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On the Number of Sets in a Null #-Design

PeETER FRANKL AND JANOS PAacH

In this paper we prove that the symmetric difference of any two distinct S, (n, k, t) Steiner-
systems contains at least 2*1 different sets (Corollary 2). The proof also yields an extremal set
theoretical result of Sauer (Theorem 2).

1. INTRODUCTION

Let X be an n-element set, and let k, £, A be positive integers, n =k =t¢. A system &
of k-element subsets of X is called an S, (n, k, ¢) Steiner-system if every ¢-element subset
of X is contained in exactly A members of &. (Notice that two members of & are not
necessarily distinct.) We denote by kg the characteristic function of & i.e. hg is defined
on all subsets of X, and for any B = X, #(B) is the number of occurences of B in &.

Further, let V(X) denote the vector space of all real valued functions f: 2X >R,
(Obviously, dim V(X)=2")

DEerFINITION. For a fixed integer ¢, 0<t<n, we say that f is a null ¢-design if for
every A = X, |A|<t, we have

fF)=0. 1)

AcFcX

Notice that for ¢ = n the only null 7-design is the identically zero one. A null ¢-design is
called k-uniform if f(F)# 0 implies |F|=k. If $, and &, are two S\(n, k, t) Steiner-
systems, then Ay, —hg, is a k-uniform null ¢-design.

Of course, both null ¢-designs and k-uniform null ¢-designs form vector spaces.

These vector spaces were considered in several papers (Graver and Jurkat [4], Graham,
Li and Li [3], Deza and Frankl [1]): the dimensions were determined and bases were
exhibited.

For simplicity we identify a set {x1, x2, . . ., x;} with the product x,x, -+ - - x;, and a null
t-design, f, with the polynomial

L fE) I x

Fcx xeF

In this terminology the simplest null z-design is (1—x;) -+ (1—x,.{) (the constant
term is just f(<J), while the simplest k-uniform null zdesign is (x1—x2)
(x3—=%x4) * * * (X2e41—X2042)X2643 * * * XKicaes1-

In both these designs there are exactly 2°*" terms. The aim of this note is to prove:

THEOREM 1. Let f be a nonidentically zero null t-design. Then f has at least 2

nonzero terms, i.e.,
{F = X: f(F)#0}=2""

COROLLARY 1. A nonidentically zero k-uniform null t-design has at least 2'** nonzero
terms.
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COROLLARY 2. The symmetric difference of any two distinct S, (n, k, t) Steiner-systems
contains at least 2" distinct sets.

REMARK 1. The truth of Corollary 2 in the special case k =3, t =2 follows from a
result of Lindner and Rosa [5]. The statement of Corollary 1 was conjectured
by Singhi [7].

THEOREM 2. Suppose

F<2X,  |F> ¥ (")

O<i<t \1
Then there exists an H < X, |H|=t+1, such that for every Ho< H one can find Fe %
with FAH =H, (i.e. {FNH: Fe F}=2").

REMARK 2. Theorem 2 was originally proved by Sauer [6], and in [2] a simpler proof
is given. However, we think the present proof gives more insight.

2. PROOF OF THE RESULTS

For a null t-design f and a subset § of X we define the trace fs: 25 >R by

fs(G)= Y f(F), forevery G<S.
F =G

=X, FnS
PrOPOSITION 1. The function fs is a null t-design on S.

Proor. In fact,let A< S and |A|<t Then we have

L fs(Gy= % Y fF)= Y f)=0.
G FcX, AcFcX

FAS=G

We now give the proof of Theorem 1. Let f be a nonidentically zero null #-design.
Let s be the maximal integer for which f is a null s-design (in most cases ¢ =s but in
any case t=s <n—1). Then we can find a (s + 1)-element subset S of X for which (1)

is violated, i.e.

Y fF)=a#0. (2)
SeFex

Let us consider the trace of f on 8, i.e. fs. In view of Proposition 1, fs is a null s-design.

PROPOSITION 2. For G < § we have fs(G)=(-1)""%a.

Proor. We apply induction on |§—G|. If G =S, then the statement is just (2).
Suppose now we are given some G and we know the proposition holds for all its supersets
H, G = H cS. Since fs is a null s-design and |G| =<, we have

0= Y fsH)=fs(G)+ ¥ f(H)
s GcHcS

GcHc

~f@ra_ 3y (5 e

0<i<|§—G]| l

=fs(G)—(-1)5%q.
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Now Theorem 1 is immediate: f¢(G)# 0 implies that for some Fc X, FnS=G we
have f(F)# 0. Since [2%|=2°"", this gives us 2°"'=2"*" nonzero terms, as desired. As
for Theorem 2, for every F € %, define Fev(X)by

1 if GSF,|G|=t
0, otherwise.

()=

All these functions are in a (3,.; ., (7))-dimensional subspace V., ={fe V(X): f(G) =0,
whenever |G| >t}. Thus they cannot be linearly independent. Let Z,,ega(F)fF =0bea
linear dependence among them. This means that the function g defined by g(F) = a(F)
if F e %, and g(F) = 0 otherwise, is a null ¢-design. Now, in the terminology of the proof
of Theorem 1, for an arbitrary (¢ + 1)-element subset T of S we have

{T AF:a(F)#0}=27,
and in particular
(TAF;Fe%}=2",

which proves Theorem 2.
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