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Suppose that v > k>0and L = {I,,...,[} with0 <[, <.. <l <k. A family & of
k-element subsets of a v-element set is called a (v, L, k)-system if for all F, F' in & one
has |[F A F'| e L. It is known that, for v > v,(k), then | # | <[], <i<slv—1)/(k—1)
and that equality corresponds to structures of great regularity, known as perfect
matroid designs.

Here we consider the family of sections of each type of a given non-singular quadric
or Hermitian variety in a projective space PG(n,q) as a (v,L,k)-system. The
corresponding values of k and L are calculated. If such a family has size of order v*,
then by the above bound we have that s’ < s. All families for which s—s' < § are
listed. For s—s' < 3, it is shown that these families have the largest possible order of
magnitude apart from four families, all with g = 2, which are not optimal.

The case in which the sections by 3-dimensional subspaces are elliptic quadrics
provides families with cv* members, k = g2 +1 and L = {0, 1,2,q+ 1}. As q increases,
one gets fairly close to perfect matroid designs, since | # |/[[[(v—1)/(k—1)] = 1 as
q — oo.

1. Projective spaces: notation
We use the following notation throughout:

K = GF(g);

PG(n, q) is the projective space of n dimensions over K;

P(X) is the point of PG(n, q) with coordinate vector X = (xy, ..., X,);

V(F) = {P(X)| F(xo,...,x,) = 0} where F is a form in K[X,,...,X,];

I1, is a subspace of dimension r, with —1 <r < n;

I1,7" is the cone with vertex II, and base ¥~ in a subspace II, skew to II,; it
comprises the points in all subspaces PII, for P in ¥".

To simplify some numerical formulas, we define the following symbols:

[r.sls = [1(¢+1) forr<s,
[r,s]_=ﬁ(q'—1) forr <s,

i=s
[rs). = [1 [(Way—(=D forr<s;

for r > s, each of these symbols is 1. We also write
0, = |PG(n,q)| = (¢"**—1)/(g—1), wheren >0,
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and let N(I1,,I1,) be the number of I1, in PG(n, g),

N1, TL) = [n—r+1L,n+1]_/[1,r+1]-

a(r+1)—r(r+1)

~q for large g.

For any variety ¥/, the projective index g is the largest dimension of the subspaces
lying on 7.

In the quadrics and Hermitian varieties, defined in §§ 2 and 3, each variety is given
in canonical form and is unique up to projective equivalence.

For other background on projective spaces see [9].

2. Quadrics in PG(n,q)
First we list the canonical forms for quadrics and then give some of their basic
properties, concentrating on numerical ones.
(i) Non-singular quadrics:
neven, Z,=V(X,>+X,X,+...+X,-1X,), parabolic,

n odd H,=V(X X, + X, X5+...+X,_,X,), hyperbolic,
’ @pn = V(f(Xo,X1)+X2X3+...+X,._1Xn)’ e”lptlc,

where f is irreducible over K.

(i) Singular quadrics:

t even

OstSn_l} nn—l—lgt=V(X02+X1X2+"‘+Xt—lXt)’

t Odd Hn—t—l'#l = V(X()Xl +X2X3+...+X‘_1X'),
1<t<n—1{ T, ,_,&=V(f(Xo,X)+X,Xs+..+ X,_,X).

For any non-singular quadric 2,, the quadric I[1_,2, = 2,.

The section of 2, by I, is either I, itself or a quadric I1,..,_,2,. When I, < 2,,
then T, 2, = I1,#_,, a hyperbolic section. To each quadric I1,_,_, 2, we attach
the character w = 0, 1, or 2 according as 2, = &,, 2, or 5#,. From [9, p. 110], we have

|2, = 0, +(w—1)g"~1/2 ~ gn—1
and
Inn~r—1'91| = 0,,_1 +(W—1)q"-(t+”/2.

In particular,
| Zal = 11,11 P | = 6,

The projective index g of quadrics is as shown in Table 1.
As defined in § 1, a quadric 1,2, is a cone with vertex IT, and base 2,. So the points
of the quadric consist of the joins of all points of I, to all points of 2,. If, in PG(n, g),

I1,2, = V(F(X, X, ..., X))
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with F irreducible, then 2, lies in the t-space V(X,,,X,+s,...,X,) and II, is the
space V(X,, X,,...,X,); that is, r =n—t—1. For example, in PG(3,q), the cone

TABLE 1
QVI g’l ‘@II ‘#’l
g Hn-3) 3n-2) n-1)
nn—l—lﬂl nn-l‘lgl Hn—l—l‘@l nn-l‘l‘#r
g i2n—-t-3) i2n—t-2) i2n-t-1)

2, = V(X,* + X, X;) consists of the join of the vertex IT, = P(0,0,0, 1) to the conic
2, = V(X2 + X, X,;) n V(X;) (Fig. 1). Put parametrically, in PG(3, g),

P, = {P(st, —s%,1%,0)| 5,t € GF(q)},
HO‘WZ = {P(St’ _s29t2a A)l S, ta'l € GF(q)}
I,

V(X3)

2,

FiG. 1

For low dimensions, we list all quadrics % in Table 2.

TABLE 2
Space W | % | g Description
PG(0, 9) P 0 -1 %]
PG(1,9) H, 2 0 point pair
8 0 -1 g
M,%, 1 0 point
PG(2,9) P, q+1 0 conic; no three points collinear
M,s7, 29+1 1 line pair
Iyé, 1 0 point
11,2, g+1 i line
PG(3,q) Hy (g+1)? 1 hyperboloid; each point lies on two
of its 2(q+ 1) lines
& q*+1 ellipsoid; no three points collinear

Me?  q*+q+1 cone; g+ 1 lines through the vertex

(SR SR ]

M, 2¢*+q+1 plane pair
I1,8, g+1 line
1,2, +q+1 plane

In PG(4,9), W = P, 11,53, 11564, 11,25, 11,06, 11,8, 11,2,
In PG(5,9), W = 35,685,112, 11,563, 11,65, 11,2, 11,56, 11,6, 11,2,
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ProposITION 2.1. Let N(I1,_,_,2,,2,) be the number of subspaces T1, such that
;N 2, is projectively equivalent to 11,_,_,9,, where 2, has character w and 2, has
character u. Then, with T = n+t—2d,

N(,_,-,2,9,) = gtTir+1 +uw2-u2-wil-u2 -u(w=1)})
x[HT+u+(1+3u—2ut)w—u—uw?},4n+1-w)],
X [H{T+2—u—(1-5u+2u®)w—u—uw?},4(n—1+w)]_

+{[u@—u), 3t +1-w)) [1L,3e—-1+w)]-[1,d—c]}

~ qn(d+ 1)—}(3d1+d(3—.21)+t(t— 1)}

This is known as the big formula for quadrics, [10]. It is an accumulation of several
formulas proved geometrically by Segre [11] and algebraically by Dai and Feng
[1,5].

PRrROPOSITION 2.2. For a fixed q, the only cases for which two quadrics or their sections
have the same number of points are as follows:

(@) |, #_,| =118, | =111, Z| =0,
(b) =2, |, ,2#,| =10, 36|=32"""-1

Proof. We compare two quadrics ¥ =1I1,_,_,2,and ¥’ =I1,._,._ 2, of charac-
ters w and w’ respectively. From above, | % | = §,_, +(w—1)g" ¢+ 12,

Whenw = 2, wehave —1 <t <nandtisodd. Whenw = 1, we have 0 <t < nand
t is even. When w = 0, we have 1 <t < n and ¢ is odd. Now six separate cases are
considered.

(i) w=2, w’ = 2. Here we have

| %' | =|W#'| = 9,._1+q""‘“”2 - 9n1_1+qn'—(:'+1)/2
= qn—l+".+qn’ +qn-(t+1)/2 - qn’—(l’+l)/2 when n > n,

which gives a contradiction.
(ii) w = 2, w’ = 1. Here,

|W = | W' = 0, ,+q" V2 =9, _,
= n>n and~qn-(t+l)/2 = qn+qn+1+“.+q"'-1
= n=n+landt=-1
= W =M, and ¥’ =TI, ,2,;

this is part of Case (a).
(ii)) w =2, w = 0. Here,

|W | =|W'| = en_l+qn—(x+l)/2 — onl_l_qn'—(x'n)/z
= n’>nand q"'(‘+l)/2+q”"("+l)/2 = qn+qn+l +."+qn'—l
= n=n+2,t=—1l,andt' =1or

nl - n+1 and qn—(l+l)/2 +qn-(l'—l)/2 = qn.
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In the former case, " =I1,5¢_, and %" = I1,6,; this is included in (a). In the latter
case,q =2and ¢" " ("1 = g"m @12 = 4gn whence $(t+1) = (t'—1) = 1;s0 9 = 2,
=1,¢ =3 Thus ¥ =11,_,5, and ¥’ =1II,_;&; with q = 2. This is Case (b).

(iv) w=1, w = 1. Here,

W =% = 0,-,=0,_, = n=n,

which is again included in (a).
(v) w=1,w' = 0. Here,

W= W] = 6,y =Gy —g" VP2
= n'>nand g W2 = gnygntty gt
= n=n+landt =1
=W =I,_,.,Zand ' =11,_,48,;

this is the remaining part of (a).
(vi) w=0, w = 0. Here,

I,W'l — l,W'll = on_l_qn-‘(‘+l)/2 = enl_l_qn'-(l"f'l)/l
= q"_l +...+q"'+q"'_("+”/2 = qn—(‘+l)/2 when n > n',

which gives a contradiction.

3. Hermitian varieties in PG(n, q), with q square

In a similar fashion to the previous section, we list for Hermitian varieties the
canonical forms and basic numerical properties.
(i) Non-singular Hermitian varieties:

U, =V(XXo+X, X, +...+X,X,) where X = XV4.
(i) Singular Hermitian varieties:
Hn_,_l%, = V(X0X0+X1X_1 ++X,X_,) Where 0 < t S n— 1

As for quadrics, IT_ %, = %,.
The section of %, by I, is either I1, itself or a Hermitian variety I1,_,_,%,. When
MNyc%, then IyNn%, =MN,%_,. From [9, p.102],

|Uy| = 0,y +(q"—(—1)'q"?)/(Jq+1) ~ q""*

T, 1% | = 0,1 +(@"~ (= 1'q""")/(Jq+ ).
The projective index g of Hermitian varieties is shown in Table 3.

and

TABLE 3

o”n nn-l—lo”l

n odd even t odd even
g in-1) in-2) g H2n—t-1) H2n—t-2)

For low dimensions, the Hermitian varieties ¥~ are listed in Table 4.
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TABLE 4

Space v | %) g Description

PG(0,q) U, 0 -1 z

PG(1,q) €, Ja+1 0 subline PG(1,./q)
Mo%, 1 0 point

PG(2,9) U, qu+ 1 0 unital; each section by a line is %, or M %,
Mo, aJg+q+1 1 Ja+1 concurrent lines

. m%, q+1 1 line
PG(3,9) U, (gJa+1)g+1) 1 Hermitian surface containing (g\/g + 1)(y/g+1)
lines; each plane section is %, or I %,

%, 02\/¢I+(I+ 1 1 q\/q+ 1 lines through the vertex
%, *Ja+q* +q+1 2 Jg+1 collinear planes
L%, ?+q+1 2 plane

In PG4,q), W = U3, LU, 1L, %,, T1,%,.
ln PG(S’ Q)y W = %5&“0%411—[1%3’ HZ%Z’HS%I: HA%O'

ProposITION 3.1. Let N(I1,_,_ %,,%,) be the number of subspaces I1; such that
T1,n %, is projectively equivalent to T1,_,_ %,. Then, with T = n+t—2d,

Ny %, %,) = g7 e+ 2,n+11,/{(1, T1L1,d— ] -}

n(d+ 1) = 4{3d2 + 2d(1 —1) +¢2}

~q
Proof. See Wan and Yang [12].

ProrosITION 3.2. For a fixed q, the only cases in which two Hermitian varieties or
their sections have the same number of points are the following:

|, % -y | = |1, %| = 0,
Proof. We have
(RSP A I | | S
= 0,1 +(@" = (=1'q"""?)/(Jg+1) = O, -, +(@" (= 1)'q" ") /(Ja+1)

=> (Ja+D)@ '+ )+ (1) =g (=) g
when n>n’'

= n=n+1and \/q.q"'1+q" = (_l)tqn—rn_(_l)r’qn’—x'/z
=>t=0and t' =1
= Mo % =T, Uoand I, U =10, U_,.

4. Large intersection families of sets and perfect matroid designs

Suppose that v and k are integers such that v > k > 0. Fix asubset L = {I,1,,...,1},
with |, <1, <.. <, of {0,1,....k—1} and a set X with | X|=v. A family of sets
& = {A;} is a (v,L,k)-family and is denoted (v,L,k) if A;< X, |A;| =k, and
|A;n Aj| € L for i# j. The maximum cardinality of a (v, L, k)-family is denoted
m(v, L, k). Deza, Erdds, and Frankl [3] have proved the following.
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THEOREM 4.1. For v = vy(L, k),

m; L, k) < [ (o—1)/(k=1). *)

1<iss

Further, either
=)A= 1) ||l = L= y) [ (k= 1)

m(v,L,k) < (L, k)v* !

for a suitable constant c(L, k).

or

The aim is to seek large (v, L, k)-families. Examples of such families are perfect
matroid designs, PMD’s for short. A matroid, or more exactly, the hyperplane family of
a matroid is a family {H;} of subsets of X such that

() H, ¢ H, if H, # H,,

(i) for any H,, H, with H, # H, and x in X \(H, v H,), there exists a unique subset

H, with (H; n H;) u {x} < Hj.
Subsets of X which are intersections of the sets H; (hyperplanes) are flats of the
matroid. Each subset Y of X has a well-defined rank and the rank r of X is the rank of
the matroid. For any flat F of rank i and an element x in X \ F, there is a unique flat of
rank i+ 1 containing F U {x}, providing i < r.

A PMD(v, L, k) is a matroid of rank r = s+ 1 such that all flats of rank i, with
0 <i < r, have the same cardinality /;, ;. Here we also use the notation that k = [, |
and v = [, ,. Without loss of generality, we may consider only simple PMD’s, namely
those with [, =0, [, = L.

Every known example of a PMD(v, L, k) belongs to one of the following four
classes.

(1) X = PG(n,q) and {H}} is the set of all (s— 1)-dimensional subspaces for a fixed s
such that l <s<4n;s0l, =0,;=0,_,for2<i<s+l,and ., =v=0,

(2) X = AG(n,q), affine space over GF(g), and {H;} is the set of all (s—1)-
dimensional subspaces for a fixed s such that 1 <s <4n; then l, =0, |, = q'~2 for
2<i<s+lLand ., =v=qg"

(3) X = S(t,k,v), a Steiner system, and {H;} is the set of blocks; so [; = i—1 for
I<i<thyy=ki=kandl,,=1,,=0

(4) X = ATS(m), an affine triple system and {H;} is the set of blocks. Then X is a
PMD(3",{0,1,3},9) of rank 4.

The examples of type (3) with ¢ = k are truncated Boolean algebras. Those of type
(4) can be defined as Steiner systems S(2, 3, v) such that any triangle generates an affine
plane AG(2, 3).

For further information on PMD’s, see Deza and Singhi [4].

The hyperplane family of a PMD(v, L, k) is an &/(v, L, k) with

| (v, L, k)| = [Ticelo—D/(k—1).

Deza [2] showed that, when v > vo(L, k), any family «/(v, L, k) for which this equality
holds is necessarily a PMD(v, L, k). The upper bound (*) can be regarded as

m(v, L, k) < c¢(L, k)v*.
Frankl [6] showed that if there does not exist a PMD(k, L\ {/}, 1), then
m(v, L, k) < ¢'(L, k)v* 1.
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A family /(v, L, k) = {A;} is maximal if there exists no k-subset B of X such that
|Bn A;| € Lfor all A;. Deza and Singhi [4] showed that a PMD(v, L, k) in one of the
above four classes is maximal, and conjectured that the result holds for every PMD.

There is another general bound on m(v, L, k) due to Frankl and Wilson [7].

THEOREM 4.2. Suppose that p is a prime and u,, jt,, ..., §, are integers such that
@0<spy <p,<..<p,

(b) I=p, or pyor...or u, (mod p), forall lin L,

(c) k # p; (mod p), for i =1,2,...,r.

Then ’
m(v,L,k) < (r)

5. Sections of quadrics and Hermitian varieties as intersection families

Here we examine 2, and %, for families «/(v,L,k), with |L| =35, where
m= | (v,L,k)|is as large as possible. From §4, m cannot be of order greater than v°;
in other words, if m ~ cv*, then s > 5. So we look at families for which s—s' is small.

For quadrics and Hermitian varieties #/,, we define the families

‘g- = y(nd—l—l’ﬂfn'ﬂfn)

to consist of all TI;n ¥, projectively equivalent to IT,_,_,%,. So the families
considered are, for a sufficiently large fixed n,

FMy-y-16,,2,), FMy-y12,2,), FMy-(-1#,2,), FWyo U, Uy).
In the first three cases, 2, can be elliptic, parabolic, or hyperbolic. A family % (I1,, )
is simply a subfamily of the PMD formed by all subspaces of PG(n, q) and these are
not considered.

There follows a list of all families for which s—s' =0, 1,2,3,4,5 in Tables § and 6.
Table 5 is for g > 2 and Table 6 is for g = 2. The latter case must be considered
separately because of Proposition 2.2 (b).

The parameters v and m are given asymptotically; exact values are in §§2 and 3. We
recall the parameters of the family # = F(I1,_,-, W ,, % ,):

|F|=m,
| #al = v,
|Hd—x—1Wt| =k,

£ is the set of projectively distinct A; N A4,

L={|Al|Ae ¥},

s=|L|,

d is the dimension of the space containing an A,,

t is the dimension of the space containing the non-singular part of A;.

THEOREM 5.1. The intersection families for which D = s—s' < 5 are exactly those of
Tables 5 and 6. The corresponding k-sets are as follows.

(a) g > 2.

D=0:2,,%,,84;

Mgo#y, g%y, 3, TP,
R 0 O U298 § P29 B OU/2% U Y299 U 2%
F P o3, T, U, T T, P,
P 8, 11,83, 11306, T1 P, T, U 5, T U ¢ ;
P s, T 3 11400 11, Py, TN U 5, TN, U .

"RV R )
Il
VB W
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TABLE 6. ¢ =2
s—=s d t T4, W, L k s v m
0 2 2 2, {0,1,2} 303 2t s
0 3003 8, {0,1,2,3} 5 4 nm1 -2
1 2 1 My, {0,1,2,3} 5 .4 7t 7
1 3 3 Hy {0,1,2,3,5} 9 5 i ptem2
1 3 2 M2, {0,1,2,3,5} 7 5 ot 13
1 4 3 M,&, {0,1,2,3,5,7} 16 207t 2%
23 1 m,#, {0,1,2,3,5,7} 11 6 27t 2eem1s
2 4 2 2, {0,1,2,3,5,7,11} 15 7 0 g
2 4 4 2, {0,1,2,3,5,7,9} s 7 2»7t 2820
2 5 3 ) WA {0,1,2,3,5,7,11,15} 23§ 2»7t  26n-33
3 4 1 M,#, {0,1,2,3,5,7,11,15} 23 § 2r7' Q6
3 4 3 1§ PETN {0,1,2,3,5,7,9, 11} 19 8 207t g%
3 5 2 n,2, {0,1,2,3,5, 3t 9 Qrmit 6n-36
7,11,15,23}
3 5 5 &s {0,1,2,3,5, 27 9 20t 6n=30
7,9,11,15}
3 6 3 1,6, {0,1,2,3,5,7, 47 10 20t Qm-es
11,15,23,31}
4 s S Hs {0,1,2,3,5,7,9, 35 10 270t 26m30
11,15,19}
4 5 1 M,, {0,1,2,3,5,7,11, 47 10 2rm1 o 26nm40
15,23,31}
4 5 4 1,2, {0,1,2,3,5,7,9, 31 10 2ntt 6mm31
11,15,19}
4 6 2 Mm2,  {0,1,2,3,57,11, 63 11 2nm1 Wnes2
15,23,31,47)
4 7 3 1,8, {0,1,2,3,5,7,11, 95 12 vt 2866
15,23, 31,47,63}
5 s 3 T1,5¢, {0,1,2,3,5,7,9, 39 11 2nmt 6nm33
11,15,19,23}
S 6 1 M2, {0,1,2,3,5,7,11, 95 12 2"t WS
15,23,31,47,63}

2
s 71 2 n.2, {0,1,2,3,5,7,11,15, 127 13 2=t 8-

3
5 8 3 Mn,é, {0,1,2,3,5,7,11, 191 14 nmr o8

Py, 8y
Mooy, 3, NP5, 1185,
1,0, 11,2, 2, 11,85
L0604, T ot5, 11,2, 85, 11,85,
P Ko, 113560, 1Py, 1,2, 11565,
T3, 11,56, 11,25, 11 ,85.

]

SoOoOUoOoR
I
[V AR SN

Proof. The necessary facts are contained in Tables 7 and 9.
The first three rows of Table 7 give the number of projectively distinct hyperbolic,
elliptic, and parabolic sections of each type of non-singular quadric; these numbers
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come from [10]. To calculate s, we need to consider Proposition 2.2, which explains
when the cardinalities of projectively distinct sections coincide. For g > 2, we throw
away all sections I1;£, and count one parabolic section for each dimension two larger
than the projective index, as well as the empty section 2. For g = 2, it is necessary
also to discard sections I1;6; where a section I1; , | #, is present. Hence row (7) of the
table gives s for the quadric 2,.

To find s for an arbitrary quadric I1,_,_,2, = I1,2,, we consider the sections of
I1, . ,9, that are not sections of I1,2,. If, for a fixed s, the quadric 1,2, has a section
I1,2, with r a maximum and the character of 2, determined, then IT, , , 2, has a section
I, , 12, of the same character with r+ 1 the maximum value possible.

For the quadric T1,2,, denote s by s, ,. Then an easy count gives Table 8.

TABLE 8
Se+ 1.0 Sent
2, q>2 q=2
H, 2,t=1 2,t=1
t,t>1 3t=3
t—1,t>3
&, t t—1
2, t 2t =
t—1,t>2

Row (7) of Table 7 gives the numbers s, ,. Hence s, , may be calculated as in row
(8). Finally, s’ = e+t+2, and D = s—ys' is given in row (10).

Table 9 gives a similar analysis for I1,%,. Here, if we write p, , for the value of s for a
Hermitian variety I1,%,, then p, ., ,—p, =t+1.

TABLE 9. Sections of Hermitian varieties

%ll
n odd n even
(1) Number of distinct sections n+)(n+5-1 n(n+6)
(2) Number of distinct cardinalities n+1(n+3) in(n+4)
of sections
1%,
t odd t even

(3) Number of distinct cardinalities  e(t+ 1)+t +1)(t+7) e(t+ 1)+t +8)+1
of sections, s

(4) Dimension of family, s’ e+t+2 e+t+2

(5) D=s—5 et—1+3t+1)(t+3) et—1+5t(t+4)

6. More upper bounds on the size of intersection families

The aim of this section is to present some general methods for bounding m(v, L, k).
These methods can be applied to show that all families in Table 5 of defect s—s' < 3
with g > 2 have the greatest possible order of magnitude. For g = 2, there are four
exceptions, namely the families with sections IT,5#, and I1,#;. We recall that f(v) is
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of order v* if there exist positive constants ¢ and d such that cv* < f(v) < dv* for all
v > .
Suppose that & = {F, ..., F,.} isa(v, L, k)-system. For F in &, the trace of # on F is

TgF)={FNF|Fe% F #F}.

Fundamental for our investigations is the following theorem, which was conjectured
by Frankl and proved by Fiiredi [8].

THEOREM 6.1. There exists a positive constant ¢, such that any (v, L, k)-system & has
a subsystem F* c & satisfying the following conditions:
N 1 F*1Z2alZ|;
(ii) the families T &.(F) are all isomorphic for F in F*;
(1) J #u(F) is closed under intersection, that is

T,,T, € TgdF) = TynT, € T g{F);
() [T|e Lforall T in I g.F).
From (i), we have ¢, < | Z*|/|# | < 1;50 | #*| and | # | have the same order as
functions of v. Therefore, if we are only interested in the order of magnitude of

m(v, L, k), we may replace & by #*. Thus, in this section, we now assume that
F = Z* and write I (F) instead of 7 z.(F).

DEFINITION 6.2. A set G < F is free with respect to J (F) if there is no T in J (F)
with G T.

Note that F itself is always free.

PROPOSITION 6.3. If F in & has a free subset G of size |, then

Ifls(';)

Proof. Since, for F and F' in &, the sets 7 (F) and Z (F') are isomorphic, all F' in #
have a free subset G(F'). By the definition of free subset and of J(F), we have
G(F) # G(F") for F',F" in &. Thus

71|06

Our method for proving upper bounds on | # | will consist of establishing that, for
every I < 212K gatisfying (iii) and (iv) of Theorem 6.1, there exists a relatively
small free subset.

Let us introduce the notation

a(k, L)y = max{min{|G|: G < {1,2,...,k},
G is free with respect to I}: 7 < 202K T gatisfies (iii), (iv)}.

Theorem 6.1 and Proposition 6.3 imply the following.
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PROPOSITION 6.4.

m(v, L, k) < Ck_l(a(klj L)) = O(v*™ D),

The good thing about a(k, L) is that it is independent of v; it can also be bounded by
looking at subsets of {1,2,...,k} only. The bad thing about it is that it cannot be
calculated easily; for example, a(111, {0, 1, 11}) = 3 if and only if a projective plane of
order 10 exists.

However, we do have the following inequality.

PROPOSITION 6.5. For each i with 1 <i<s,

a(ka L) < max{a(k L\{I })’a(ln {11912’ | l})
+ak—1;,{0,1;4, — — 1D}

Proof. Let < 2% be a family for which the value of a(k,L) as min|G| is
realized. If | T'| # |; for all T in &, then by definition there exists a free subset of size
a(k, L\ {1;}) with respect to 7 ; thus a(k, L) < a(k, L\ {I}}).

Hence we may assume that | T | = [; for some T; in 9. Define

To={TeT|TcTy and 7, ={T\T)| T,cTeT}
Clearly 9, and 7, satisfy (iii) and (iv) with Lo ={l,...,L;—,} and
{0 ll+l l}

respectively. Thus we may choose free subsets G(,,Gl such that

|Gol| = all;, {11,---,1;'—1}), |G| = alk—1, {0, li+l_lis---)ls—li})a

where G, = T and G, < ({1,...,k}\ Ty).

It is sufficient to show that Gy U Gl is a free subset with respect to .

Suppose that (Gou G,)= Te J. Since Gy & Ty, we have Gy = (TonT). As
TonT e I and G, is free with respect to 7o, we have Tyn T = Ty; thatis, Ty = T.
Also G, =« T\T, and G, is free with respect to 7,. Thus T\ T, = {1,2,....,k}\ T,.
Consequently, T = {1,2,...,k}; that is, G, U G, is free.

A more indirect way of bounding a(k, L) is provided by the following.

PROPOSITION 6.6. If a(k,L) > b, where b is a non-negative integer, then there exists a
Sfamily
g = {Bl’ Bz,... Bb} c 2(1'2'."’k_b)
such that, for every 1 <j<band 1<i, <i, <..<i;<b,

(IB;,n...n Bij|+b—j) e L.

Proof. Let < 21k be a family for which the value of a(k,L) as min |G| is
realized. Let G be a minimal free subset for 7. Then | G| = b. By symmetry, assume
that F = {1,2,...,k} and {1,2,...,b} = G. By the minimal choice of G, for 1 <i<b
there exists T; in 7 with G\{i} c T. Define B, = T, {b+1,...,k}.

Since  satisfies (iii) and (iv), for 1 <j<band 1 <i; <i, < .. <i; < b, we have
that |, n..n T, | =|B;,n..nB; |+b—je L.
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Now let us turn to the specific values of L given in Tables 5 and 6. First note that
m(v,{0,1,2,3,5,7,9,11},19) > m(v,{1,3,5,7,9, 11}, 19).
Now,
m(v,{1,3,5,7,9,11},19) = m(v—1,{0,2,4,6,8, 10}, 18),
since we may just add a point to all sets in a family realizing the right-hand side. Also
m(v—1,{0,2,4,6,8,10}, 18) > m(3(v—1),{0,1,2,3,4,5},9),
since we may double any point in a family realizing this right-hand side. For large v,
m(3(v—1),{0,1,2,3,4,5},9) = cv®,
where c is a positive constant; see [6]. Hence,
m(v,{0,1,2,3,5,7,9,11},19) > cv®,

where c is a positive constant.

Thus, for g = 2, the section I1,5#5 does not give a family of best-possible order of
magnitude, optimal for short. The same holds for IT,.»#; with i >0, since the
corresponding values of k and L are the same as for I1,_,&;. However, the latter
family has greater order of magnitude; compare Proposition 2.2.

In view of Theorem 4.1, all families with s—s’ = 0 are optimal. Also those for which
s—s =1 and the divisibility condition in Theorem 4.1 is not satisfied are optimal.
This covers almost all cases with s—s' = 1 and g # 2. The only exception is the case
where ¢ =4, k =13, L = {0,1,3,5}: the section is IT,%,. Applying Proposition 6.5
with I, = 5 gives

atk, L) < max{a(13, {0, 1,3}, a(5, {0, 1, 3}) +a(8, {O})}
= max{3,a(5,{0,1,3})+1}.

Thus it is sufficient to have a(5, {0, 1,3}) = 2, which can be checked directly.

All the cases for ¢ =2 with s—s' =1 and for ¢ > 2 with s—s' =2 or 3 can be
handled in a similar way, that is by repeated application of Proposition 6.5. Therefore
we pick out only one case which illustrates the general procedure. We show that the
family with section IT,5#, is optimal for g > 2. We have

a2q* +9+1,{0,1,2,9+1,29+1,4* +q+1})
< max{a(2¢® +q+1,{0,1,2,g+1,4* +q+1}),a(2q+1,{0,1,2,qg+ 1})
+a(24*—4,{0,4” — q})}
max{a(2¢*+q+1,{0,1,2,g+1,4*+q+1}),3+1}
max{a(2q’+q+1,{0,1,2,q+1}),a(g* +q+1,{0,1,2,g+1})
+a(q*,{0}),4}
max{a(2¢>*+q+1,{0,1,2,9+1}),3+1,4}
'y

Use has also been made of Theorem 4.1: if the divisibility condition is not satisfied,
then a(k,L) < s—1.

The remaining cases can be solved by applying Proposition 6.6. As an example, we
take the most complicated case, that with section II,&;.

N
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Suppose that, on the contrary, m(v, L, k) < O(v"). Then, in view of Proposition 6.4,
Proposition 6.6 implies the existence of eight sets B,..., By < {1,2,...,39} such that

(i) | B;| € {0,4,8,16,24},for 1 <i< §;
(ii) | B;, ~ By, | € {1,5,9,17,25}, for 1 <i; <i, < 8;
(iii) | B;, " B;,n By, | € {0,2,6,10,18,26}, for 1 < i, <i, <iy < §;
(iv) | B, nB,nB;,nB;,|€{1,3,7,11,19,27}, for 1 i, <i, <i3 <iy <8;
(V) |B;,A...0 By, | € {0,2,4,8,12,20,28}, for 1 < i; < ... <i5 < 8.

Since the 4-wise intersections are non-empty, the 3-wise intersections are also
non-empty. Thus we may leave out 0 from the possible sizes in (iii). Hence
| B;, n B;, " B;,| = 2 and we deduce that | B; N B;,| = 5and | B;| > 8 in the same way.
Similarly, | B;| < 24 implies | B;, n B;,| < 24 and thus | B; n B;,| < 17. This in its turn
yields |B;, nB;,nB;,| <10 and |B; "nB;,nB;,nB; | <7. Let us rewrite the
conditions:

(i) | B;| € {8,16,24};
(i) | B;, n B,,| € {5,9,17};
(iii) | B;, N B;,n B, | € {2,6,10};
(iv) | B;, nB;,nB;,nB;,| €{1,3,7};
(v) | B, nB;,nB;,nB,,n B, | €{0,2,4}.

Suppose first that for some 1 <i, <i, <iy <8, we have |B; "B, B,,| =2;
assume by symmetry that |B¢n B, Bg|=2. Set A;= B;n Bg¢n B;n By for
i=1,23,45 1In view of (iv), |4;|=1 and, in view of (v), 4;nA; = for
1 <i#j<5. However this is impossible as 2 <5. Thus |B; nB;,nB;,|>6.
Consequently, | B;, " B;,| = 9 and | B;| = 16.

Suppose that, for some 1 <i; <i, <8, we have | B; N B;,| =9. Assume that
| B, " Bg| =9 and define D; = B;n B, Bg for 1 <i<6. Thus |D;| =6, and we
deduce that |D;, "D, | =3, for 1 <i; <i, <6. However, one cannot take more
than three 6-element subsets of a 9-set with pairwise intersections exactly 3, a
contradiction.

We are left with the case that | B;, n B;,| = 17 for 1 < i, < i, < 8. Consequently,
| B;| =24 for 1 €i<8. Define C; =B;nBg and C; = Bg\C,, for 1 <i< 7. Then
|C;l=17and |C;|=7. For 1 <i<j <7 we have

|Cin Cjl =1Ci|+ICjl—1Ciu G| 2 | Ci| +] C;] —| Bg| = 10.
Thus (jii) yields | C; n C;| = 10 or equivalently C;n C; = & But this is impossible as
there is room only for three pairwise disjoint 7-sets in a 24-element set, establishing

the final contradiction. Thus the proof that a(47,{0,1,2,3,5,7,11,15,23,31}) < 7 is
complete.

7. Maximal intersection families

We consider which of the families & of § 5 are maximal in the sense of § 4; that is,
can we add k-sets to & without increasing the size of the set L? The following
proposition shows that some of the families # are not maximal.

THEOREM 7.1. (@) F(N;_,_ 2, 2,) v F(I1,_,,2,) is an intersection family of the
same asymptotic size as the first component.

(b) Forq =2, 7(I1;-,5,,2,) v F(1,_385, 2,) is an intersection family of the same
asymptotic size as the second component.
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Proof. (a) From §§1 and 2,
Ty 1 Pl =04y = Ty |-
From Proposition 2.1,
N(“d-lv'@n) = N(Hd—l'}f~1:'@n) ~ qnd—{»d(3d-1)’
N(Hd—r—p@n ,@") ~ qn(d+1)—4}(3d2+d(3—21)+1(1—1)).

The intersections of spaces IT,_, have size 8, for 0 <i < d—2, or zero; all these
numbers are in the set L for #(I1,_,-,2,,2,).
(b) By Proposition 2.2(b),

“-[d—zjfll = |H4—3€3|'

The members of & for the first family are all of the form IT;, for —1 <i<d-2, or
[T, for —1 < j < d—3. All are contained in the set % for the second family. We
have

N(Hd_le,gn) ~ 2n(d+ 1)—4d(3d+ 1),
N(TL,_ 363, 2,) ~ 204+ D= 3@ +as 22
- n .

For both families, the set L is in fact the same.

8. Further properties of intersection families on quadrics

Let 7 be any of the (v, L, k)-families defined in §5 as sections of a quadric X. Let
B={A;nA;| A, A; € o, i #j}. We will denote by F' any element of & of size I, for
0 < i < s—1; for consistency, let F* be any element of 7 and let F**! = X. The
following properties are satisfied.

(1) & contains all subsets of X of size at most 2

(2) The set B U of U {X} is a partial perfect matroid design PPMD(u, L, k); that is,
for any F!, with 0 < i < s, and any F* (a point of X) with F! ¢ F', there exists at most
one F'*' with F'U {F'} < Fi*1.

The term partial PMD is used since, if ‘at most one’ is replaced by ‘exactly one’, then
we do have a PMD. A further reason is that, when s = 2, a partial PMD is a partial
linear ‘space.

(3) 2 is the set of r-wise intersections of elements of .

Deza, Erdos, and Frankl [3] showed that any family of k-sets of a given v-set with L
as the set of sizes of r-wise intersections has cardinality at most

(r—l)ll_!(v—l)/(k—l)-

So this bound holds for the family <.

Another type of partial matroid, familiar to geometers but perhaps less so to
combinatorialists, is constructed in the following way. Let s#,,.,, be a hyperbolic
quadric and let o7, /' be its two systems of generators, where a generator is a
subspace of largest dimension lying on #,,,,. The dimension of a generator,
the projective index in the language of §1, is e. In the terminology of §5,
Ao =F,,H#;.,,) Consider one system, say /. Then

(a) o is a (v, L, k)-family;



VARIETIES OVER FINITE FIELDS 425

(b) any two members of &/ intersect in a subspace of dimension d, where
d = e (mod 2); that is,

L=1{0,0,0,,..,0,_,} when eis odd,
and
L = {6,,0,,0,,...,0,_,} when e is even;

(c) property (2) holds when 4 is defined as above.
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