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We give a very short proof for the Kruskal-Katona theorem and Lovhsz's version of it: 
given (~) k-element sets there are at least (k~_l) (k - 1)-element sets which are contained 
in at least one of the k-sets. 

1. Introduction 

Suppose X = { 1 ,  2 . . . . .  n} and ~: is a family of subsets of X, i.e. ~:___2 x. Define 
A ( ~ : ) = { E ~ X :  for some F e ~ : ,  E ~ F ,  IF-El=l}. Given k ,m>~l  such that 
~ : z  (x), i.e., IFI = k f o r  an  F ~  ~ ,  and I~1 = m, w h a t  can one say about I A ( ~ ) I ?  In 
general one cannot improve on the trivial upper bound Id(~:) I ~< kin. Best possible 
lower bounds for every m were obtained independently by Kruskal [3] and 
Katona [2]. To state their result one writes m in k-cascade form: 

m=(akk] + ( a k - l ~ + "  " + ( ~ ) '  a k > a k _ l > . . - > o ~ > l .  

Note that every positive integer has a unique k-cascade representation. 

Theorem 1 (Kruskal-Katona). If  ~___ (x), I ~ l  = m = ( ~ ) + -  • • + (%,), then 

(i) 

A short proof of Theorem 1 was given by Daykin [1]. Because of the k-cascade 
representation, the Kruskal-Katona theorem is often very clumsy for applications. 
Lov~sz [4] proposed the following slightly weaker  but much handier form. 

Theorem 2 (Lov~sz). Suppose tT~_ (x), 13;[ = m = (~,). Then 

IA(~:) [~>(kXl)  where x >~k is real. 
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(2) 
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The aim of this short note is to give a simple, unified argument for both these 
theorems. 

2. Shilling 

For l < ] ~ n  and ~ _ 2  x, let us define: 

J'(H-{j})LI{1} if ]~H,  l f~H,  ((H-{j}LI{1})¢~',  
s~ (/-/) = [ H  otherwise, 

Sj(~¢) = {S~(H): H e  ~e}. 

Proposition. A ( S i ( ~:) ) ~_ S i ( A ( J;) holds for 1 < ] <~ n. 

Proof. We must show that for every F ~ ,  A(Sj(F))~Si(A(~:)) holds. This 
follows easily if F=Sj (F) .  Suppose F # S i ( F ) ,  i.e., ] ~ F ,  I C F ,  S~(F)= 
(F-{j})t3{1}. If E ~ S i ( F ) ,  I ¢ E ,  then E ~ S ~ ( A ( ~ ) )  follows easily from E _ F .  
However, 1 ~ E implies E '  = E - {1} t3 {j} _ F and E ~ S i (A (~F)) follows from the 
definition of S i(A(~)). []  • 

Iterating the operation S i for 2 ~<] ~< n, the number of sets containing 1 is 
increasing. Thus after a finite number of steps we obtain a family ~ satisfying 
I~1=1~1, IA(~I~>IA(~)I and Sj(o3) = (g for 2<~]<~n. 

Hence in proving Theorems 1 and 2 - by eventually replacing ~: by q3 - we may 
assume Sj(~:)=~:  holds for 2<~]<~n or equivalent ly-with the notation ~o = 
{F~ ~ :  1 CF}: 

E~A(~;o)  implies ( E U { 1 } ) ~ : .  (3) 

3. The Proof of Theorems 1 and 2 

Define ~:(1) = {F-{1}: 1 e F ~  ~}. 

l a (~ )  >/I~(1)l + IA (~(1))1. (4) 

We apply double induction on k and m. For k = 1 and m arbitrary, both (1) and 
(2) hold trivially. We first prove (2). If [~r(1)[~>(~-l) then by the induction 

A(~:(1)) ~ (k-z)- Thus (4) yields hypothesis ~ x-a 

as desired. 
Suppose next I~(1)1 < (~-1). Then I~01 = I~1-I~(1)1 > (x~l), and so, by induc- 

tion, I~(~0)1~>(~-1). But (3) implies I~(1)1>~(~-I), a contradiction. 
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Now we prove (1). If 

then by induction 

A(~(1))>~ (ak- I~ (a.-l~ 
\k-2/+" " ' + \ s - 2 ] "  

Note that (Yl)= 0. By (4) we have 

ak - 1 ... ,,~_,,+(:_-~)) 

--(,~,,)+...+(~,). 

as desired. Suppose 

/ak -- 1\ ,~(1~_1~+ +(~-~) 
Then from I~01 =1~1-1~(1)1 we infer 

,~o, ~ (o~ ,)+ (a~_l_~ ~)+... + (o.; ~). 

By induction and (3) 

[ak-  1\ / ak - : -  1\ 

follows, which is a contradiction. [ ]  
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