of partial matroid, familiar to geometers but perhaps less so to

combinatorialists, is constructed in the following way. Let J^2e+i be a hyperbolic
quadric and let sf,s#' be its two systems of generators, where a generator is a
subspace of largest dimension lying on J^2e+i- The dimension of a generator,
the projective index in the language of §1, is e. In the terminology of §5,
stfvjs#' = ^(T[e,J^2e+i)- Consider one system, say s&. Then

(a) $4 is a (v,L, fc)-family;
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(b) any two members of stf intersect in a subspace of dimension d, where
d = e (mod 2); that is,

L = {0,61,0i,...,0e-2} when e is odd,

and

L = {0o,02,04,...,0e_2} when e is even;

(c) property (2) holds when $} is defined as above.
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