# On the Number of Sets in a Null $\boldsymbol{t}$-Design 

Peter Frankl and János Pach


#### Abstract

In this paper we prove that the symmetric difference of any two distinct $S_{\lambda}(n, k, t)$ Steinersystems contains at least $2^{t+1}$ different sets (Corollary 2). The proof also yields an extremal set theoretical result of Sauer (Theorem 2).


## 1. Introduction

Let $X$ be an $n$-element set, and let $k, t, \lambda$ be positive integers, $n \geqslant k \geqslant t$. A system $\mathscr{S}$ of $k$-element subsets of $X$ is called an $S_{\lambda}(n, k, t)$ Steiner-system if every $t$-element subset of $X$ is contained in exactly $\lambda$ members of $\mathscr{S}$. (Notice that two members of $\mathscr{S}$ are not necessarily distinct.) We denote by $h_{\mathscr{S}}$ the characteristic function of $\mathscr{S}$ i.e. $h_{\mathscr{S}}$ is defined on all subsets of $X$, and for any $B \subseteq X, h(B)$ is the number of occurences of $B$ in $\mathscr{S}$.

Further, let $V(X)$ denote the vector space of all real valued functions $f: 2^{X} \rightarrow R$. (Obviously, $\operatorname{dim} V(X)=2^{n}$.)

Definition. For a fixed integer $t, 0 \leqslant t \leqslant n$, we say that $f$ is a null $t$-design if for every $\boldsymbol{A} \subseteq \boldsymbol{X},|\boldsymbol{A}| \leqslant t$, we have

$$
\begin{equation*}
\sum_{A \subseteq F \subseteq X} f(F)=0 \tag{1}
\end{equation*}
$$

Notice that for $t=n$ the only null $t$-design is the identically zero one. A null $t$-design is called $k$-uniform if $f(F) \neq 0$ implies $|F|=k$. If $\mathscr{S}_{1}$ and $\mathscr{S}_{2}$ are two $S_{\lambda}(n, k, t)$ Steinersystems, then $h_{\mathscr{T}_{1}}-h_{\mathscr{S}_{2}}$ is a $k$-uniform null $t$-design.

Of course, both null $t$-designs and $k$-uniform null $t$-designs form vector spaces.
These vector spaces were considered in several papers (Graver and Jurkat [4], Graham, Li and Li [3], Deza and Frankl [1]): the dimensions were determined and bases were exhibited.

For simplicity we identify a set $\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$ with the product $x_{1} x_{2} \cdots x_{l}$, and a null $t$-design, $f$, with the polynomial

$$
\sum_{F \subseteq x} f(F) \prod_{x \in F} x
$$

In this terminology the simplest null $t$-design is $\left(1-x_{1}\right) \cdots\left(1-x_{t+1}\right)$ (the constant term is just $f(\varnothing)$, while the simplest $k$-uniform null $t$-design is $\left(x_{1}-x_{2}\right)$ $\left(x_{3}-x_{4}\right) \cdots\left(x_{2 t+1}-x_{2 t+2}\right) x_{2 t+3} \cdots x_{k+t+1}$.

In both these designs there are exactly $2^{t+1}$ terms. The aim of this note is to prove:
Theorem 1. Let $f$ be a nonidentically zero null $t$-design. Then $f$ has at least $2^{t+1}$ nonzero terms, i.e.,

$$
|\{F \subseteq X: f(F) \neq 0\}| \geqslant 2^{t+1} .
$$

Corollary 1. A nonidentically zero $k$-uniform null t-design has at least $2^{t+1}$ nonzero terms.

Corollary 2. The symmetric difference of any two distinct $S_{\lambda}(n, k, t)$ Steiner-systems contains at least $2^{t+1}$ distinct sets.

Remark 1. The truth of Corollary 2 in the special case $k=3, t=2$ follows from a result of Lindner and Rosa [5]. The statement of Corollary 1 was conjectured by Singhi [7].

Theorem 2. Suppose

$$
\mathscr{F} \subseteq 2^{\mathrm{X}}, \quad|\mathscr{F}|>\sum_{0<i<t}\binom{n}{i} .
$$

Then there exists an $H \subseteq X,|H|=t+1$, such that for every $H_{0} \subseteq H$ one can find $F \in \mathscr{F}$ with $F \cap H=H_{0}$ (i.e. $\{F \cap H: F \in \mathscr{F}\}=2^{H}$ ).

Remark 2. Theorem 2 was originally proved by Sauer [6], and in [2] a simpler proof is given. However, we think the present proof gives more insight.

## 2. Proof of the Results

For a null $t$-design $f$ and a subset $S$ of $X$ we define the trace $f_{s}: 2^{s} \rightarrow R$ by

$$
f_{S}(G)=\sum_{F \subseteq X, F \cap S=G} f(F), \quad \text { for every } G \subseteq S
$$

Proposition 1. The function $f_{s}$ is a null $t$-design on $S$.
Proof. In fact, let $A \subseteq S$ and $|A| \leqslant t$. Then we have

$$
\sum_{A \subseteq G=X} f_{S}(G)=\sum_{A \subseteq G \subseteq S} \sum_{\substack{F \subseteq X, F \cap S=G}} f(F)=\sum_{A \subseteq F \subseteq X} f(F)=0 .
$$

We now give the proof of Theorem 1 . Let $f$ be a nonidentically zero null $t$-design. Let $s$ be the maximal integer for which $f$ is a null $s$-design (in most cases $t=s$ but in any case $t \leqslant s \leqslant n-1$ ). Then we can find a ( $s+1$ )-element subset $S$ of $X$ for which (1) is violated, i.e.

$$
\begin{equation*}
\sum_{S \subseteq F \subseteq X} f(F)=a \neq 0 \tag{2}
\end{equation*}
$$

Let us consider the trace of $f$ on $S$, i.e. $f_{s}$. In view of Proposition $1, f_{s}$ is a null $s$-design.
Proposition 2. For $G \subseteq S$ we have $f_{S}(G)=(-1)^{|S-G|} a$.
Proof. We apply induction on $|S-G|$. If $G=S$, then the statement is just (2). Suppose now we are given some $G$ and we know the proposition holds for all its supersets $H, G \subseteq H \subseteq S$. Since $f_{S}$ is a null $s$-design and $|G| \leqslant s$, we have

$$
\begin{aligned}
0 & =\sum_{G \subseteq \boldsymbol{H} \subseteq S} f_{S}(H)=f_{S}(G)+\sum_{G \subseteq H \subseteq S} f(H) \\
& =f_{S}(G)+a \sum_{0<i \leqslant|S-G|}\binom{|S-G|}{i}(-1)^{|S-G|-i} \\
& =f_{S}(G)-(-1)^{|S-G|} a .
\end{aligned}
$$

Now Theorem 1 is immediate: $f_{S}(G) \neq 0$ implies that for some $F \subseteq X, F \cap S=G$ we have $f(F) \neq 0$. Since $\left|2^{s}\right|=2^{s+1}$, this gives us $2^{s+1} \geqslant 2^{i+1}$ nonzero terms, as desired. As for Theorem 2, for every $F \in \mathscr{F}$, define $f^{F} \in V(X)$ by

$$
f^{F}(G)= \begin{cases}1 & \text { if } G \subseteq F,|G| \leqslant t \\ 0, & \text { otherwise }\end{cases}
$$

All these functions are in a $\left(\sum_{0 \leqslant i \leqslant t}\binom{n}{i}\right.$ )-dimensional subspace $V_{\leqslant t}=\{f \in V(X): f(G)=0$, whenever $|G|>t\}$. Thus they cannot be linearly independent. Let $\sum_{F \in \mathscr{F}} \alpha(F) f^{F}=0$ be a linear dependence among them. This means that the function $g$ defined by $g(F)=\alpha(F)$ if $F \in \mathscr{F}$, and $g(F)=0$ otherwise, is a null $t$-design. Now, in the terminology of the proof of Theorem 1, for an arbitrary $(t+1)$-element subset $T$ of $S$ we have

$$
\{T \cap F: \alpha(F) \neq 0\}=2^{T},
$$

and in particular

$$
\{T \cap F ; F \in \mathscr{F}\}=2^{T}
$$

which proves Theorem 2.

## References

1. M. Deza and P. Frankl, On the vector space of 0 -configurations, Combinatorica, (to appear).
2. P. Frank1, "On the trace of finite sets," J. Combinatorial Theory Ser. A (to appear).
3. R. L. Graham, S. Y. R. Li and W. C. W. Li, On the structure of $t$-designs, SIAM J. Algebraic and Discr. Methods 1 (1980), 8-14.
4. J. E. Graver and W. B. Jurkat, The module structure of integral designs, J. Combinatorial Theory Ser. A 15 (1973), 75-90.
5. C. C. Lindner, A. Rosa, Steiner triple systems having a prescribed number of triples in common. Canad. J. Math. 27 (1975), 1166-1176.
6. N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972) 145-147.
7. N. M. Singhi, Private communication.
P. Frankl

CNRS, 15 Quai Anatole France, 75007, Paris, France
J. РАСн

University College London, London WC1, U.K.

