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Intersection Theorems for Vector Spaces 

P. FRANKL AND R. L. GRAHAM 

We prove that if b is an arbitrary positive integer, ;Y; = {F" ... , Fm} is a collection of k­
dimensional subs paces of an n-dimensional vector space over a finite field K, and there exist 
numbers IL .. . . . , ILs such that k ;;li ILl (mod b), I ,,;;; t ,,;;; S, but for all I ,,;;; i < j ,,;;; m, dimlF, n Fjl == IL, 

(mod b ) for some t, then I;Y;I,,;;; [ ~]K holds. 

1. INTRODUCTION 

Let K be a finite field, IKI = q, and let V be an n-dimensional vector space over K. 
The number of t-dimensional subs paces of V is given by 

[
n] qn- i_ 1 

= IT / - i . 
t q O""i<, q -1 

Since we always refer to the same K, we will write this simply as [7]. 
If A, Bare subspaces of V, A < B, then B/ A denotes the factor space of B by A. If 

An B = (O)-the zero-space, then AB / A is the canonical projection of B into V / A. 
Suppose 1 ~ k < nand !¥ = {Fl> .. . , Fm} is a family of distinct k-dimensional subspaces 
of V. For 0 ~ s ~ k, let !¥(s) be the collection of s-dimensional subspaces contained in 
some FE!¥. 

Next we introduce the containment matrices M so(i,j). For O~ i~j~ k, let M so(i,j) 
denote the 1!¥(i)1 xl!¥(j)1 matrix whose rows (columns) are indexed by the members of 
!¥(i)(!¥(j», respectively, and where the entry in row U and column V is 1 if U,= V and 
o .otherwise. When it causes no confusion we write simply M (i, j) for M BI'( i, j); also 
M(i, !¥) will denote M so(i, k) . 

THEOREM 1.1. Suppose b, 1Ll> "" ILs are integers with O~ ILl < .. . < ILs < b such that 

k oF 1L,(mod b), t = 1, . .. , s, (1.1) 

and for all 1 ~ i < j ~ m, 

dim(Fi n Fj):= 1L,(mod b) for some t. (1.2) 

Then M(s, !¥) has full (column) rank; in particular, 

(1.3) 

holds except possibly for q = 2, b = 6, s = 3 or 4. 

THEOREM 1.2. Suppose M(s,!¥) has full column rank. Then for all I such that 
o ~ s ~ 1< k we have 

(1.4) 
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The following proposition can be checked directly. 

PROPOSITION 1.3. For all 00;;; io;;;jo;;; k we have 

M(i,j)M(j,,q;) == [~- !]M(i, ,q;), 
J-I 

(1.5) 

M(j, ,q;)TM(j,,q;) == ([dim(F~ n F.)]) := N
j

. 

1 l~r~s=s;;m 

COROLLARY 1.4. The row space over the rationals of M(i, ,q;) and of Ni is contained 
in the row space of M(j, ,q;). 

Note also: 

rank M(j, ,q;) 0;;; I ,q;<j)1 0;;; [; ]. (1.6) 

REMARK 1.5. Theorems 1.1 and 1.2 are the vector space analogues of a theorem for 
subsets of a set of Frankl and Wilson [3], and Frankl and Fiiredi [4], respectively. Note, 
however, that in [3] b is required to be a prime. 

For the proof of Theorem 1.1 we use the following old number-theoretical result. Recall 
that a Mersenne prime is a prime of the form q = 2d -1. 

THEOREM 1.6 (Bang [1]). If q and b are integers, q ~ 2, b ~ 3, and (q, k) # (2, 6) then 
qb -1 has a prime divisor p which does not divide ql -1 for 10;;; 1 < b. Also if b == 2, then 
the same holds unless q is a Mersenne prime. 

2. THE PROOF OF THEOREM 1.1 

Since en is a polynomial of degree i in qX for 00;;; i 0;;; s, every polynomial of degree s 
can be uniquely written as a linear combination of the [no Take p(x)== TIl '" i"" (qX-IL'_l) 
and write 

p(x) = L ai[~J 
O~i=S;;s I 

(2.1) 

where all ai are rational. 
Define the matrix N:= LQO!;t'"" a;N. Then N is an m x m matrix with general entry 

nr•t = fI (qdim(F,nF,)-IL, -1). 
i=1 

Suppose first (q, b) # (2,6); moreover, if b::: 2 then q is not a Mersenne prime. Let p 
be a prime dividing qb -1 but none of q -1, q2 -1, ... ,qb-l_1 (such p exists in view 
of Theorem 1.6). Then nr•t is divisible by p if and only if r # t. Hence det N ~ 0 (mod p). 

In the case q, a Mersenne prime, b = 2, we must have s = 1, p(x) = qX-1L1_1. The 
off-diagonal entries of N are all divisible by 23 but nr,r is only divisible by 2. 
Hence detN~O (mod2m +l). 

In the case q = 2, b::: 6 we distinguish the sub cases s = 1, 2, 5: 
if s = 1 then nr,! is divisible by 32 iff r # t; 
if s = 5 then nr,t is divisible by 33 iff r # t; 
if s = 2 then one can argue in the same way either with 32 or 7. 
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In all cases we proved that rank N = m. Since the row space of N is contained in that 
of M(s, .0/'), we infer that the latter has rank m, too. This proves the first part of the 
theorem. Now the second part follows from 

rank M(s, .0/') ,,;;;1g;<s)l,,;;; [; J. 

3. THE PROOF OF THEOREM 1.2 

First note that the statement is obvious for 1= s, and thus for k = 1, as well. We apply 
induction on k. Suppose we know already that the statement of the Theorem holds for 
k -1. Choose an arbitrary one-dimensional subspace A from g;<l). Define 

.o/'(A) ={FI A: A~ FE .o/'}. 

Then .o/'(A) is a family of (k-l)-dimensional subspaces of VIA. 

PROPOSITION 3.1. M(s, .o/'(A)) hasfuU'column rank. 

PROOF. Suppose on the contrary that for some nonzero vector" of length I.o/'(A)I we 
have 

M(s, .o/'(A))"T =0. (3.1) 

Let us denote by M the submatrix of M(s,.o/') spanned by the columns F, so that 
A < FE .0/'. It will be enough to show that M" T = 0, i.e., the scalar product of " with each 
row of M is zero. Let us check this for an arbitrary row rB corresponding to some 
s-dimensional subspace B. 

(a) A "I:. B. Then BAI A is an s-dimensional subspace of V I A and Be F is equivalent 
to BAI A ~ F I A for FE .o/'(A), i.e., the row corresponding to BAI A of M(s, .o/'(A)) 
is the same as that of M corresponding to B. 

(b) A<B. Now BAIA=BIA is (s-1)-dimensional and ('" rB)=O follows from 

[
k-S+ IJ T O=M(s-l,s)M(s,.o/'(A)"T= k-s M(s-l,.o/'(A))", 

i.e., M(s-l, .o/'(A))"T =0. 
Now we apply the induction hypothesis to .o/'(A) and infer 

[
k-l+SJ 

I .o/'(A)(I-llJ;:~ I.o/'(A)I 1-1 . 

[
k-l+SJ 
k-l 

(3.2) 

Note that B -+ BI A gives a 1-1 correspondence between members of g;<l) containing 
A and members of .o/'(A)(l-l). 

Summing up (3.2) for all A < V, dim A = 1, gives 
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or equivalently, 

REMARK 3.2. To see that Theorem 1.2 is best possible, take as fJi all the k-dimensional 
subspaces of a (k + s) -dimensional space. Actually one should prove that for this fJi, 
M{s, fJi) has full column rank. However, for F, F' E fJi we have dim{F n F') ~ 
dim W - dim F - dim F' = k - s. Thus, choosing J.L = k - i for i = 1, ... ,s and b> s, fJi 
satisfies the hypothesis of Theorem 1.1. Hence M{s, fJi) has full column rank. 

4. ApPLICATIONS 

In [3] the subset version of Theorem 1.1 was applied to give a constructive lower bound 
for the Ramsey number R{k, k). Recall that R{k, k) is the minimum number m such that 
for every graph on m vertices, either the graph or its complement contains a complete 
subgraph on k vertices. It is known (cf. [6]): 

k2k/2 (2k - 2) 
~~R{k, k)~ k . 
e2 -1 

However the lower bound is non-constructive. Apart from graphs constructed via set 
intersections no graphs are known to show that R{k, k) is non-polynomial. 

We give another such construction now. Suppose k = b2 -1, and let the vertex set of 
the graph V{ 0) be the family of all k-dimensional subspaces of V. Let F, F' E V{ 0) form 
an edge if dim(F n F') == -1 (mod b). Then 1 V{ 0)1 = [b2~l] while Theorem 1.1 implies 
that both the maximal complete and the maximal empty subgraph of 0 have at most [b~l] 
vertices. 

5. CONCLUDING REMARKS 

All our statements remain true with exactly the same proofs if we replace vector space 
by projective space and dimension by rank. 

Actually the argument giving Theorem 1.1 works in the following more general setting: 
Suppose we have a finite modular lattice L which satisfies the following conditions: 

(a) For A, BEL, A < B, rank A = i, rank B = j and i ~ I ~j, the number of elements 
eEL with A < C < B, rank C = I, depends only on (i,l,j). 

(b) For every 0 ~ i ~ s, there exists a polynomial of degree i, Pi{X) such that for every 
A E L with rank A ~ k, the number of elements eEL, C < A, rank C = i, is given 
by Pi (rank A). 

The first intersection theorem for vector spaces was proved by Hsieh. 

THEOREM [8]. Suppose fJi is afamity ofk-dimensional subspaces of V satisfying dim{F n 
F') ~ t for all F, F' E fJi. Then 

(5.1) IfJil ~ [: =:1 holdsifn ~ 2k+ 1 (t = 1 orq ~ 3) 

and ifn ~2k+2 (t~2,q=2). 
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The corresponding statement for subsets of a set is the Erdos-Ko-Rado theorem [2]. 
Katona [91 gave a simple proof of it in the case t = 1. His proof was modified by Greene 
and K1eitman [7] to show that (5.1) is true for t = 1, n = 2k as well. Most recently Frankl 
and Wilson proved that (5.1) holds for arbitrary tiff n?3 2k 

Recently, solving a conjecture of Erdos, Frankl and Fiiredi [5] proved that if k?3 21 + 2, 
n> no(k), fJP is a family of k-element subsets of an n-set with IA n A'l ~ 1 for all A, A' E fJP, 
then IfJPl ~ G=l=D holds. This motivates 

CONJECTURE 5.2. Suppose fJP is a family of k-dimensional subspaces of V satisfying 
dim(F n F') ~ 1 for all F, F' E fJP. If k?3 21 + 2 and n> no(k) then we have 

IfJPl~[n-I-I]. 
k-I-l 

and this is best possible up to a factor of 1 + 0(1) for fixed k,1 and n tending to infinity. 
We shall return to these and similar problems in a subsequent paper. 
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