COMMUNICATION

A NEW SHORT PROOF FOR THE KRUSKAL-KATONA THEOREM

P. FRANKL

University of Paris VII, Paris, France

Communicated by R. L. Graham Received 27 September 1983

We give a very short proof for the Kruskal-Katona theorem and Lovász's version of it: given $\binom{x}{k}$ k-element sets there are at least $\binom{x}{k-1}$ (k-1)-element sets which are contained in at least one of the k-sets.

1. Introduction

Suppose $X = \{1, 2, ..., n\}$ and \mathscr{F} is a family of subsets of X, i.e. $\mathscr{F} \subseteq 2^X$. Define $\Delta(\mathscr{F}) = \{E \subseteq X: \text{ for some } F \in \mathscr{F}, E \subseteq F, |F - E| = 1\}$. Given $k, m \ge 1$ such that $\mathscr{F} \subseteq \binom{k}{k}$, i.e., |F| = k for all $F \in \mathscr{F}$, and $|\mathscr{F}| = m$, what can one say about $|\Delta(\mathscr{F})|$? In general one cannot improve on the trivial upper bound $|\Delta(\mathscr{F})| \le km$. Best possible lower bounds for every m were obtained independently by Kruskal [3] and Katona [2]. To state their result one writes m in k-cascade form:

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \cdots + \binom{a_s}{s}, \quad a_k > a_{k-1} > \cdots > a_s \ge 1.$$

Note that every positive integer has a unique k-cascade representation.

Theorem 1 (Kruskal-Katona). If $\mathscr{F} \subseteq \binom{X}{k}$, $|\mathscr{F}| = m = \binom{a_k}{k} + \cdots + \binom{a_k}{s}$, then

$$|\Delta(\mathscr{F})| \ge \binom{a_k}{k-1} + \binom{a_{k-1}}{k-2} + \dots + \binom{a_s}{s-1}.$$
(1)

A short proof of Theorem 1 was given by Daykin [1]. Because of the *k*-cascade representation, the Kruskal-Katona theorem is often very clumsy for applications. Lovász [4] proposed the following slightly weaker but much handier form.

Theorem 2 (Lovász). Suppose $\mathscr{F} \subseteq \binom{x}{k}$, $|\mathscr{F}| = m = \binom{x}{k}$. Then

$$|\Delta(\mathcal{F})| \ge {\binom{x}{k-1}}$$
 where $x \ge k$ is real. (2)

0012-365X/84/\$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

The aim of this short note is to give a simple, unified argument for both these theorems.

2. Shifting

For $1 \le j \le n$ and $\mathcal{H} \subseteq 2^{x}$, let us define:

$$S_{j}(H) = \begin{cases} (H - \{j\}) \cup \{1\} & \text{if } j \in H, \ 1 \notin H, \ ((H - \{j\} \cup \{1\}) \notin \mathcal{H}, \\ H & \text{otherwise,} \end{cases},$$
$$S_{j}(\mathcal{H}) = \{S_{j}(H) \colon H \in \mathcal{H}\}.$$

Proposition. $\Delta(S_j(\mathcal{F})) \subseteq S_j(\Delta(\mathcal{F}) \text{ holds for } 1 < j \le n.$

Proof. We must show that for every $F \in \mathcal{F}$, $\Delta(S_i(F)) \subseteq S_i(\Delta(\mathcal{F}))$ holds. This follows easily if $F = S_i(F)$. Suppose $F \neq S_i(F)$, i.e., $j \in F$, $1 \notin F$, $S_i(F) = (F - \{j\}) \cup \{1\}$. If $E \subseteq S_i(F)$, $1 \notin E$, then $E \in S_i(\Delta(\mathcal{F}))$ follows easily from $E \subseteq F$. However, $1 \in E$ implies $E' = E - \{1\} \cup \{j\} \subseteq F$ and $E \in S_i(\Delta(\mathcal{F}))$ follows from the definition of $S_i(\Delta(\mathcal{F}))$. \Box

Iterating the operation S_j for $2 \le j \le n$, the number of sets containing 1 is increasing. Thus after a finite number of steps we obtain a family \mathscr{G} satisfying $|\mathscr{F}| = |\mathscr{G}|, |\Delta(\mathscr{F})| \ge |\Delta(\mathscr{G})|$ and $S_j(\mathscr{G}) = \mathscr{G}$ for $2 \le j \le n$.

Hence in proving Theorems 1 and 2 – by eventually replacing \mathscr{F} by \mathscr{G} – we may assume $S_j(\mathscr{F}) = \mathscr{F}$ holds for $2 \le j \le n$ or equivalently – with the notation $\mathscr{F}_0 = \{F \in \mathscr{F} : 1 \notin F\}$:

$$E \in \Delta(\mathscr{F}_0)$$
 implies $(E \cup \{1\}) \in \mathscr{F}$. (3)

3. The Proof of Theorems 1 and 2

Define
$$\mathscr{F}(1) = \{F - \{1\}: 1 \in F \in \mathscr{F}\}.$$

 $|\Delta(\mathscr{F}) \ge |\mathscr{F}(1)| + |\Delta(\mathscr{F}(1))|.$ (4)

We apply double induction on k and m. For k = 1 and m arbitrary, both (1) and (2) hold trivially. We first prove (2). If $|\mathscr{F}(1)| \ge \binom{x-1}{k-1}$ then by the induction hypothesis $\Delta(\mathscr{F}(1)) \ge \binom{x-1}{k-2}$. Thus (4) yields

$$|\Delta(\mathcal{F})| \geq \binom{x-1}{k-1} + \binom{x-1}{k-2} = \binom{x}{k-1},$$

as desired.

Suppose next $|\mathscr{F}(1)| < \binom{x-1}{k-1}$. Then $|\mathscr{F}_0| = |\mathscr{F}| - |\mathscr{F}(1)| > \binom{x-1}{k}$, and so, by induction, $|\Delta(\mathscr{F}_0)| \ge \binom{x-1}{k-1}$. But (3) implies $|\mathscr{F}(1)| \ge \binom{x-1}{k-1}$, a contradiction.

Now we prove (1). If

$$|\mathscr{F}(1)| \ge \binom{a_k-1}{k-1} + \cdots + \binom{a_s-1}{s-1}$$

then by induction

$$\Delta(\mathscr{F}(1)) \geq \binom{a_k-1}{k-2} + \cdots + \binom{a_s-1}{s-2}.$$

Note that $\binom{a}{-1} = 0$. By (4) we have

$$\Delta(\mathscr{F}) \ge \left(\binom{a_k - 1}{k - 1} + \binom{a_k - 1}{k - 2} \right) + \dots + \left(\binom{a_s - 1}{s - 1} + \binom{a_s - 1}{s - 2} \right)$$
$$= \binom{a_k}{k - 1} + \dots + \binom{a_s}{s - 1},$$

as desired. Suppose

$$|\mathscr{F}(1)| < \binom{a_k-1}{k-1} + \cdots + \binom{a_s-1}{s-1}$$

Then from $|\mathcal{F}_0| = |\mathcal{F}| - |\mathcal{F}(1)|$ we infer

$$|\mathscr{F}_0| > {a_k-1 \choose k} + {a_{k-1}-1 \choose k-1} + \cdots + {a_s-1 \choose s}.$$

By induction and (3)

$$|\mathscr{F}(1)| \ge |\Delta(\mathscr{F}_0)| \ge {a_k - 1 \choose k - 1} + {a_{k-1} - 1 \choose k - 2} + \dots + {a_s - 1 \choose s - 1}$$

follows, which is a contradiction. \Box

References

- D.E. Daykin, A simple proof of the Kruskal-Katona theorem, J. Combin. Theory (A)17 (1974) 252-253.
- [2] G. Katona, A theorem of finite sets, in: Theory of Graphs (Akadémia Kiadó, Budapest, 1968) 187-207.
- [3] J.B. Kruskal, The number of simplicies in a complex, Mathematical Optimization Techniques (Univ. of California Press, 1963) 251-278.
- [4] L. Lovász, Combinatorial Problems and Exercises, 13.31 (North-Holland, Amsterdam, 1979).