Discrete Mathematics 48 (1984) 327-329 327
North-Holland

COMMUNICATION

A NEW SHORT PROOF FOR THE KRUSKAL-KATONA
THEOREM

P. FRANKL

University of Paris VII, Paris, France

Communicated by R. L. Graham
Received 27 September 1983

We give a very short proof for the Kruskal-Katona theorem and Lovasz’s version of it:
given (f) k-element sets there are at least (,.*,) (k —1)-element sets which are contained
in at least one of the k-sets.

1. Introduction

Suppose X ={1,2,...,n}and & is a family of subsets of X, i.e. ¥ <2*. Define
AF)={EcX: for some Fe%, EcF, |F-E|=1}. Given k,m=1 such that
Fc<(X), ie., |[Fl=k for all Fe %, and |#|=m, what can one say about |A(%)|? In
general one cannot improve on the trivial upper bound |A(%)| = km. Best possible
lower bounds for every m were obtained independently by Kruskal {3] and
Katona [2]. To state their result one writes m in k-cascade form:

a a_ a,
m=(k">+(k"_;>+- . -+(s), a>a_ > >a =1

Note that every positive integer has a unique k-cascade representation.

Theorem 1 (Kruskal-Katona). If F< (), |Fl=m=()+- -+ (%), then

() ()l )

A short proof of Theorem 1 was given by Daykin [1]. Because of the k-cascade
representation, the Kruskal-Katona theorem is often very clumsy for applications.
Lovész [4] proposed the following slightly weaker but much handier form.
Theorem 2 (Lovasz). Suppose F<(X), |Fl=m=(F). Then

|A(F)| = (k i 1) where x =k is real. @A)
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The aim of this short note is to give a simple, unified argument for both these
theorems.

2. Shifting

For 1<j=<n and ¥ < 2%, let us define:

_(H-{hu{1} ifjeH 1¢£¢H, (H-{j}U{lh¢ %,
Si(H) = {H otherwise, ’
S;(%) ={S;(H): He ¥}.
Proposition. A(S;(F)) < S;(A(%F) holds for 1<j=<n.

Proof. We must show that for every Fe %, A(S;(F))<S;(A(%)) holds. This
follows easily if F=S;(F). Suppose F#S;(F), ie., jeF, 1¢F, S;(F)=
(F-{hu{l}. ¥t EcS;(F), 1¢E, then Ee€ S;(A(%)) follows easily from EcF.
However, 1€ E implies E'= E—{1}U{j}< F and E € S;(A(%)) follows from the
definition of S;(A(%)). O .

Iterating the operation S; for 2=<j=n, the number of sets containing 1 is
increasing. Thus after a finite number of steps we obtain a family ¥ satisfying
|F1=1%9|, |A(F)|=|A(9)| and S;(¥)=% for 2<j<n.

Hence in proving Theorems 1 and 2 - by eventually replacing ¥ by ¥ — we may
assume S;(F)=% holds for 2=<j=n or equivalently — with the notation %F,=
{Fe%:1¢F}:

EcA(%,) implies (E U{l}) eZ. 3)

3. The Proof of Theorems 1 and 2

Define #(1)={F—{1}: 1e Fe %}.
|A(F) =|F (Dl +A(F (D). (4)

We apply double induction on k and m. For k =1 and m arbitrary, both (1) and
(2) hold trivially. We first prove (2). If |%(1)|=(Z}) then by the induction
hypothesis A(%(1))=(3-3). Thus (4) yields

a@i=(:2) ()= (20
as desired.

Suppose next |F(1)|<(Z1). Then |Fo|=|F|—|F(1)|>(*¢"), and so, by induc-
tion, |A(%F)|= (). But (3) implies |%(1)|= (1), a contradiction.



A new short proof for the Kruskal-Katona theorem 329

Now we prove (1). If

sor= (30 +(37)

then by induction

s )+ (23)

Note that (%) =0. By (4) we have

s@=((5 1)+ (0 5)) e+ ((05)-(C5)

as desired. Suppose
Py L iy
< P .
IF @ (k—l toe s—1
Then from (%, =|%|—|%(1)| we infer

ak—l) (ak_1—1> (as—l)
> + TEN .
%l ( k k—1 s

By induction and (3)

|F ()| =|A(Fy)| = (‘Z‘:ll >+ (a';;i—zl) Tt (as ) 1)

follows, which is a contradiction. [J
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