On the Number of Sets in a Null *t*-Design

PETER FRANKL AND JÁNOS PACH

In this paper we prove that the symmetric difference of any two distinct $S_{\lambda}(n, k, t)$ Steinersystems contains at least 2^{t+1} different sets (Corollary 2). The proof also yields an extremal set theoretical result of Sauer (Theorem 2).

1. INTRODUCTION

Let X be an n-element set, and let k, t, λ be positive integers, $n \ge k \ge t$. A system \mathscr{G} of k-element subsets of X is called an $S_{\lambda}(n, k, t)$ Steiner-system if every t-element subset of X is contained in exactly λ members of \mathscr{G} . (Notice that two members of \mathscr{G} are not necessarily distinct.) We denote by $h_{\mathscr{G}}$ the characteristic function of \mathscr{G} i.e. $h_{\mathscr{G}}$ is defined on all subsets of X, and for any $B \subseteq X, h(B)$ is the number of occurences of B in \mathscr{G} .

Further, let V(X) denote the vector space of all real valued functions $f: 2^X \to R$. (Obviously, dim $V(X) = 2^n$.)

DEFINITION. For a fixed integer t, $0 \le t \le n$, we say that f is a null t-design if for every $A \subseteq X$, $|A| \le t$, we have

$$\sum_{A\subseteq F\subseteq X} f(F) = 0.$$
 (1)

Notice that for t = n the only null *t*-design is the identically zero one. A null *t*-design is called *k*-uniform if $f(F) \neq 0$ implies |F| = k. If \mathcal{S}_1 and \mathcal{S}_2 are two $S_{\lambda}(n, k, t)$ Steiner-systems, then $h_{\mathcal{S}_1} - h_{\mathcal{S}_2}$ is a *k*-uniform null *t*-design.

Of course, both null t-designs and k-uniform null t-designs form vector spaces.

These vector spaces were considered in several papers (Graver and Jurkat [4], Graham, Li and Li [3], Deza and Frankl [1]): the dimensions were determined and bases were exhibited.

For simplicity we identify a set $\{x_1, x_2, \ldots, x_l\}$ with the product $x_1x_2 \cdots x_l$, and a null *t*-design, *f*, with the polynomial

$$\sum_{F\subseteq x}f(F)\prod_{x\in F}x.$$

In this terminology the simplest null t-design is $(1-x_1) \cdots (1-x_{t+1})$ (the constant term is just $f(\emptyset)$, while the simplest k-uniform null t-design is (x_1-x_2) $(x_3-x_4) \cdots (x_{2t+1}-x_{2t+2})x_{2t+3} \cdots x_{k+t+1}$.

In both these designs there are exactly 2^{t+1} terms. The aim of this note is to prove:

THEOREM 1. Let f be a nonidentically zero null t-design. Then f has at least 2^{t+1} nonzero terms, i.e.,

$$|\{F \subseteq X : f(F) \neq 0\}| \ge 2^{t+1}.$$

COROLLARY 1. A nonidentically zero k-uniform null t-design has at least 2^{t+1} nonzero terms.

COROLLARY 2. The symmetric difference of any two distinct $S_{\lambda}(n, k, t)$ Steiner-systems contains at least 2^{t+1} distinct sets.

REMARK 1. The truth of Corollary 2 in the special case k = 3, t = 2 follows from a result of Lindner and Rosa [5]. The statement of Corollary 1 was conjectured by Singhi [7].

THEOREM 2. Suppose

$$\mathscr{F} \subseteq 2^X, \qquad |\mathscr{F}| > \sum_{0 < i < t} {n \choose i}.$$

. .

Then there exists an $H \subseteq X$, |H| = t + 1, such that for every $H_0 \subseteq H$ one can find $F \in \mathcal{F}$ with $F \cap H = H_0$ (i.e. $\{F \cap H : F \in \mathcal{F}\} = 2^H$).

REMARK 2. Theorem 2 was originally proved by Sauer [6], and in [2] a simpler proof is given. However, we think the present proof gives more insight.

2. PROOF OF THE RESULTS

For a null *t*-design *f* and a subset *S* of *X* we define the trace $f_S: 2^S \to R$ by

$$f_{\mathcal{S}}(G) = \sum_{F \subseteq X, F \cap S = G} f(F)$$
, for every $G \subseteq S$.

PROPOSITION 1. The function f_s is a null t-design on S.

PROOF. In fact, let $A \subseteq S$ and $|A| \leq t$. Then we have

$$\sum_{A\subseteq G=X} f_S(G) = \sum_{A\subseteq G\subseteq S} \sum_{\substack{F\subseteq X,\\F\cap S=G}} f(F) = \sum_{A\subseteq F\subseteq X} f(F) = 0.$$

We now give the proof of Theorem 1. Let f be a nonidentically zero null t-design. Let s be the maximal integer for which f is a null s-design (in most cases t = s but in any case $t \le s \le n-1$). Then we can find a (s+1)-element subset S of X for which (1) is violated, i.e.

$$\sum_{S \subseteq F \subseteq X} f(F) = a \neq 0.$$
⁽²⁾

Let us consider the trace of f on S, i.e. f_S . In view of Proposition 1, f_S is a null s-design.

PROPOSITION 2. For $G \subseteq S$ we have $f_S(G) = (-1)^{|S-G|}a$.

PROOF. We apply induction on |S-G|. If G = S, then the statement is just (2). Suppose now we are given some G and we know the proposition holds for all its supersets $H, G \subseteq H \subseteq S$. Since f_S is a null s-design and $|G| \leq s$, we have

$$0 = \sum_{G \subseteq H \subseteq S} f_S(H) = f_S(G) + \sum_{G \subseteq H \subseteq S} f(H)$$
$$= f_S(G) + a \sum_{0 < i \le |S-G|} {|S-G| \choose i} (-1)^{|S-G|-i}$$
$$= f_S(G) - (-1)^{|S-G|}a.$$

Now Theorem 1 is immediate: $f_S(G) \neq 0$ implies that for some $F \subseteq X$, $F \cap S = G$ we have $f(F) \neq 0$. Since $|2^S| = 2^{s+1}$, this gives us $2^{s+1} \ge 2^{t+1}$ nonzero terms, as desired. As for Theorem 2, for every $F \in \mathcal{F}$, define $f^F \in V(X)$ by

$$f^{F}(G) = \begin{cases} 1 & \text{if } G \subseteq F, |G| \leq t \\ 0, & \text{otherwise.} \end{cases}$$

All these functions are in a $(\sum_{0 \le i \le t} {n \choose t})$ -dimensional subspace $V_{\le t} = \{f \in V(X): f(G) = 0, whenever <math>|G| > t\}$. Thus they cannot be linearly independent. Let $\sum_{F \in \mathscr{F}} \alpha(F) f^F = 0$ be a linear dependence among them. This means that the function g defined by $g(F) = \alpha(F)$ if $F \in \mathscr{F}$, and g(F) = 0 otherwise, is a null t-design. Now, in the terminology of the proof of Theorem 1, for an arbitrary (t+1)-element subset T of S we have

$$\{T \cap F : \alpha(F) \neq 0\} = 2^T,$$

and in particular

$$\{T \cap F; F \in \mathscr{F}\} = 2^T,$$

which proves Theorem 2.

References

- 1. M. Deza and P. Frankl, On the vector space of 0-configurations, Combinatorica, (to appear).
- 2. P. Frankl, "On the trace of finite sets," J. Combinatorial Theory Ser. A (to appear).
- R. L. Graham, S. Y. R. Li and W. C. W. Li, On the structure of t-designs, SIAM J. Algebraic and Discr. Methods 1 (1980), 8-14.
- J. E. Graver and W. B. Jurkat, The module structure of integral designs, J. Combinatorial Theory Ser. A 15 (1973), 75-90.
- C. C. Lindner, A. Rosa, Steiner triple systems having a prescribed number of triples in common. Canad. J. Math. 27 (1975), 1166-1176.
- 6. N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972) 145-147.
- 7. N. M. Singhi, Private communication.

Received 26 June 1982

P. FRANKL CNRS, 15 Quai Anatole France, 75007, Paris, France

> J. PACH University College London, London WC1, U.K.