On Subsets with Cardinalities of Intersections Divisible by a Fixed Integer

P. Frankl and A. M. Odlyzko

Abstract

If $m(n, l)$ denotes the maximum number of subsets of an n-element set such that the intersection of any two of them has cardinality divisible by l, then a trivial construction shows that $$
m(n, l) \geqslant 2^{[n / n]}
$$

For $l=2$, this was known to be essentially best possible. For $l \geqslant 3$, we show by construction that $m(n, l) 2^{-[n / l]}$ grows exponentially in n, and we provide upper bounds.

1. Introduction

We consider the problem of estimating $m(n, l)$ which is the maximum number of subsets A_{1}, \ldots, A_{m} of an n-element set such that

$$
\left|A_{i} \cap A_{i}\right| \equiv 0(\bmod l), \quad 1 \leqslant i<j \leqslant m .
$$

Suppose $B_{1}, \ldots, B_{[n / l]}$ are pairwise disjoint l-element subsets of $\{1,2, \ldots, n\}$. Then the sets formed by the union of any collection of the B_{i} have the desired property, and so

$$
\begin{equation*}
m(n, l) \geqslant 2^{[n / l]} \tag{1.1}
\end{equation*}
$$

P. Erdös conjectured that this is essentially best possible for $l=2$. This was proved by Berlekamp [1] and Graver [5] by different methods. They showed that if $n=8$ or $n \geqslant 10$, then

$$
\begin{aligned}
& m(n, 2)=2^{n / 2}, \quad \text { if } n \text { is even, } \\
& m(n, 2)=2^{(n-1) / 2}+1, \quad \text { if } n \text { is odd. }
\end{aligned}
$$

It turns out that for $l>2$, the natural generalization, namely that

$$
\begin{equation*}
m(n, l)=\mathrm{O}\left(2^{n / l}\right) \tag{1.2}
\end{equation*}
$$

is false. We prove the following bounds for $m(n, l)$.
Theorem 1. If a Hadamard matrix of order $4 l$ exists (which is known to be true for $1 \leqslant l \leqslant 66$, and is conjectured to be true for all l), then

$$
\begin{equation*}
m(n, l) \geqslant(8 l)^{[n /(4 l)]} \tag{1.3}
\end{equation*}
$$

In any event, for $l \geqslant 67^{\circ}$

$$
\begin{equation*}
m(n, l) \geqslant 256^{[n /(4 l)]}=2^{8[n /(4 l)]} . \tag{1.4}
\end{equation*}
$$

Theorem 2. If $\Omega(l)$ is the number of prime-power divisors of l, then

$$
\begin{equation*}
m(n, l) \leqslant 2^{[n / 2]}+\Omega(l) n \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m(n, l) \leqslant 2 \sum_{i=0}^{[n /(2 l)]}\binom{n}{i}+\Omega(l) n \tag{1.6}
\end{equation*}
$$

For $l=2,3,4$ the bound (1.5) is better than (1.6), but for larger values of $l,(1.6)$ is sharper, and it is markedly so for large l. It is not hard to show that

$$
c(l)=\lim _{n \rightarrow \infty} m(n, l)^{1 / n}
$$

exists, and the two theorems imply that

$$
\begin{equation*}
c(l) \geqslant \exp \left(\frac{1}{4 l} \ln 8 l\right) \tag{1.7}
\end{equation*}
$$

if a Hadamard matrix of order $4 l$ exists, and that

$$
\begin{equation*}
c(l) \leqslant \min \left(2^{1 / 2}, \exp \left(h\left((2 l)^{-1}\right)\right)\right) \tag{1.8}
\end{equation*}
$$

where $h(x)=-x \ln x-(1-x) \ln (1-x)$ is the entropy function. For $l \rightarrow \infty$, (1.7) gives

$$
c(l) \geqslant 1+\frac{1+\mathrm{o}(1)}{4 l} \ln l
$$

while (1.8) yields

$$
c(l) \leqslant 1+\frac{1+o(1)}{2 l} \ln l .
$$

It would be very interesting to know whether one has equality in (1.7). Some other open questions are discussed in Section 4.

2. Constructions

Let $m_{1}(n, l)$ denote the maximum size of a collection of subsets A_{1}, \ldots, A_{m} of $\{1, \ldots, m\}$ such that

$$
\left|A_{i} \cap A_{j}\right| \equiv 0(\bmod l), \quad 1 \leqslant i, j \leqslant m
$$

(i.e. we omit the condition $i \neq j$).

Lemma 1. We have

$$
m_{1}(n, l) \leqslant m(n, l) \leqslant m_{1}(n, l)+\Omega(l) n
$$

where $\Omega(l)$ denotes the total number of prime factors of 1 , multiple factors counted according to their multiplicity.

Proof. The first inequality of the lemma is trivial. To prove the second suppose that $\left|\boldsymbol{A}_{i}\right| \not \equiv 0(\bmod l)$ for $1 \leqslant i \leqslant k \leqslant m$ and let $\boldsymbol{B}=\left[b_{i j}\right]$ be the incidence matrix of the collection A_{1}, \ldots, A_{k}; i.e.,

$$
b_{i j}= \begin{cases}1, & \text { if } i \in A_{j}, \\ 0, & \text { if } i \notin A_{j},\end{cases}
$$

where $\left|A_{i} \cap A_{i}\right| \equiv 0(\bmod l)$ for $1 \leqslant i<j \leqslant k$. To prove the lemma, it is sufficient to prove $k \leqslant \Omega(l) n . B$ has n rows, so $\operatorname{rank}(\boldsymbol{B}) \leqslant n$. Next set

$$
\boldsymbol{C}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}
$$

If $\boldsymbol{C}=\left[c_{i j}\right]$, then

$$
c_{i j}=\left|A_{i} \cap A_{j}\right|
$$

Let $l=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, where the p_{i} are distinct primes. As $\left|A_{i}\right| \equiv \equiv 0(\bmod l),\left|A_{j}\right| \equiv \equiv 0\left(\bmod p_{i}^{\alpha_{i}}\right)$ for some $i, 1 \leqslant i \leqslant r$.

For a fixed $i, 1 \leqslant i \leqslant r$, and for a fixed $\beta, 1 \leqslant \beta \leqslant \alpha_{i}$, let $A_{i_{1}}, \ldots, A_{i_{s}}$ be the sets for which

$$
\begin{array}{ll}
\left|A_{i_{i}}\right| \equiv 0 & \left(\bmod p_{i}^{\beta-1}\right) \\
\left|A_{i_{j}}\right| \not \equiv 0 & \left(\bmod p_{i}^{\beta}\right)
\end{array}
$$

The submatrix of \boldsymbol{C} formed by taking rows and columns numbered i_{1}, \ldots, i_{s} becomes, when divided by $p_{i}^{\beta-1}$, a diagonal matrix $\bmod p_{i}$ with non-zero entries on the diagonal. This implies $s \leqslant n$, since $\operatorname{rank}(\boldsymbol{C}) \leqslant \operatorname{rank}(\boldsymbol{B}) \leqslant n$. Summing over i and β, we obtain the claim of the lemma.

Lemma 2. For $1 \leqslant r \leqslant n$,

$$
m_{1}(n, l) \geqslant m_{1}(r, l) m_{1}(n-r, l)
$$

Proof. Suppose A_{1}, \ldots, A_{s} are subsets of $\{1,2, \ldots, r\}$ such that

$$
\left|\boldsymbol{A}_{i} \cap A_{j}\right| \equiv 0 \quad(\bmod l), \quad 1 \leqslant i, j \leqslant s
$$

and B_{1}, \ldots, B_{t} are subsets of $\{r+1, \ldots, n\}$ such that

$$
\left|B_{i} \cap B_{i}\right| \equiv 0 \quad(\bmod l), \quad 1 \leqslant i, j \leqslant t
$$

Define

$$
C_{i, j}=A_{i} \cup B_{i}, \quad 1 \leqslant i \leqslant s, \quad 1 \leqslant j \leqslant t .
$$

Then the $C_{i, j}$ are all distinct, and

$$
\left|C_{i, j} \cap C_{p, q}\right|=\left|A_{i} \cap A_{p}\right|+\left|B_{j} \cap B_{q}\right| \equiv 0 \quad(\bmod l),
$$

which proves the lemma.
We now proceed to our constructions of large collections of subsets A_{1}, \ldots, A_{m} of $\{1, \ldots, n\}$ such that

$$
\left|A_{i} \cap A_{j}\right| \equiv 0 \quad(\bmod l), \quad 1 \leqslant i, j \leqslant m .
$$

These constructions are based on Hadamard matrices. Recall that a Hadamard matrix \boldsymbol{M} of order $4 t$ is a $4 t$ by $4 t$ matrix with ± 1 entries such that the scalar product of any two distinct rows is zero. One can always assume that the first row is of the form $(1,1, \ldots, 1)$.

It is conjectured that Hadamard matrices of order $4 t$ exist for every $t \in \mathbb{Z}^{+}$and this is known to be true for $t \leqslant 66$, as well as for several infinite families of values of t, including $t \equiv 3(\bmod 4), t$ a prime power-cf. [4].

Assume first that a Hadamard matrix $\boldsymbol{M}=\left[m_{i j}\right]$ of order $4 l$ exists. Define subsets $S_{1}, \ldots, S_{4 l}, T_{1}, \ldots, T_{4 l}$ of $\{1, \ldots, 4 l\}$ by

$$
\begin{aligned}
& S_{i}=\left\{j: 1 \leqslant j \leqslant 4 l, m_{i j}=1\right\} \\
& T_{i}=\left\{j: 1 \leqslant j \leqslant 4 l, m_{i j}=-1\right\} .
\end{aligned}
$$

Of course $T_{i}=\{1, \ldots, 4 l\}-S_{i}, T_{1}=\varnothing$. The orthogonality of the rows implies
(a) $\left|T_{i}\right|=\left|S_{i}\right|=2 l, \quad 2 \leqslant i \leqslant 4 l$,
(b) $\left|S_{i} \cap S_{j}\right|=\left|T_{i} \cap T_{j}\right|=l, \quad 2 \leqslant i<j \leqslant 4 l$,
(c) $\left|T_{i} \cap S_{j}\right|=l, \quad 2 \leqslant i, j \leqslant 4 l, \quad i \neq j$.

Setting F $=\left\{T_{1}, T_{2}, \ldots, T_{4 l}, S_{1}, \ldots, S_{4 l}\right\}$, we deduce that $\left|\boldsymbol{F} \cap \boldsymbol{F}^{\prime}\right| \equiv 0(\bmod l)$ holds for $F, F^{\prime} \in \mathrm{F}$. Thus

$$
m_{1}(4 l, l) \geqslant 8 l,
$$

and so, by Lemmas 1 and 2

$$
m(n, l) \geqslant m_{1}(n, l) \geqslant(8 l)^{[n /(4 l)]}
$$

Now consider the hypothetical case that there is no Hadamard matrix of order $4 l$. Suppose $l=l_{1}+\cdots+l_{q}$, where $l_{1} \leqslant l_{2} \leqslant \cdots \leqslant l_{q}$, and $l_{i} \in \mathbb{Z}^{+}$are such that Hadamard matrices \boldsymbol{M}_{i} of order $4 l_{i}$ exist.

Let $S_{j}(i), T_{j}(i), 1 \leqslant j \leqslant 4 l_{i}, 1 \leqslant i \leqslant q$ be the sets obtained from the matrices \boldsymbol{M}_{i} by our construction above, where we can assume that $S_{i}(i)$ and $T_{j}(i)$ are subsets of $\left\{4 l_{1}+\cdots+\right.$ $\left.4 l_{i-1}+1, \ldots, 4 l_{1}+\cdots+4 l_{i}\right\}$. Now define, for $1 \leqslant j \leqslant 4 l_{1}$,

$$
\begin{aligned}
& S_{i}=\bigcup_{i=1}^{q} S_{j}(i), \\
& T_{i}=\bigcup_{i=1}^{q} T_{j}(i)
\end{aligned}
$$

6It is straightforward to verify that these sets have pairwise intersections of cardinality divisible by l, and so

$$
m_{1}(4 l, l) \geqslant 8 l_{1} .
$$

Since every integer $l \geqslant 67$ can be written as the sum of integers from $\{33,34, \ldots, 66\}$, an application of Lemmas 1 and 2 yields the desired lower bound.

The bound (1.4) can be improved for large n and l even without assuming unproved hypotheses about existence of Hadamard matrices. It can be shown that l has a representation $l=l_{1}+\cdots+l_{q}$ with $l_{i} \geqslant \epsilon l, \epsilon>0$ a fixed constant, such that Hadamard matrices of order $4 l_{i}$ exist, which enables one to replace 256 by $8 \epsilon l$.

3. Upper Bounds

First we derive the upper bound

$$
\begin{equation*}
m_{1}(n, l) \leqslant 2^{[n / 2]} \tag{3.1}
\end{equation*}
$$

Suppose A_{1}, \ldots, A_{m} are subsets of $\{1, \ldots, n\}$ such that

$$
\left|A_{i} \cap A_{j}\right| \equiv 0 \quad(\bmod l), \quad 1 \leqslant i, j \leqslant m .
$$

Let $\boldsymbol{c}_{\boldsymbol{i}}$ be a vector of length n defined by

$$
\left(c_{i}\right)_{j}= \begin{cases}1, & \text { if } j \in A_{i}, \\ 0, & \text { if } j \notin A_{i} .\end{cases}
$$

Let p be a prime divisor of l. Consider the vector space C over $G F(p)$ spanned by the \boldsymbol{c}_{i}. Then C is self-orthogonal, since

$$
\boldsymbol{c}_{i} \cdot \boldsymbol{c}_{j}=0, \quad 1 \leqslant i, j \leqslant m
$$

Therefore, by basic linear algebra ([6]),

$$
\operatorname{dim} C \leqslant[n / 2]
$$

Now each c_{i} is a $0-1$ vector in C, thus (3.1) follows from the following result.
Theorem 3 ([7]). Suppose that U is a k-dimensional subspace of a vector space V over some field. Then, in any coordinate system for V, U has at most $2^{k} 0-1$ vectors.

Combining (3.1) and Lemma 1 we obtain (1.5).
In order to prove (1.6) we need the following result (a somewhat weaker bound follows from results in [8]).

Theorem 4 ([3; Theorem 11]). Suppose F is a collection of subsets of $\{1,2, \ldots, n\}$ such that for $F \neq F^{\prime}, F, F^{\prime} \in \mathrm{F},\left|F \cap F^{\prime}\right|$ takes only s values. Then

$$
|\mathrm{F}| \leqslant \sum_{i=0}^{s}\binom{n}{i}
$$

In view of Lemma 1 it is sufficient to prove

$$
\begin{equation*}
m_{1}(n, l) \leqslant 2 \sum_{i=0}^{[n /(2 l)]}\binom{n}{i} \tag{3.2}
\end{equation*}
$$

Suppose without loss of generality that A_{1}, \ldots, A_{k} have cardinalities $\leqslant n / 2$, and A_{k+1}, \ldots, A_{m} have cardinalities $>n / 2$.

Then $\left|A_{i} \cap A_{j}\right| \in\{0, l, \ldots,[n /(2 l)] l\}, \quad 1 \leqslant i, j \leqslant k$, and moreover $\left|A_{i} \cap A_{j}\right|=[n /(2 l)] l$ implies $i=j$. Thus, by Theorem 4, we have

$$
\begin{equation*}
k \leqslant \sum_{i=0}^{[n /(2 l)]}\binom{n}{i} . \tag{3.3}
\end{equation*}
$$

Next, define $B_{i}=\{1,2, \ldots, n\}-A_{i}, k+1 \leqslant i \leqslant n$. Then

$$
\left|B_{i} \cap B_{j}\right|=n-\left|A_{i}\right|-\left|A_{j}\right|+\left|A_{i} \cap A_{j}\right| \equiv n \quad(\bmod l),
$$

moreover for $i \neq j$ we deduce $\left|B_{i} \cap B_{j}\right| \leqslant n / 2-l=(n-2 l) / 2$. Thus $\left|B_{i} \cap B_{j}\right|$ for $i \neq j$ takes at most $[n /(2 l)]$ different values. Again from Theorem 4 we obtain

$$
\begin{equation*}
m-k \leqslant \sum_{i=0}^{[n /(2 t)]}\binom{n}{i} . \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4) the bound (3.2) and thus (1.6) follows.

4. Related Problems

Our paper leaves a number of questions open. The main problem, as stated in the introduction, is to determine $c(l)$. Barring that, it would be interesting to decide whether $c(l)$ is monotone decreasing. (At this point we only know that $c(2) \geqslant c(l)$ for $l=3,4$, and $c(2)>c(l)$ for $l \geqslant 5$.)

One can also ask similar questions about collections of equal-sized sets. Let k be a positive integer and I a subset of $\{0,1, \ldots, k-1\}$. Denote by $m(n, k, I)$ the maximum number of k-subsets of an n-set such that the intersection of any two distinct sets has cardinality belonging to I. It was proved in [2] that for $n>n_{0}(k, I)$,

$$
\begin{equation*}
m(n, k, I) \leqslant \prod_{i \in I}(n-i) /(k-i) \tag{4.1}
\end{equation*}
$$

In particular, if $n=b l, k=a l$, and $I=\{0, l, \ldots,(a-1) l\}$, then (4.1) gives

$$
\begin{equation*}
m(n, k, I) \leqslant\binom{ b}{a} \tag{4.2}
\end{equation*}
$$

It would be nice to know given a and l what is the least value of b_{0} such that for $b \geqslant b_{0}$ and $n=b l, k=a l,(4.2)$ holds. Binary self-dual codes show that in general the bound $\binom{b}{a}$ does not hold even for $l=2$.

One can generalize our problem by asking for $m(n, l, s)$, the maximum number of subsets of an n-set, such that the intersection of any s distinct ones has cardinality divisible by l.

Obviously $m(n, l, s) \geqslant 2^{[n / l]}$. It can be shown that

$$
c(l, s)=\lim _{n \rightarrow \infty} m(n, l, s)^{1 / n}
$$

exists, and that $c(l, s)$ is monotone nonincreasing in s. It seems reasonable to conjecture that for $s>s(l), c(l, s)=2^{1 / l}$.

References

1. E. R. Berlekamp, On subsets with intersections of even cardinality. Canad. Math. Bull. 12 (1969), 363-366.
2. M. Deza, P. Erdös, and P. Frankl, Intersection properties of systems of finite sets. Proc. London Math. Soc. 36 (1978), 369-384.
3. P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences. Combinatorica 1 (1981), 357-368.
4. A. V. Geramita and J. Seberry, Orthogonal designs. Lecture notes in pure and applied mathematics, Vol. 45, Marcel Dekker, New York, 1979.
5. J. E. Graver, Boolean designs and self-dual matroids, Lin. Alg. Appl. 10 (1975) 111-128.
6. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting codes, North-Holland 1978
7. A. M. Odlyzko, On the ranks of some (0,1)-matrices with constant row sums. J. Austral. Math. Soc. 31 (1981), 193-201.
8. D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs. Osaka J. Math. 12 (1975), 735-744.

Received 2 July 1982
P. Frankl

Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A. and CNRS, Paris, France
A. M. Odlyzko

Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A.

