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Abstract. Let // be a set of m subsets of X = [1,2, . . . ,«}. We study the
maximum number X of containments Y <= Z with Y, Z e J * . THEOREM 9.
X = (1 +o(l))("'), if, and only if, mxl" —• 1. When « is large and members of !W have
cardinality k ox k—\ we determine X. For this we bound (AN)/N where AN is the
shadow of Kruskal's /c-cascade for the integer N. Roughly, if m ~ N + AN, then
A ~ kN with infinitely many cases of equality. A by-product is Theorem 7 of LYM
posets.

§1. Introduction. Let :¥ be a set of m subsets of the set X = {1,2, . . . ,«}.
Kleitman determined the minimum number of pairs Y, Z in J* with Y c Z in [9].
We became interested in finding the maximum number. Obviously there can be at
most (™) such pairs. In Theorem 9 we show that there can be (1 + o(l))(") pairs, if,
and only if, ml'" —> 1. In Section 5 we deal with the case in which Y e . f implies that
the cardinality | V'| is k or k - 1. For this case we need to introduce Kruskal's cascades
in Section 2, and bound their growth in Section 3. An application to LYM posets is
Theorem 7.

§2. KruskaTs cascades. The facts in this section were discovered in 1963 by
Kruskal [11] and in 1966 independently by Harper [6, 7] and Katona [8]. A simple
proof is in [2], and some years ago the author observed that virtually the same proof
shows that the shadow of the shift of the family is in fact a subset of the shift of the
shadow of the family. (See also [3].)

Let k be a fixed member of the set Z of positive integers. Then each N e Z has one
and only one representation

with
ak > ak_, > ... > a, ̂  r ^ 1 . (2)

This representation (1) is called the k-cascade for N. Let

k-ij ' \k-2j " ( f - l j ' (3)

and note that (3) is the (k- l)-cascade for AN, if, and only if, t > 1. When t = 1 the
binomial coefficient identity

A * - * + ('-!), (4)
sj V « J V - V
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for 0 ^ s ^ r but not 0 = s = r, can be used from the right on (3) a number of times
to turn (3) into the (k— l)-cascade for AN.

For h e Z let,/(/?) be the set of all subsets of cardinality h of Z. If (S c J(k), let
tsfS be the set of all maximal proper subsets of members of (S so that bfS a J(k—\).
The most important fact is that |A^| ^ A|^|. We order the members of each J(h) by
putting 7 < Z, if m a x ( y \ Z ] < max { Z \ Y } . When (S is the first N sets in this
ordering of ,/(/c), then A'iS is precisely the first AN sets of J(k— 1).

§3. The function fk(N) = (AkN)/N. The trivial identity

r^

si \ s - l l s

will often be used. As always k is a fixed integer in Z. For N 6 Z we define

/ (N) = A(N) = (AN)/N = (AkN)/N .

LEMMA 1. If \ ^ k < a and (£) ^ N, tften

a —/c \ \ k

Proof. Consider the /c-cascade (1) for N. We must have ak ^ a. First we
suppose that ak = a. Then (2) implies that

a - k + i ^ flj ^ /, for A- - 1 ^ / 5s f.

We must prove that Q > 0 where

Q = kN-(a-k)AN .

Now two terms of Q are

say, where

If /c = f, then Q = T = / > 0, as required, so assume k > t.
For /c—1 Js i > f and p ^ k, define 7;(p) by
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Then
Q = Ik

and to prove that Q > 0 we shall show that

7;(a) > 7, (a- l ) ^ ... $s

for each i. If p — k + i > ah then (4) says that

p-k + i\ _ /p-l-fc + A fp-l-k-

. ' / V ' / V ' - 1

Since

fp-l-k + i

i-\

we see that 7,(p) ^ 7;(p — 1). It follows that 7,(a) ^ ... ^ 7,(0, —/ + /c). Finally (5) gives

."'•1J{((k+l)(a,-i+l)/O-(fli-O} > 0

and the case ak = a of the lemma is established.
The case ak > a is now easy. \{ e — ak then (£) < A7, so by the case ak = a we

have /(A?) < kj(e-k) < k/(a — k) and the lemma is proved.

Next we define three subsets of Z, Z2 namely ^f for lower bound, % for upper
bound, and # for pair of bounds.

i£ = {L: 1 < M < L implies / (M) ^ /(L)} .

/̂/ = {K : K < N implies f{K) > f(N)\.

& = {(P, Q): 1 ^ M ^ P < Q < A/ implies / ( M ) > f(N)} .

That P < Q does not imply (P, Q) e .^ is shown by the case k = 3, P = 10, Q = 11.

LEMMA 2. If \ ^ k < a, then ("~k
i)e y .

Proof Let 1 ^ M < d 1 ) and ^ be the first M sets of J(k) in the Kruskal
ordering, so tsfS is the first AM sets of ,/(fc—1). Then the 1928 lemma of Sperner
concerning the set of all subsets of {1, 2,. . . , a— 1} says that (AM)/M ^ (t-D/Cfc1)
and this is just what Lemma 2 says.

LEMMA 3. If 1 ^ k < a then

This third lemma follows immediately from Lemmas 1 and 2.

Next we generalize Lemma 2.
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L E M M A 4. If the k-cascade (I) for N has the property

(ak+l)/k < (ak^ + l)/(k-\) «S ... < (a,+ l)/t, (6)
then N e %.

Proof. Given M in 1 < M < N we must show that / (M) ^ /(Af). Let the
/c-cascade for Af be

K > bk_l > ... > bu ^ u 3s 1 .

Case k — t. Here the result is Lemma 2.

Case k = u. By (5) we have

Hence we shall assume that /?k = ak and k > t. Then the inequality /(M) ^ /(iV) is

Using (5) we see that (6) says that

and summing over i gives the result for this case k = u.
Now we use induction on k. The case k = 1 is trivial. So we assume that k > 1,

and further that k > t,u. For convenience write

,4 = AN.

Thus £> < W and applying the case k = u to D < N we find that /(D) 5= /(Af).
Since M ^ A7, we have bk ^ ak. If £>t < ak then M < D and applying the case /c = t
to M < D shows that f(M) ^ f(D) ^ /'(N). Hence we shall now assume that
bk = ak.

Next we use our induction hypothesis. We have \^M-D^N-D and the
part of (6) from k— 1 to f has not changed, so by induction f(M — D) ^ /(Af — D). In
other words

E-B A-B
> • (7)

M-D N-D
We define positive rational numbers a, /? by a = BW/zl = BM/fS. Now /( /)) ^ /(Af)
simply says that a ^ D. Because M ^ N,

M — a. OL — D a-D Af-a
1 lM-D M-D N-D N-D
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Notice that M — D and N — D are positive. We cancel the ones and multiply by A/N
on the right and by (i/M = A/N on the left to obtain

N-D M-D

Hence (7) shows that E 5= [i, or in other words that f(M) ^ f(N), and the lemma
follows.

LEMMA 5. // ' the k-cascade (1) for N has property (6), then so too has the

{k- \)-cuscade for AN.

Proof. If k = f, then property (6) holds vacuously for both N and AN, so
we assume k > t. If t > \ then (3) is the (k— l)-cascade for AN. Now
k/(k-\) <{k~\)/(k-2) and by (6) we have (ak + l)/(ak_, +1) sj k/(k- 1) so
(ak+\)/{k~\) ^ (ak_, + l)/(/c-2). It is now clear that AN has property (6). When
r = 1 we must use (4) as described in Section 2, but we omit the detailed explanation.

LEMMA 6. For 2 ^ q e Z put

then K{q)e W.

Proof. If K < N we must show that f(K) > f(N). By using (5) for each
binomial coefficient of K, we note that f(K) = l/{q—\). Again we use the cascade
(1) for N. The proof is by induction on k and the case k = 1 is trivial.

Case Cjf) ;$ N. Here the result is Lemma 1.

Case K < N < (q
k). Here by the uniqueness of cascades we must have

ak = qk~\. For convenience put F = (fll) and G = Ck
k
v). Then we must show

that

> A i V ) ,
q-\ ' ' G + (N-G) '

but this is exactly the induction hypothesis that l/(q- 1) > fk-i(N — G), so the proof
is complete.

Actually, answering a question of Erd6s, the following was proved by Katona
[8]. If k > 2, then K(2) is the largest number h such that for any Yl,..., Yh in ,/(/c)
there are Z, , . . . , Zh in J(k-l) such that Z; c y;. for 1 ^ i ^ /i. The numbers K(2)
have / = 1 and were also used by Ahlswede and Katona in [1]. It would be
interesting to know the sets !£, "II precisely. The condition for °ll may be

k k - \ ••• r •

Lemmas 4 and 6 show that \K(q): 2 ^ g) c if n t and we wonder if there is
equality.
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§4. LYM Posets. Suppose that the k-cascade (1) for N has property (6). Let T
be the set consisting of the first N sets of J(k). Let A be the set of all subsets of
members of T. We order members of A by inclusion to make it a poset. For
0 ^ h ^ k put J(h) = A n .f(h). By repeated use of Lemma 5 the ^-cascade for \J(h)\
has property (6) for 0 < h ^ k. Choose arbitrarily 0 < h ^ k and S c J(h). Then
the result of Kruskal says that Ah(|S|) < |AS|. Further Lemma 4 says that
//,(|S|) > fh(VW\). Combining these two results we find what is sometimes called the
generalized matching property, namely that

\J(h-l)\ \AS\

i w r ^ i s r for 0 < U

In other words we have proved

THEOREM 7. In the above notation A is a LYM posets.

For literature on LYM posets see [4, 5, 10].

§5. The number of edges in a bipartite graph. Let k, m e Z be fixed. Consider a
bipartite graph F with a set V of m vertices. We suppose that V = U u W where
U c J(k) and W c ,f(k — i) and two vertices are joined by an edge, if, and only if,
one is a proper subset of the other.

Example 1. k = 3,m = 23. Let U be the first 11 = (5
3) + (2

2) sets of J(3). Let
W = AU so W is the first 12 = A(ll) = (f) + (?) sets of ,/(2). Here F has 33 edges.

Example 2. k = 3,m = 23. Let U, W be the first 12, 11 sets of J{3), J(2)
respectively. Here F has 34 edges.

We study the maximum attainable number n(k, m) of edges in F over all choices
of V. The reader can easily evaluate fi(2, m). Example 1 shows that, if m 5= N + AN,
then /i(k,m) ^ kN. That this does not always give the best bound is shown by
Example 2. However numbers N with property (6), and which therefore lie in if, are
not too far apart. Hence the theorem which we next present shows that the bound
kN for y. from Example 1 is of the correct asymptotic form.

THEOREM 8. / /

1 6 i£ and m = N + Ak N ,
k J

then n(k, m) = kN.

Proof. Let the number of vertices in U of degree k be r, and the number of other
vertices in U be s, so \U\ = r + s. Let e be the number of edges on U so
e ^ kr + (k—\)s. If r + s < N, then e < kN so we assume N ^ r + s.
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Ca.se N < r. Clearly AN ^ Ar and by Kruskal's theorem Ar ^ \W\ = m — r — s.
Hence

N + AN < r + AN s= r + Ar ^ \U\+Ar ^ \U\ + \W\ = m = N + AN ,

showing that this case never arises.

Case r ^ N. Now N e if implies that 3 ^ Ar where 8 = rf(N). As before
Ar ^ m — r — s, so r + s ^ m — 3. Hence

e < kr + (k-\)s = k{r + s)-s ^ k(m-S)-s.

Using Lemma 1 with a = k2+k shows that f(N) < l/k, and we assumed that
N < r + s, and 0 ^ s, so combining these gives

s)/N < (r/N) + {s/kAN).

Multiplying this inequality by kAN gives

kAN «S (krAN/N) + s = 3k + s.

Adding kN to both sides gives

k(N + AN) = km ^ dk + s + kN.

Hence e ^ k{m — 8) — s ^ fciV, proving the theorem.

§6. Counting containments in a set of subsets. If 3F is a set of subsets of the set
X = {1,2,..., n}, we let v(^) be the number of containments in J^, so

v ( , ^ ) = \ { ( Y , Z ) : Y , Z e ^ , Y ^ Z , Y + Z}\ .

For 1 5g m < 2" we study the function x(m, n) defined as the maximum value of v (^)
over all ^ of cardinality |,^| = m. Trivially

and we can have equality for 1 ^ m ^ n +1 with J^ a chain. Also it is not hard to see
that

A(2",n) = 3" -2" .

Usually we think of m as a function m(n) of n.

Example 3. Let n = pq and X = Jfj u ... u Xp where Xi = {1, 2,.. . , </},
^2 = {(/+1> <7 + 2,.. . , 2q} and so on. Next let & be . ^ u ... u ,^p where

.Jf
i = { y : X , u . . . u X i . 1 c y c X 1 u . . . u J f i } for l ^ i ^ p .
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Then m = \,¥\ = p2"-(p-l) and

v(J^) = p(3«-2«)

Hence as p, q ~* oo we have w1/n -» 1 and v(,W) = (1 +o(l))(2).

This example gives half of

THEOREM 9. k(m, n) = (1 +o(l))(^), if and only if mu" -»• 1.

Example 4. This comes from the case p = 2 of Example 3, so n = 2q. For ;¥ we
take any |_m/2J and [m/2~| members of J^j and 0F2 respectively, other than Xx. Then
\&\ = m s? 2(2"- 1) and v(.F) ^ \_ml2\\mj2\ Thus we see that for r ^ V2 w e c a n

have m ~ c" and v(^) ~ m2/4. This leads us to make

CONJECTURE 1. If y/2 < c and m(n) > c", then X(m, n) = o{m2).

In this connection we mention

CONJECTURE 2. (Erd6s). If n = 2r a«<i m = 2r+1 a«rf

Tt(Ĵ ) = \{Y, Z): y, Z e f , Y n Z = 0 } | ,

f/;en 7c(#") is asymptotically maximal when

& = {Y:Y <= X, YnW = 0orYn (X\W) = 0} ,

where W = { l ,2 , . . . , r} .

Since Y n Z = 0 , if, and only if, 7 c X\Z, the conjectures raise a

PROBLEM. Given two sets $,,%' of subsets of X put

n(<0, .W) = \{Y,Z):Ye14,Ze .W, Y n Z = 0}\.

For fixed g, h e Z what is the maximum value of n(r^, Jf) over all ??, ,W with \(S\ = g
and\:%\ = hi

Proof of Theorem 9. Our Example 3 showed that we can obtain the number of
containments in the statement of the theorem, so now we show that we cannot
obtain more.

The hypothesis m1" —> 1 means that given c > 1 there is an N = N(c) such that
m = m(n) < c" for n > N. Using Stirling's approximation for factorials one sees the
following facts. For the given c there are integers L, M and a real number d in
1 < d < c such that (rJ/L1) < d" for n > M.

Now let n > M, N and assume that 3F is a set of m = [c"J subsets of [1, 2, . . . ,«}.
For 1 < i ^ L put

#,. = { y : y e /F, n ( i - l)/L < \Y\ < ni/L} .
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In case the empty set 0 is in #" we ignore it. We proceed to get the crude bound
o(c2") for the number of containments in any one J v Suppose that Z e f , . If
n(i— 1)/L < j < \Z\, the number of subsets Y of X with Y a Z and \Y\ = j is

Y\-JJ ~ \ Y \ - J ; ^

So the number of containments in J^ is bounded by d" times the number of choices
for Z times the number of choices for j . The former number is at most c" and the
latter number is at most [n/L], Hence we have the bound o(c2"). Clearly the number
of containments Y <= Z where Y,Z can both lie in any of J^,,..., J*^ is
Lo(c2n) = o(c2").

The above bound o(c2") is much smaller than the crude bound (l — (1/L))(™) for
the number of containments Y <= Z in 3F where Y e ,^j and Z 6 !Wj but / < j . The
number of such containments will certainly not exceed the number we should have
under the following two assumptions, which produce the bound. We first assume
that Y e y7{ and Z e 3Fj and / < j always imply that Y c Z. Second we assume that
all F; have lm/L] or [m/L] members. This ends the proof.
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