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Polytopes Determined by Hypergraph Classes

P. FRANKL AND G. O. H. KATONA

Let /; denote the number of i-element members of a given family of subsets of a finite n-element
set (= hypergraph). (fo,f\ •... ,fn) is the profile of the hypergraph. The authors in two papers
jointly written with Peter L. Erdos have determined the extreme points of the set of profiles for
several hypergraph classes. This paper presents new short proofs.

1. INTRODUCTION

Let S be an n-element set and fJi, a family of subsets of S, i.e.,~ fJic 25
. For O:s; i:s; n,

we denote by $j the collection of i-element subsets in fJi:

fJii = {F E $: IFI = i},

The vector f= (fO,flo ... ,fn) is called the profile of the family fJi. We consider f as a point
in IR n+1

, the (n + I)-dimensional Euclidean space. For x, Y E IRn +1
, x dominates y iff x j ;;;' Yi

holds for i =0, ... , n.

DEFINITION 1.1. For a finite subset Xc IR n + 1 we say that D is the dominating set of
X if (a) Dc X, (b) for all x E X there exist dlo d2 , ••• , dj ED and positive real numbers
alo"" aj so that L. a, = I and L. ajdj dominates x, (c) D is minimal with respect to these
properties. The elements of D are called dominating vertices.

It is not hard to see that D consists of exactly those vertices of the convex hull of X
which are not dominated by any other vertex.

Most extremal hypergraph problems can be formulated in the following way. Suppose
we are given a weight function w:{O, ... ,n}-'»Z+, i.e, w(i);;;'O for all i. What is the
maximum ofL.;=o w(i)/; over all families $ c 25 satisfying certain properties (e.g. F n F' ¥­
o holds for all F, F' E fJi)? That is, we have to find the maximum of a linear function
with non-negative coefficients over the set X of all possible profile vectors. Clearly, this
maximum equals the maximum over all dominating vertices. Thus, for most problems, it
is sufficient to determine the dominating set of possible profile vectors.

This was done in [5] and [6] for some classes of hypergraphs. However, the proofs
were lengthy and relied heavily on the duality theorem of linear programming. On the
other hand [6] developed a unified treatment of these problems using no result of extremal
set theory. Here we propose much shorter individual proofs using extremal set theory.
Our theorems are generalizations of old results of extremal types. The connections and
consequences can be found in [5] and [6].

2. STATEMENT OF THE RESULTS

DEFINITION 2.1. Suppose k is a positive integer. The family $ is called a k­
Sperner family if there are no k + I distinct members Fo, Flo ... , Fk forming a chain:
Foc F1 C ••• C Fk•
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THEOREM 2.2. The dominating set of the profile vectors of k-Sperner families consists
exactly of the points

(0,0, ... , (~), 0, ... , (~), ... , 0, (~), 0 ... 0),

o 1 ...

that is, D is formed by the vectors having °or (7) in the ith position and having exactly k
non-zero entries.

A family ~ is called intersecting if F (\ F ' ~ 0 holds for all F, F ' E $P.

THEOREM 2.3. The dominating set of profile vectors of intersecting families consists
exactly of the points

n+l
l :so i :so-­2 .

01... i+l ... n-i... n.

A family ~ is called intersecting Sperner if it is intersecting and l-Sperner,

THEOREM 2.4. The dominating set of profiles of intersecting Sperner families consists
exactly of the points

vj =(0, ... ,0, (;),0, ... ,°),j>~, Wij = (0, ... , 0, (~~:), 0, ... ,0, (n7 1
) , 0, .. .).

0... j... n 0 j

n
l:so i:so- t r i> n.

2'

To see that in all the above theorems the given points are actually possible profiles we
give constructions of families with these profiles. For Theorem 2.2 take all i)-element,
... , ik-element sets. For Theorem 2.3 consider the family

{Fe S: SoE F, i:so IFI:so n - i}u {Fe S: IFI> n - i}

for l:so i:so n/2 where So is a fixed element of the groundsel. If n is odd and i = (n + 1)/2,
put

{Fe S: IFI> n/2}.

Finally, the case of Theorem 2.4 is settled by the families

{Fe S: IFI =j}, n/2 <j,

{Fe S: SoE F, IFI = i}u{Fc S: so~ F, IFI =j}, l:so i:so n/2, i +j > n.

Consequently we have to prove only that any profile can be dominated by the convex
linear combination of these points. In Section 7 we prove a similar statement for two
families of sets.

3. PRELIMINARIES

THEOREM 3.1. [11] Suppose ~ is a k-Sperner family, then

j(n)L j; .:sok
0'150; iE;;n I

holds.

(1)
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THEOREM 3.2 (Erdos, Ko and Rado [4]). Suppose ::Ji is an intersecting family consisting
of only t-element subsets, 2t:s;; n. Then

(
n - 1)1::Ji1:s;;
t-1

holds.

For a family ::Ji and a positive integer 1we define

(2)

3FE::JiS.t.G::::>F}.

Suppose S = {Sl> ... , sn} and define the lexicographic ordering for subsets A, B of equal
size by A < B if and only if mins,EA-B i < mins,EB-A i. Given t, m denote by 5£(t, m) the
lexicographically first (smallest) m t-element subsets of S.

THEOREM 3.3 (Kruskal [12], Katona [10]). Suppose O:s;; t < 1,0< m < (7) and::Jiconsists
of m t-subsets of s. Then

(3)

holds.

Clements [1] and Daykin, Godfrey and Hilton [3] deduced the following.

COROLLARY 3.4. Suppose f is the profile vector of a 1-Sperner family. Then there exists
a 1-Sperner family ri with the same profile such that a1ri consists of the lexicographically
first few l-subsets of S, i.e. a1ri = 5£(1, la1ril).

Another corollary to Theorem 3.3 is its following version due to Lovasz [13], cf. [14]
for a simple proof of both this and Theorem 3.3.

COROLLARY 3.5. Suppose that O:s;; t, ::Ji consists of t-element subsets of S and x ~ n - t
is a real number such that

0<1::Ji1=( x )=X(X-1) ... (x-n+t+1)
n-t (n-t)!

then

lat+! ::Jil ~ ( x \.
n-t-1j

4. PROOF OF THEOREM 2.2

Suppose f= (/0, ... .In) is the profile of a k-Spemer family. Note that

(4)

holds for all i.
In view of Theorem 3.1 the numbers j; satisfy (1). We prove the following slightly

stronger statement instead of Theorem 2.2.

LEMMA 4.1. The set D of Theorem 2.2 is the dominating set of all vectors f satisfying
(1) and (4).
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PROOF. We have to prove that for any vectorfsatisfying (1) and (4) there are constants
aj ;;,: 0, I a, = 1 such that

fo;;;;Iajdj

where dh dz, .•. are the vectors given in Theorem 2.2. It is easy to see that it suffices to
prove this statement for vectors f satisfying equality in (1). However, for such vectors f
we can prove the existence of a, ;;,: 0, I aj = 1 such that

(5)

We apply induction on the number of components i for which 0 <f, < {7} holds. If this
number is zero, then j'e D, the statement is trivial. In general let 1= {i: 0 </;/{7} < I} and
suppose that III> 0 (it implies III;;,: 2) and the statement is proved for smaller values.
Define now

Suppose further that

I~I(~) = a+ and 1-Ijll(~) = a- (io~ il)·

Let g = (go, ... , gn) be a new vector defined by

and g. = r. +a(n)'1 Jt, .•
II

If f satisfies (1) and (4) with equality, then the same holds for g. By the induction
hypothesis, g satisfies (5):

Clearly, either g~ =0 or gjl equals C~). Suppose first that g~ =O. (5) implies that all d j

with positive f3j have a zero in the ioth component.
Suppose that the vectors d j are indexed in such a way that the vectors having C~) in

the ilst component precede the ones having 0 here. Since the ilst component of g = I f3j dj

is ;;,: aC~) there is an index j such that the ilst component of I~:~ f3 jdi + 'Yj~ is equal to
a(~), no vector with a zero in the ilst components is used and 00;;;; 'Yj 0;;;; f3j' Let d: denote
the modification of d j : the ioth and ilst components are changed for (Z) and 0, respectively.
The expansion

j-I

I = I f3 jd: + 'Yjdj + (f3j - 'YJdj + I f3 jdj
j=1 j=j+1

satisfies (5).
The case gil = (~) can be handled a,nlltogously, since this condition implies that all dj

with positive f3i have C~) in the ilth component. This proves the theorem.

5. PROOF OF THEOREM 2.3

Let f be the profile of an intersecting family [!JP,

00;;;; t« n,

is obvious.

(6)
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Note that Theorem 3.2 implies
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(n-l)};~ i-i r o« i~ «n. (7)

The fact that no set and its complement can be simultaneously in an intersecting family
gives

(O~i~n). (8)

Any superset of a member of F of :!Ii can be added to :!Ii without violating the intersecting
property. Suppose that :!Ii is maximal, then Fe G c Sand FE :!Ii imply G E:!Ii. In other
words a':!Ii c :!Ii holds for all 1. Let}; = ("~;) (x > n - i, a real). By (7) and the monotonity
of (n~;) we obtain x ~ n -1 for i ~ n/2. Corollary 3.5 implies

};+1 lai+1 s,I C-~-1) n - i
-:>----:>- :>---

}; ~ l:!Iijl ~ ( x.) ~ i
n-I

and hence

0~j<n/2 (9)

follows. We prove the following slightly stronger statement instead of Theorem 2.3.

LEMMA 5.1. The set D of Theorem 2.3 is the dominating set of the vectors1 satisfying
conditions (6)-(9).

PROOF. We have to prove that for any vector 1 satisfying (6)-(9) there are constants
aj;;' 0, Ll",j"'(n+I)/2 aj = 1 such that I~ LI"'j",(n+I)/2 ajdj where dl> d2, ... are the vectors
given in Theorem 2.3. Increasing}; (i> n/2) until equality is obtained in (8) shows that

.)t is sufficient to prove our statement for vectors 1 satisfying (8) with equality. We will
show in this case the existence of aj ;;. 0, L aj =1 such that

1= L ajdj.
l",j"'(n+I)/2

(10)

2~ i~ n/2,

Adding up (8) (with equality) for i we infer 2 L;~o}; = 2n i.e. L;=o}; = 2n
-

l
• Let us set

al =fl

}; };-I

aj=(~_I) (~-1)'
1-1 1-2

1 !en-l)/2 . dd
a(n+I)/2= (n-l)' n rs ouo.

(n-3)/2

(9) and (7) imply aj;;' 0 (1 ~ i ~ (n +1)/2). If n is odd L",j",(n+I)/2 a i = 1 is trivial. If n
is even, this sum is equal to In/2/ (n/221)' This is really 1 because of the equality in (8)
with i = n/2. To prove (10) we have to check it componentwise. The jth component on
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the left hand side for j,,;;; nl2 is

(;~:) "~'J a, ~ C~:) (~~1) J,
)-1

To prove the same for j> n12, let us note that Ji +f,,-j =(j') (O,,;;;j";;; n) holds by the
equality in (8) and similarly, the sum of the jth and (n - j)th components of any d j is
(j'), as well. The proof is complete.

6. PROOF OF THEOREM 2.4

Suppose fF is an intersecting Sperner family with profile f. Let CIJ be the Sperner family
with the same profile and satisfying a1CIJ = 2( I, la1CIJI) for all I. The existence of such a CIJ
is guaranteed by Corollary 3.4.

LEMMA 6.1. For all 0,,;;; t,,;;; n we have

PROOF. In the opposite case we can find FE a'fF, F ' E an-IfF such that F = S - F'. By
definition there exist E, E 'E fF with E c F, E I C F ' and consequently E II E '= 0, a
contradiction.

By Theorem 3.3 we have la'ClJI,,;;; la'fFl for all t. Hence Lemma 6.1 implies

la'ClJI + lan-'ClJI,,;;; (;).

Also, Theorem 3.2 gives la'fFl,,;;; (7-=:) for t,,;;;n12. Thus

la'ClJI,,;;; (n -1)
t-l

(11)

(12)

holds for t,,;;; n12. By the lexicographic ordering we infer Sl EO for all 0 E CIJ, 101,,;;; n12.
Let us define ClJI = {O - {s.}: Sl E 0 E CIJ}, CIJ'l = {O E CIJ: Sl to}. The members of CIJ'l are

of size> nl2 by the above remark. Clearly, both ClJI and CIJ'l are Sperner families on
S-{Sl}' Denote their profiles by s', gO, resp. By Theorem 3.1 we have

and

(g?=O for 0,,;;;;,,;;;nI2).

Let us set

ai=gL/(;~:) and l3i=g?/(n~I).

The above inequalities can be rewritten as

L «< 1,
l~j:5in

L I3j,,;;;l, I3j=0,j,,;;;nI2.
n/2<j""n-l

(13)

We define I3n = 1-Ln/2<j""n-l I3j ~ o.
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LEMMA 6.2.

where at
-

I is understood to act on S - {SI}.

PROOF. We use induction on t. If t = 1 the statement is trivial. Suppose t> 1.

atCIJI = at(at-! (ClJI)) U CIJ: and at(at-! (ClJI)) n CIJ: = 0

are obvious since ClJI is a Sperner family. Hence we have

latCIJII = lat(at-I(ClJI))I+ g:.
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(14)

(15)

Counting the number of pairs A, B AEat-I(ClJI), BEat(at-I(ClJI)), Ac B in two different
ways the inequality

is obtained. This implies

(16)

(15) and (16) result in

The application of the induction hypothesis gives (14) for t + 1. The lemma is proved.

LEMMA 6.3.

L a i";;; L {3n+l-i,
l Eii EiOt l ~i~t

PROOF. As CIJ is an intersecting Sperner family, at-!ClJlu{S-(Ou{SI}):OEWO,
101,,;;; n - t} is a Sperner family where at- I acts still on S - {SI}. (1) implies

lat- IClJII

(

n -1) + {3r(n+I)/21 + ... + {3n-t";;; 1,
t-l

The application of Lemma 6.2 and Ln/2<i ",n-t {3i = 1- Lt"i",n {3n+l-i completes the proof
of the lemma.

Let us turn back to the proof of the theorem. Define the numbers 'Yij (1,,;;; i ,,;;;t« n,
i +j > n) recursively. Start with 'YIn = a I. Suppose Yrr is defined for all i' < i and i' = i,j' > j.

Set

(17)

where the void sum means zero .
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n-j<i~j

(18)

(19)

'Yij = ai,
max{j.n-i+1}~j:5;;n

(20)

PROOF. Let nI2<j";; n. Then (17) yields

'Yjj ,,;; f3j - I 'Yij'
n-j<i<j

This is nothing else but (19).
To prove (18) and (20) we use induction following the recursive definition. For i = 1

0,,;; 'YIn = al follows from the definition and Lemma 6.3. Let i> 1 and suppose that (18)
and (20) are proved for all (i',j) with i' < i. By (17) we have

'Yin=min{ai,f3n- I 'Yi'n}.
l'.lEO;j'<i

Using (19) we infer 0,,;; 'Yin";; ai' By induction onj, using (17), we can prove that 0,,;; 'Yij
and Lj"'j'",n 'Yij''';; a, hold for any j such that max{i, n - i + 1},,;;j,,;; n. Especially,

'Yij ,,;; ai'
max{i.P1-j+l}~j~n

(21)

Suppose that 'Yij = a, - Lj'>j 'Yij' holds for some j. Then Yi.t -: = 'Yi,j-2 = ... = 0 and (20)
hold. If 'Yij < a, - Lj'>j 'Yij' then we have 't» = f3j - Ln-j<i'<i 'Yi'j by (17). Hence, if i < n12,

L 'Yij = L f3j - L I 'Yi'j
max{i.,n-i+l}E>jos;;n max{i.n-i+l}~j~n max{i.n-i+l}~j:!S;;nn-j<i'<i

= L f3j - L L 'Y!i
max{i.n-i+l}'!i';jOSi1J l.e;;l<i max{l,n-l+J}~j:os;;n

follows. In the last terms we may use the induction hypothesis for (20):

L 'Yij = L f3j - L a"
max{i,n-i+l}':s::;j:s;;n max{i,n-i+l}~j:s:;n l:s:;t<i

The right hand side is ~ ai by Lemma 6.3. This inequality and (21) prove (20) for i. In
the other case when nl2 < i the proof is similar, but (19) should also be used. The lemma
is proved.

Extend the definition of the vectors wij of Theorem 2.4 for all i <i. i +j > n, in a natural
way. Let Wii = Vi' We prove now that

L 'Yijwij + L 'YjVj ~ / (22)
i~j n/2<j~n

i+j>n

where 'Yj = f3j - Ln-j<i"'j 'Yij' This will be checked componentwise. For the Oth component
(22) is trivial because.fO = 0 by the intersection property. Let 1,,;; i,,;; n12. The ith component
of the left hand side is

( n- l) (n-l)'\"' 'Y" =a. =gl I'- I). I • ,-

n-i+I"'j",n I -1 1-1

and this is equal to the ith component j; = g:_1 +g? of the right hand side since g? = 0
for 1,,;; i,,;; n12. Let nl2 « j « n. The jth component of the left hand side of (22) is

( n- l) (n) (n-l) ( )(n-l)~ L 'Y" + y- + L 'YI + f3 - L 'Y'
n-j<i<j Ij j JJ j j-c iez n J j -1 J nr-j-c i ecj Ij j

( n- l) (n-l)=a· + .
J j -1 f3J j .
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This is equal to the ith component gJ-I + gJ of f if j < n. For j = n this latter component
is g~_I' Thus (22) is proved.

The sum of the coefficients in (22) is

L l'ij+ L s, = L {3j = 1.
j""j n/2<j""n n/2<j""n

i+j>n

Replace each wij with n/2 < i <j~ n by

on the left hand side of (22).
This modification does not change the left hand side and the validity of (22). However,

the sum of the coefficients is decreased since

(~~;)/ (;) + (n71
) / (;) = i +: - j < 1.

This proves that f is dominated by a linear combination of the vectors given in Theorem
2.4 and the sum of the coefficients is ~ 1.

7. AN EXTREMAL PROBLEM FOR Two FAMILIES

Suppose [ii and C§ are families of subsets of S, such that [ii is a Spemer family and if
FE [ii, GE C§ then F ¢ G and G ¢ F hold (in particular [iin C§= 0). We consider the
profile vectors f and g of these families as one vector (fo,fh ... .fm go, ... , gn) E 1R2n +2

,

and call it the double profile.

THEOREM 7.1. The dominating set of all possible double profiles of;g;, Cfj with the above
properties consists of the vectors

V;=(O, ... ,o,(;),o, ... ,o,o, ... ,o), O~i~n
o n n+l 2n+l

and

W = (0,0, ... , 0, (~), ... , (;), ... , (:)).

o n n+l n+ i+l 2n+ 1

(a)

Before proving Theorem 7.1 we state a theorem proved by Daykin et al. [2] which can
be easily derived from it.

THEOREM 7.2. Suppose [iiI, ... , ;g;' are families of subsets of S so that for 1~ i ""j ~ t
and F, E s'. Fj E :Jii, F; "" Fj we have F; ¢ Fj. Then (a), (b) and (c) hold:

I""~"'" I;g;il ~ max{ t( In;2J)' 2
n
},

(b) /L L _J ~max{t, n+l},
I",,;"'" O""j""n (;)
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(c) L l8f i l ,,;;; rt+(t-( , ))2"'
l~l~t n

In/2J
where r denotes the number of subsets of S which occur in at least two of the s:

PROOF OF THEOREM 7.1. The conditions imply that for each i, 1,,;;; i,,;;; n, 8f u "9i is a
Spemer family (recall that "9i ={O E "9: 101 = i}). By Theorem 3.2 we have

L Jjj(~) +gij(~) ,,;;; 1.
o""J"" " ] I

(23)

Define aj =Jj/G) and f3 =maxO""i""" gJG). Clearly, (/0'/1> ... ,in, go, ... , g")";;; Lj ajvj+ f3w
holds, while (23) implies L aj + f3";;; 1. The proof is complete.

THE PROOF OF THEOREM 7.2. Let us define 8f as the family of those subsets of S
which are contained in at least two of the 8fi, and set "9 = UI""i"'" 8fi - fJi. Clearly, we have

,
L l8fil,,;;; tl8fI+I"9I·

i=1

(24)

However, 8f and "9 fulfill the assumptions of Theorem 7.1. Therefore, the maximum of
tl8fJ + "9 =L i if; + L i gi is attained in some point of the dominating set of profiles. For vj

we obtain tG), for w 2", yielding (a). For (b) note first

"j(n) t 1L L fj .,,;;; L -Jj+ L - gj'
I ""i"" , O""j"" " ] O""j""" (;) O""j""" (;)

Here the right hand side is again maximized for some point of the dominating set. For
Vi we obtain t, for w n + 1, proving (b).

To prove (c) we rearrange (23):

j(n) j(n) rgi .,,;;; 1- L Jj .,,;;; 1 .
I O""j"" " ] (n)

In/2J

Multiplying by (7) and summing up over all i we infer

8. OPEN PROBLEMS

It would be interesting to determine the dominating set of profiles of other classes of
families, e.g. t-intersecting families (IF (') F'I ;;;. t), intersecting-union families (F (')F'.,e 0,
F U F'.,e S). However, these cases seem to be much more difficult. A more hopeful case
might be that of k-wise intersecting Sperner families (FI (') ••• (') Fk.,e 0, 8f is Sperner).
We conjecture that all dominating vertices have one or two non-zero coordinates. For
k = 3, this would completely settle the problem ofthe maximum size ofa 3-wise intersecting
Sperner family. This is known to be (r("~~~/2l) + e, where e = 1 for n even and e =0 for
n odd, for all but 12 values of n (cf. Frankl [7], Gronau [8], [9]).
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